我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

正定矩阵

指数 正定矩阵

在线性代数裡,正定矩阵是埃尔米特矩阵的一种,有时会简称为正定阵。在线性代数中,正定矩阵的性质類似复数中的正实数。与正定矩阵相对应的线性算子是对称正定双线性形式(複域中则对应埃尔米特正定双线性形式)。.

目录

  1. 36 关系: 埃尔米特矩阵偏序关系半双线性形式双线性映射合同矩阵向量向量空间复数实数對角矩陣三角矩阵二次型当且仅当單位矩陣内积共轭共轭转置Cholesky分解矩阵矩阵的平方根确定双线性形式秩 (线性代数)线性代数线性矩阵不等式线性映射特征值和特征向量非奇异方阵行列式谱定理舒尔补酉矩阵格拉姆矩阵标准正交基正定函數正數泛函分析

埃尔米特矩阵

埃尔米特矩阵(Hermitian matrix,又译作厄米矩阵),也稱自伴隨矩陣,是共轭對稱的方陣。埃尔米特矩阵中每一个第i行第j列的元素都与第j行第i列的元素的复共轭。 对于 有: 记做: 例如: 3&2+i\\ 2-i&1 \end 就是一个埃尔米特矩阵。 显然,埃尔米特矩阵主对角线上的元素都是实数的,其特征值也是实数。对于只包含实数元素的矩阵(实矩阵),如果它是对称阵,即所有元素关于主对角线对称,那么它也是埃尔米特矩阵。也就是说,实对称矩阵是埃尔米特矩阵的特例。.

查看 正定矩阵和埃尔米特矩阵

偏序关系

偏序集合(Partially ordered set,简写poset)是数学中,特别是序理论中,指配备了部分排序关系的集合。 这个理論將排序、顺序或排列这个集合的元素的直觉概念抽象化。这种排序不必然需要是全部的,就是说不必要保证此集合内的所有对象的相互可比较性。部分排序集合定义了部分排拓扑。.

查看 正定矩阵和偏序关系

半双线性形式

在数学中,在复数向量空间V上的半双线性形式是映射V × V → C,它在一个参数上是线性的而在另一个参数上是反线性(半线性)的。比较于双线性形式,它在两个参数上都是线性的;要注意很多作者尤其是在只处理复数情况的时候,把半双线性形式称为双线性形式。 一个主要例子是在复数向量空间上的内积,它不是双线性的而是半双线性的。.

查看 正定矩阵和半双线性形式

双线性映射

在数论中,一个双线性映射是由两个向量空间上的元素,生成第三个向量空间上一个元素之函数,并且该函数对每个参数都是线性的。例如矩阵乘法就是一个例子。.

查看 正定矩阵和双线性映射

合同矩阵

在线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。两个矩阵A和B是合同的,如果有同数域上的可逆矩阵 P,使得 其中的P^\mathrm表示矩阵P的转置矩阵。 对于二次型的矩阵表示来说,做一次非退化的线性替换相当于将二次型的矩阵变为一个与其合同的矩阵。.

查看 正定矩阵和合同矩阵

向量

向量(vector,物理、工程等也称作--)是数学、物理学和工程科学等多个自然科學中的基本概念,指一个同时具有大小和方向,且满足平行四边形法则的几何對象。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量(特别地,电流属既有大小、又有正负方向的量,但由于其运算不满足平行四边形法则,公认为其不属于向量)。向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量或数量,即只有大小、绝大多数情况下没有方向(电流是特例)、不满足平行四边形法则的量。.

查看 正定矩阵和向量

向量空间

向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.

查看 正定矩阵和向量空间

复数

#重定向 复数 (数学).

查看 正定矩阵和复数

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

查看 正定矩阵和实数

對角矩陣

對角矩陣(diagonal matrix)是一個主對角線之外的元素皆為0的矩陣。對角線上的元素可以為0或其他值。因此n行n列的矩陣\mathbf.

