目录
基变更
在线性代数中,n 维向量空间的基是 n 个向量 α1,..., αn 的序列,带有所有这个空间中的向量可以唯一的表达为基向量的线性组合的性质。因为经常需要处理一个向量空间的多于一个的基,在线性代数中能够轻易的变换向量的逐坐标表达,和变换关于一个基的线性映射到关于另一个基的等价表达是根本重要的。这种变换叫做基变更。 尽管下面采用了术语向量空间,符号 R 意味着实数域,这里讨论的结果成立只要 R 是交换环,而这里的向量空间可替代为自由 R-模。.
查看 合同矩阵和基变更
合同 (數學)
在數學中,合同(英文:congruence,符號:≅)做為一個一般性的概念,指的是一組物件之間的等價關係。例如:.
查看 合同矩阵和合同 (數學)
复数
#重定向 复数 (数学).
查看 合同矩阵和复数
對角矩陣
對角矩陣(diagonal matrix)是一個主對角線之外的元素皆為0的矩陣。對角線上的元素可以為0或其他值。因此n行n列的矩陣\mathbf.
查看 合同矩阵和對角矩陣
二次型
在数学中,二次型是一些变量上的二次齐次多项式。例如 是关于变量x和y的二次型。 二次型在许多数学分支,包括数论、线性代数、群论(正交群)、微分几何(黎曼测度)、微分拓扑(intersection forms of four-manifolds)和李代数(基灵型)中,占有核心地位。.
查看 合同矩阵和二次型
單位矩陣
在線性代數中,n階單位矩陣,是一個n \times n的方形矩陣,其主對角線元素為1,其餘元素為0。單位矩陣以I_n表示;如果階數可忽略,或可由前後文確定的話,也可簡記為I(或者E)。(在部分領域中,如量子力學,單位矩陣是以粗體字的1表示,否則無法與I作區別。) I_1.
查看 合同矩阵和單位矩陣
矩阵
數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.
查看 合同矩阵和矩阵
秩 (线性代数)
在线性代数中,一个矩阵A的列秩是A的线性獨立的纵列的极大数目。类似地,行秩是A的线性獨立的横行的极大数目。 矩阵的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。通常表示为r(A),rk(A)或rank A。.
等价关系
等價關係(equivalence relation)即设R是某個集合A上的一个二元关系。若R满足以下條件:.
查看 合同矩阵和等价关系
等价类
在数学中,假設在一个集合X上定義一个等价关系(用 \sim來表示),则X中的某個元素a的等价类就是在X中等价于a的所有元素所形成的子集: 等价类的概念有助于从已经构造了的集合构造新集合。在X中的给定等价关系 \sim的所有等价类的集合表示为X/ \sim并叫做X除以\sim的商集。这种运算可以(实际上非常不正式的)被认为是输入集合除以等价关系的活动,所以名字“商”和这种记法都是模仿的除法。商集类似于除法的一个方面是,如果X是有限的并且等价类都是等势的,则X/ \sim的序是X的序除以一个等价类的序的商。商集被认为是带有所有等价点都识别出来的集合X。 对于任何等价关系,都有从X到X/ \sim的一个规范投影映射\pi,给出为\pi(x).
查看 合同矩阵和等价类
线性代数
线性代数是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 坐标满足线性方程的点集形成n维空间中的一个超平面。n个超平面相交于一点的条件是线性代数研究的一个重要焦点。此项研究源于包含多个未知数的线性方程组。这样的方程组可以很自然地表示为矩阵和向量的形式。 线性代数既是纯数学也是应用数学的核心。例如,放宽向量空间的公理就产生抽象代数,也就出现若干推广。泛函分析研究无穷维情形的向量空间理论。线性代数与微积分结合,使得微分方程线性系统的求解更加便利。线性代数的理论已被泛化为。 线性代数的方法还用在解析几何、工程、物理、自然科学、計算機科學、计算机动画和社会科学(尤其是经济学)中。由于线性代数是一套完善的理论,非线性数学模型通常可以被近似为线性模型。.
查看 合同矩阵和线性代数
相似矩陣
在线性代数中,相似矩阵是指存在相似关系的矩阵。相似关系是两个矩阵之间的一种等价关系。两个n×n矩阵A与B为相似矩阵当且仅当存在一个n×n的可逆矩阵P,使得: P被称为矩阵A与B之间的相似变换矩阵。 相似矩阵保留了矩阵的许多性质,因此许多对矩阵性质的研究可以通过研究更简单的相似矩阵而得到解决。 判断两个矩阵是否相似的辅助方法: 1.判断特征值是否相等; 2.判断行列式是否相等; 3.判断跡是否相等; 4.判断秩是否相等; 以上条件可以作为判断矩阵是否相似的必要条件,而非充分条件。.
查看 合同矩阵和相似矩陣
行列式
行列式(Determinant)是数学中的一個函數,将一个n \times n的矩陣A映射到一個純量,记作\det(A)或|A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现线性自同态和向量组的行列式的定义。 行列式的特性可以被概括为一个交替多线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。.
查看 合同矩阵和行列式
西尔维斯特惯性定理
在代数学中,西尔维斯特惯性定理(Sylvester's law of inertia)是指在实数域中,一个形如a_x_1^2+a_x_1x_2+a_x_1x_3+...+a_x_n^2的二次型通过线性变换可以化简成惟一的标准型y_1^2+y_2^2+...+y_p^2-y_^2-....-y_r^2。其中的正项数(称为正惯性系数)、负项数(称为负惯性系数)以及 0 的数目惟一确定,其中的r为系数矩阵的秩。正惯性系数p-负惯性系数 (r-p) 的值 (2p-r) 称作符号差。.
谱定理
数学上,特别是线性代数和泛函分析中,谱定理是关于线性算子或者矩阵的一些结果。泛泛来讲,谱定理给出了算子或者矩阵可以对角化的条件(也就是可以在某个基底中用对角矩阵来表示)。对角化的概念在有限维空间中比较直接,但是对于无穷维空间中的算子需要作一些修改。通常,谱定理辨认出一族可以用乘法算子来代表的线性算子,这是可以找到的最简单的情况了。用更抽象的语言来讲,谱定理是关于交换C*-代数的命题。参看谱分析中的历史观点。 可以应用谱定理的例子有希尔伯特空间上的自伴算子或者更一般的正规算子。 谱定理也提供了一个算子所作用的向量空间的标准分解,称为谱分解,特征值分解,或者特征分解。 本条目中,主要考虑谱定理的简单情况,也就是希尔伯特空间上的自伴算子。但是,如上文所述,谱定理也对希尔伯特空间上的正规算子成立。.
查看 合同矩阵和谱定理
转置矩阵
在线性代数中,矩阵A的转置是另一个矩阵AT(也写做Atr, tA或A′)由下列等价动作建立.
查看 合同矩阵和转置矩阵
正交矩阵
在矩阵论中,正交矩阵(orthogonal matrix)是一個方块矩阵Q,其元素為实数,而且行與列皆為正交的单位向量,使得該矩陣的转置矩阵為其逆矩阵: 其中,I為單位矩陣。正交矩陣的行列式值必定為+1或-1,因為: 底下是一些重要的性質:.
查看 合同矩阵和正交矩阵