徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

正交矩阵

指数 正交矩阵

在矩阵论中,正交矩阵(orthogonal matrix)是一個方块矩阵Q,其元素為实数,而且行與列皆為正交的单位向量,使得該矩陣的转置矩阵為其逆矩阵: 其中,I為單位矩陣。正交矩陣的行列式值必定為+1或-1,因為: 底下是一些重要的性質:.

68 关系: 半直积单位向量反對稱矩陣反射 (数学)可对角化矩阵变换矩阵吉文斯旋转复平面复数奇异值分解子群实数對角矩陣交错群單位矩陣内积空间商群矩阵分解矩陣乘法矩陣理論离散余弦变换空間對稱群等距同构紧空间纤维丛线性代数线性映射绝对值置换的奇偶性置换矩阵瑕旋轉点反演点积特征分解特征值和特征向量特征空间直积行列式高斯消去法豪斯霍尔德变换點群转置矩阵辛矩陣连通空间酉矩阵雅可比旋转逆矩阵陪集MP3...QR分解极分解李群条件数标准正交基欧几里得空间欧拉角正交正交变换正交群正规子群正规矩阵方块矩阵旋转旋转矩阵数值分析数值稳定性数值线性代数 扩展索引 (18 更多) »

半直积

在數學中,特別是叫做群論的抽象代數領域中,半直積(semidirect product)是從其中一個是正規子群的兩個子群形成一個群的特定方法。半直積是直積的推廣。半直積是作為集合的笛卡爾積,但帶有特定的乘法運算。.

新!!: 正交矩阵和半直积 · 查看更多 »

单位向量

数学上,赋范向量空间中的单位向量就是长度为1的向量。单位向量的符号通常有个“帽子”,如:\mathbf。欧几里得空间中,两个单位向量的点积就是它们之间角度的余弦(因为它们的长度都是1)。 一个非零向量\mathbf的正规化向量\mathbf就是平行于\mathbf的单位向量: 这里\|\mathbf\|是\mathbf的范数(长度)。正规化向量有时候也可以当作单位向量的同义词。一组基的元素通常被选为单位向量。在三维直角坐标系中,通常是\mathbf, \mathbf, \mathbf,分别为沿着x, y, z方向的单位向量: 在其他坐标系中,如极坐标系、球坐标系,使用不同的单位向量,符号也会不一样。.

新!!: 正交矩阵和单位向量 · 查看更多 »

反對稱矩陣

在線性代數中,反對稱矩陣(或稱斜對稱矩陣)是一個方形矩陣,其轉置矩陣和自身的加法逆元相等。其滿足: 或寫作A.

新!!: 正交矩阵和反對稱矩陣 · 查看更多 »

反射 (数学)

在数学中,反射是把一个物体变换成它的镜像的映射。要反射一个平面图形,需要“镜子”是一条直线(反射轴),对于三维空间中的反射就要使用平面作为镜子。反射有时被认为是圆反演的特殊情情况,参考圆有无限半径。 在几何上说,要找到一个点的反射,可从这个点向反射轴画一条垂线。并在另一边延续相同的距离。要找到一个图形的反射,需要反射这个图形的每个点。 两次反射回到原来的地方。反射保持在点之间的距离。反射不移动在镜子上的点,镜子的维数比发生反射的空间的维数要小1。这些观察允许我们形式化反射的定义:反射是欧几里得空间的对合等距同构,它的不动点集合是余维数为1的仿射子空间。 在经历特定反射后不改变的图形被称为有反射对称性。 密切关联于反射的是斜反射和圆反演。这些变换仍对合于有余维数1的不动点的集合,但它们不再是等距的。.

新!!: 正交矩阵和反射 (数学) · 查看更多 »

可对角化矩阵

可对角化矩阵是线性代数和矩阵论中重要的一类矩阵。如果一个方块矩阵 A 相似于对角矩阵,也就是说,如果存在一个可逆矩阵 P 使得 P −1AP 是对角矩阵,则它就被称为可对角化的。如果 V 是有限维度的向量空间,则线性映射 T: V → V 被称为可对角化的,如果存在 V 的一个基,T 关于它可被表示为对角矩阵。对角化是找到可对角化矩阵或映射的相应对角矩阵的过程。 可对角化矩阵和映射在线性代数中有重要价值,因为对角矩阵特别容易处理: 它们的特征值和特征向量是已知的,且其次方可通过計算对角元素同样的次方来獲得。 若尔当-谢瓦莱分解表达一个算子为它的对角部分与它的幂零部分的和。.

新!!: 正交矩阵和可对角化矩阵 · 查看更多 »

变换矩阵

变换矩阵是数学线性代数中的一个概念。 在线性代数中,线性变换能够用矩阵表示。如果T是一个把Rn映射到Rm的线性变换,且x是一个具有n个元素的列向量,那么 我们把m×n的矩阵A,称为T的变换矩阵。.

新!!: 正交矩阵和变换矩阵 · 查看更多 »

吉文斯旋转

在数值线性代数中,吉文斯旋转(Givens rotation)是在两个坐标轴所展开的平面中的旋转。吉文斯旋转得名于华莱士·吉文斯,他在 1950 年代工作于阿贡国家实验室时把它介入到数值分析中。.