查看 正定矩阵和對角矩陣

三角矩阵

在线性代数中,三角矩阵是方形矩阵的一种,因其非零系数的排列呈三角形状而得名。三角矩阵分上三角矩阵和下三角矩阵两种。上三角矩阵的对角线左下方的系数全部为零,下三角矩阵的对角线右上方的系数全部为零。三角矩阵可以看做是一般方阵的一种简化情形。比如,由于带三角矩阵的矩阵方程容易求解,在解多元线性方程组时,总是将其系数矩阵通过初等变换化为三角矩阵来求解;又如三角矩阵的行列式就是其对角线上元素的乘积,很容易计算。有鉴于此,在数值分析等分支中三角矩阵十分重要。一个可逆矩阵A可以通过LU分解变成一个下三角矩阵L与一个上三角矩阵U的乘积。.

查看 正定矩阵和三角矩阵

二次型

在数学中,二次型是一些变量上的二次齐次多项式。例如 是关于变量x和y的二次型。 二次型在许多数学分支,包括数论、线性代数、群论(正交群)、微分几何(黎曼测度)、微分拓扑(intersection forms of four-manifolds)和李代数(基灵型)中,占有核心地位。.

查看 正定矩阵和二次型

当且仅当

当且仅当(If and only if)(中国大陆又称作当且--仅当,臺灣又称作若且--唯若),在--邏輯中,逻辑算符反互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XNOR或ENOR或\Leftrightarrow。与一般的邏輯或非NOR不同,當兩兩數值相同為是,而數值不同時為否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在,并且仅仅在这些条件成立的时候”之意,在英语中的对应标记为iff。“A当且仅当B”其他等价的说法有“当且仅当A則B”;“A是B的充分必要条件(充要條件)”。 一般而言,當我們看到“A当且仅当B”,我們可以知道“如果A成立時,則B一定成立;如果B成立時,則A也一定成立”;“如果A不成立時,則B一定不成立;如果B不成立時,則A也一定不成立”。.

查看 正定矩阵和当且仅当

單位矩陣

在線性代數中,n階單位矩陣,是一個n \times n的方形矩陣,其主對角線元素為1,其餘元素為0。單位矩陣以I_n表示;如果階數可忽略,或可由前後文確定的話,也可簡記為I(或者E)。(在部分領域中,如量子力學,單位矩陣是以粗體字的1表示,否則無法與I作區別。) I_1.

查看 正定矩阵和單位矩陣

内积

#重定向 点积.

查看 正定矩阵和内积

共轭

共轭(conjugate)可以指:.

查看 正定矩阵和共轭

共轭转置

矩阵A的共轭转置A^*(又称埃尔米特共轭、埃尔米特转置)定义为: 其中(\cdot)_表示矩阵i行j列上的元素,\overline表示标量的复共轭。 这一定义也可以写作: 其中A^\mathrm \,\!是矩阵A的转置,\overline\,\!表示对矩阵A中的元素取复共轭。 通常用以下记号表示矩阵A的共轭转置:.

查看 正定矩阵和共轭转置

Cholesky分解

線性代數中,Cholesky分解(Cholesky decomposition or Cholesky factorization,另有譯作楚列斯基分解)是指將一個正定的Hermite矩陣分解成一個下三角矩陣與其共軛轉置之乘積。這種分解方式在提高代數運算效率、蒙特卡羅方法等場合中十分有用。實數矩陣的Cholesky分解由最先發明。實際應用中,Cholesky分解在求解線性方程組中的效率約兩倍於LU分解。.

查看 正定矩阵和Cholesky分解

矩阵

數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.

查看 正定矩阵和矩阵

矩阵的平方根

在数学中,矩阵的平方根是算术中的平方根概念的推广。对一个矩阵A,如果矩阵B满足 那么矩阵B就是A的一个平方根。.

查看 正定矩阵和矩阵的平方根

确定双线性形式

在数学中,确定双线性形式是双线性形式B使得 在x不是0的时候有固定的符号(或正或负)。 要给出形式定义,设K是域R(实数)或C(复数)之一。假设V是在K上的向量空间,并且 是Hermitian形式的双线性形式,在B(x, y)总是B(y, x)的复共轭的意义上。如果 对于所有V中的非零x。如果B(x, x) ≥ 0对于所有x,B被称为正半定。负定和负半定双线性形式也类似的定义。如果B(x, x)取正和负值二者,它叫做不定的。 作为一个例子,设V.

查看 正定矩阵和确定双线性形式

秩 (线性代数)

在线性代数中,一个矩阵A的列秩是A的线性獨立的纵列的极大数目。类似地,行秩是A的线性獨立的横行的极大数目。 矩阵的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。通常表示为r(A),rk(A)或rank A。.

查看 正定矩阵和秩 (线性代数)

线性代数

线性代数是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 坐标满足线性方程的点集形成n维空间中的一个超平面。n个超平面相交于一点的条件是线性代数研究的一个重要焦点。此项研究源于包含多个未知数的线性方程组。这样的方程组可以很自然地表示为矩阵和向量的形式。 线性代数既是纯数学也是应用数学的核心。例如,放宽向量空间的公理就产生抽象代数,也就出现若干推广。泛函分析研究无穷维情形的向量空间理论。线性代数与微积分结合,使得微分方程线性系统的求解更加便利。线性代数的理论已被泛化为。 线性代数的方法还用在解析几何、工程、物理、自然科学、計算機科學、计算机动画和社会科学(尤其是经济学)中。由于线性代数是一套完善的理论,非线性数学模型通常可以被近似为线性模型。.

查看 正定矩阵和线性代数

线性矩阵不等式

线性矩阵不等式是凸优化中,具有形式: \operatorname(y).

查看 正定矩阵和线性矩阵不等式

线性映射

在数学中,线性映射(有的书上将“线性变换”作为其同义词,有的则不然)是在两个向量空间(包括由函数构成的抽象的向量空间)之间的一种保持向量加法和标量乘法的特殊映射。线性映射从抽象代数角度看是向量空间的同态,从范畴论角度看是在给定的域上的向量空间所构成的范畴中的态射。 “线性算子”也是与“线性映射”有关的概念。但是不同数学书籍上对“线性算子”的定义存在区别。在泛函分析中,“线性算子”一般被当做“线性映射”的同义词。而有的书则将“线性算子”定义为“线性映射”的自同态子类(详见下文)。为叙述方便,本条目在提及“线性算子”时,采用后一种定义,即将线性算子与线性映射区别开来。.

查看 正定矩阵和线性映射

特征值和特征向量

在数学上,特别是线性代数中,对于一个给定的矩阵A,它的特征向量(eigenvector,也譯固有向量或本征向量)v 经过这个线性变换之后,得到的新向量仍然与原来的v 保持在同一條直線上,但其长度或方向也许會改变。即 \lambda為純量,即特征向量的长度在该线性变换下缩放的比例,称\lambda 为其特征值(本征值)。如果特徵值為正,则表示v 在经过线性变换的作用后方向也不变;如果特徵值為負,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。图1给出了一个以著名油画《蒙娜丽莎》为题材的例子。在一定条件下(如其矩阵形式为实对称矩阵的线性变换),一个变换可以由其特征值和特征向量完全表述,也就是說:所有的特徵向量組成了這向量空間的一組基底。一个特征空间(eigenspace)是具有相同特征值的特征向量与一个同维数的零向量的集合,可以证明该集合是一个线性子空间,比如\textstyle E_\lambda.

查看 正定矩阵和特征值和特征向量

非奇异方阵

若方块矩阵A\,满足条件\left|A\right|(\rm(A))\ne0,则称A\,为非奇异方阵,否则称为奇异方阵。.

查看 正定矩阵和非奇异方阵

行列式

行列式(Determinant)是数学中的一個函數,将一个n \times n的矩陣A映射到一個純量,记作\det(A)或|A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现线性自同态和向量组的行列式的定义。 行列式的特性可以被概括为一个交替多线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。.

查看 正定矩阵和行列式

谱定理

数学上,特别是线性代数和泛函分析中,谱定理是关于线性算子或者矩阵的一些结果。泛泛来讲,谱定理给出了算子或者矩阵可以对角化的条件(也就是可以在某个基底中用对角矩阵来表示)。对角化的概念在有限维空间中比较直接,但是对于无穷维空间中的算子需要作一些修改。通常,谱定理辨认出一族可以用乘法算子来代表的线性算子,这是可以找到的最简单的情况了。用更抽象的语言来讲,谱定理是关于交换C*-代数的命题。参看谱分析中的历史观点。 可以应用谱定理的例子有希尔伯特空间上的自伴算子或者更一般的正规算子。 谱定理也提供了一个算子所作用的向量空间的标准分解,称为谱分解,特征值分解,或者特征分解。 本条目中,主要考虑谱定理的简单情况,也就是希尔伯特空间上的自伴算子。但是,如上文所述,谱定理也对希尔伯特空间上的正规算子成立。.