新!!: 正交矩阵和吉文斯旋转 · 查看更多 »

复平面

数学中,复平面(complex plane)是用水平的实轴与垂直的虚轴建立起来的复数的几何表示。它可视为一个具有特定代数结构笛卡儿平面(实平面),一个复数的实部用沿着 x-轴的位移表示,虚部用沿着 y-轴的位移表示。 复平面有时也叫做阿尔冈平面,因为它用于阿尔冈图中。这是以让-罗贝尔·阿尔冈(1768-1822)命名的,尽管它们最先是挪威-丹麦土地测量员和数学家卡斯帕尔·韦塞尔(1745-1818)叙述的。阿尔冈图经常用来标示复平面上函数的极点与零点的位置。 复平面的想法提供了一个复数的几何解释。在加法下,它们像向量一样相加;两个复数的乘法在极坐标下的表示最简单——乘积的长度或模长是两个绝对值或模长的乘积,乘积的角度或辐角是两个角度或辐角的和。特别地,用一个模长为 1 的复数相乘即为一个旋转。.

新!!: 正交矩阵和复平面 · 查看更多 »

复数

#重定向 复数 (数学).

新!!: 正交矩阵和复数 · 查看更多 »

奇异值分解

奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分解,在信号处理、统计学等领域有重要应用。奇异值分解在某些方面与对称矩阵或厄米矩陣基于特征向量的对角化类似。然而这两种矩阵分解尽管有其相关性,但还是有明显的不同。对称阵特征向量分解的基础是谱分析,而奇异值分解则是谱分析理论在任意矩阵上的推广。.

新!!: 正交矩阵和奇异值分解 · 查看更多 »

子群

假設(G, *)是一個群,若 H 是 G 的一個非空子集且同時 H 與相同的二元運算 * 亦構成一個群,則 (H, *) 稱為 (G, *) 的一個子群。參閱群論。 更精確地來說,若運算*在H的限制也是個在H上的群運算,则称H為G的子群。 一個群G的純子群是指一個子群H,其為G的純子集(即H ≠ G)。任一個群的當然群為只包含單位元素的子群。若H為G的子群,則G有時會被稱為H的「母群」。 相同的定義可以應用在更廣義的範圍內,當G為一任意的半群,但此一條目中只處理群的子群而已。群G有時會被標記成有序對(G,*),通常用以強調其運算*當G帶有多重的代數或其他結構。 在下面的文章中,會使用省略掉*的常規,並將乘積a*b寫成ab。.

新!!: 正交矩阵和子群 · 查看更多 »

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

新!!: 正交矩阵和实数 · 查看更多 »

對角矩陣

對角矩陣(diagonal matrix)是一個主對角線之外的元素皆為0的矩陣。對角線上的元素可以為0或其他值。因此n行n列的矩陣\mathbf.

新!!: 正交矩阵和對角矩陣 · 查看更多 »

交错群

数学中,交错群(alternating group)是一个有限集合偶置换之群。集合 上的交错群称为 n 阶交错群,或 n 个字母上的交错群,记做 An 或 Alt(n)。 例如,4 阶交错群是 A4.

新!!: 正交矩阵和交错群 · 查看更多 »

單位矩陣

在線性代數中,n階單位矩陣,是一個n \times n的方形矩陣,其主對角線元素為1,其餘元素為0。單位矩陣以I_n表示;如果階數可忽略,或可由前後文確定的話,也可簡記為I(或者E)。(在部分領域中,如量子力學,單位矩陣是以粗體字的1表示,否則無法與I作區別。) I_1.

新!!: 正交矩阵和單位矩陣 · 查看更多 »

内积空间

内积空间是数学中的线性代数裡的基本概念,是增添了一个额外的结构的向量空间。这个额外的结构叫做内积或标量积。内积将一对向量与一个标量连接起来,允许我们严格地谈论向量的“夹角”和“长度”,并进一步谈论向量的正交性。内积空间由欧几里得空间抽象而来(内积是点积的抽象),这是泛函分析讨论的课题。 内积空间有时也叫做准希尔伯特空间(pre-Hilbert space),因为由内积定义的距离完备化之后就会得到一个希尔伯特空间。 在早期的著作中,内积空间被称作--空间,但这个词现在已经被淘汰了。在将内积空间称为--空间的著作中,“内积空间”常指任意维(可数或不可数)的欧几里德空间。.

新!!: 正交矩阵和内积空间 · 查看更多 »

商群

在數學中,給定一個群G和G的正規子群N,G在N上的商群或因子群,在直覺上是把正規子群N“萎縮”為單位元的群。商群寫為G/N并念作G mod N(mod是模的簡寫)。如果N不是正規子群,商仍可得到,但結果將不是群,而是齊次空間。.

新!!: 正交矩阵和商群 · 查看更多 »

矩阵分解

矩阵分解(decomposition, factorization)是多半将矩阵拆解为数个三角形矩阵(triangular matrix),依使用目的的不同,可分为几类。.