查看 正定矩阵和谱定理

舒尔补

在线性代数与矩阵论中,一个矩阵的子矩阵之舒尔补是一个与其余子阵同样大小的矩阵,定义如下:假设一个 (p+q)×(p+q)的矩阵M被分为A, B, C, D四个部分,分别是p×p、p×q、q×p以及q×q的矩阵,也就是说: 并且D是可逆的矩阵。则D在矩阵中的舒尔补是: 这是一个p×p的矩阵。 舒尔补得名于数学家伊赛·舒尔,后者用舒尔补来证明舒尔引理。然而,舒尔补的概念在之前就曾经被使用过。.

查看 正定矩阵和舒尔补

酉矩阵

若一n行n列的複数矩阵U满足 其中I_n\,为n阶单位矩阵,U^\dagger \,为U的共轭转置,则U称为--(又译作--、--。英文:Unitary Matrix, Unitary是歸一或單位的意思)。即,矩阵U为酉矩阵,当且仅当其共轭转置U^\dagger \,为其逆矩阵: 若酉矩阵的元素都是实数,其即为正交矩阵。与正交矩阵G不会改变两个实向量的内积类似, 酉矩阵U不改变两个复向量的内积: 若U \,为n阶方阵,则下列条件等价:.

查看 正定矩阵和酉矩阵

格拉姆矩阵

在线性代数中,内积空间中一族向量 v_1,\dots, v_n 的格拉姆矩阵(Gramian matrix 或 Gram matrix, Gramian)是内积的对称矩阵,其元素由 G_.

查看 正定矩阵和格拉姆矩阵

标准正交基

在线性代数中,一个内积空间的正交基(orthogonal basis)是元素两两正交的基。称基中的元素为基向量。假若,一个正交基的基向量的模长都是单位长度1,则称这正交基为标准正交基或"规范正交基"(Orthonormal basis)。 无论在有限维还是无限维空间中,正交基的概念都是很重要的。在无限维希尔伯特空间中,正交基不再是哈默尔基,也即是说不是每个元素都可以写成有限个基中元素的线性组合。因此在无限维空间中,正交基应该被更严格地定义为由线性无关而且两两正交的元素组成、张成的空间是原空间的一个稠密子空间(而不是整个空间)的集合。 注意,在没有定义内积的空间中,“正交基”一词是没有意义的。因此,一个具有正交基的巴拿赫空间,就是一个希尔伯特空间。.

查看 正定矩阵和标准正交基

正定函數

在數學上,正定函數一詞可以用來表達許多不同的概念。.

查看 正定矩阵和正定函數

正數

正数,在数学上是指大于0的实数,如1、3.7,1.5等,与负数相对。和实数一样,正數也是一個不可數的無限集合。這個集合在数学上通常用粗體R+或ℝ+来表示。正数与0统称非负数。.

查看 正定矩阵和正數

泛函分析

泛函分析(Functional Analysis)是现代数学分析的一个分支,隶属于分析学,其研究的主要对象是函数构成的函数空间。泛函分析历史根源是由对函数空间的研究和对函数的变换(如傅立叶变换等)的性质的研究。这种观点被证明是对微分方程和积分方程的研究中特别有用。 使用泛函这个词作为表述源自变分法,代表作用于函数的函数,这意味着,一个函数的参数是函数。这个名词首次被雅克·阿达马在1910年使用于这个课题的书中。是泛函分析理论的主要奠基人之一。然而,泛函的一般概念以前曾在1887年是由意大利数学家和物理学家維多·沃爾泰拉(Vito Volterra)介绍。非线性泛函理论是由雅克·阿达马的学生继续研究,特别是莫里斯·弗雷歇(Maurice Fréchet)可和列维(Levy)。雅克·阿达马还创立线性泛函分析的现代流派,并由弗里杰什·里斯和一批围绕着斯特凡·巴拿赫(Stefan Banach)的波兰数学家进一步发展。.

查看 正定矩阵和泛函分析

亦称为 半正定,半正定矩阵。