新!!: 正交矩阵和矩阵分解 · 查看更多 »

矩陣乘法

這篇文章給出多種矩陣相乘方法的綜述。.

新!!: 正交矩阵和矩陣乘法 · 查看更多 »

矩陣理論

在數學,矩陣理論是一門研究矩陣在數學上的應用的科目。矩陣理論本來是線性代數的一個小分支,但其後由於陸續在圖論、代數、組合數學和統計上得到應用,漸漸發展成為一門獨立的學科。 有關矩陣理論所用到的名詞的定義,請參考矩陣理論專有名詞表。.

新!!: 正交矩阵和矩陣理論 · 查看更多 »

离散余弦变换

离散余弦变换(discrete cosine transform, DCT)是与傅里叶变换相关的一种变换,类似于离散傅里叶变换,但是只使用实数。离散余弦变换相当于一个长度大概是它两倍的离散傅里叶变换,这个离散傅里叶变换是对一个实偶函数进行的(因为一个实偶函数的傅里叶变换仍然是一个实偶函数),在有些变形里面需要将输入或者输出的位置移动半个单位(DCT有8种标准类型,其中4种是常见的)。 最常用的一种离散余弦变换的类型是下面给出的第二种类型,通常我们所说的离散余弦变换指的就是这种。它的逆,也就是下面给出的第三种类型,通常相应的被称为"反离散余弦变换","逆离散余弦变换"或者"IDCT"。 有两个相关的变换,一个是离散正弦变换,它相当于一个长度大概是它两倍的实奇函数的离散傅里叶变换;另一个是改进的离散余弦变换,它相当于对交叠的数据进行离散余弦变换。.

新!!: 正交矩阵和离散余弦变换 · 查看更多 »

空間對稱群

一個物件(如一維、二維或三維中的圖像或信號)的對稱群是指在複合函數運算下不變的所有等距同構所構成的群。其為所考慮之空間的等距同構群中的一個子群。 (若沒有另外注明,則本文只考慮在歐幾里得空間內的對稱群,但此一概念亦可以被應用在更廣義的用途上,詳見下文。) 「物件」可以是幾何形狀、圖像及模式,如壁紙圖樣。其定義能夠以詳述圖像或模式的方式,如將位置附上一組顏色的值的函數,來使其更為精確。對如三維物體的對稱,可能亦會想要考量其物理上可能的組合。空間中等距同構的群可以產生一個作用於此群本身物件上的群作用。 對稱群有時亦稱為全對稱群,以強調其會產生一個圖像不會改變的反轉定位之等距同構(如鏡射、滑移鏡射和不純旋轉)。會保留其定位之同距同構(如平移、旋轉和此兩者的組合)的子群則稱為其純對稱群。一物件的純對稱群若等同於其全對稱群,則稱此物件為對掌的(也因此不存在使其不變的反轉定位之等距同構。) 任何其元素有著相同個不動點的對稱群都可以由選定其原點為不動點來被表示成一個正交群O(n)的子群,其對所有的有限對稱群及有界圖像之對稱群皆為真的。 離散對稱群可以分成三種類型:.

新!!: 正交矩阵和空間對稱群 · 查看更多 »

等距同构

在数学中,「等距同构」或稱「保距映射」(isometry),是指在度量空间之中保持距离不变的同构关系。几何学中的对应概念是全等变换。 等距同构经常用于将一个空间嵌入到另一空间的构造中。例如,测度空间M的完备化即涉及从M到M' 的等距同构,这里M' 是M上柯西序列所构成的空间关于“距离为零”的等价关系的商集。这样,原空间M就等距同构到完备的度量空间的一个稠密子空间并且通常用这一空间来指代原空间M。 其它的嵌入构造表明每一度量空间都等距同构到某一賦範向量空間的一个闭子集以及每一完备度量空间都等距同构到某一巴拿赫空间的一个闭子集。 一个希尔伯特空间上的等距、满射的线性算子被称为酉算子。.

新!!: 正交矩阵和等距同构 · 查看更多 »

紧空间

在数学中,如果欧几里得空间Rn的子集是闭合的并且是有界的,那么称它是--的。例如,在R中,闭合单位区间是紧致的,但整数集合Z不是(它不是有界的),半开区间.

新!!: 正交矩阵和紧空间 · 查看更多 »

纤维丛

纖維--束(fiber bundle 或 fibre bundle)又稱纖維--叢,在数学上,特别是在拓扑学中,是一个局部看来像直积空间,但是整体可能有不同的结构。每个纤维丛對應一个连续满射 \pi:E\rightarrow B E 和乘積空間 B × F 的局部類似性可以用映射 \pi 來說明。也就是說:在每個 E 的局部空間 U,都存在一個相同的F(F 稱作纖維空間),使得 \pi 限制在 U 上時 與直积空间 B × F 的投影 P:B\times F\mapsto B,\quad P(b, f).

新!!: 正交矩阵和纤维丛 · 查看更多 »

线性代数

线性代数是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 坐标满足线性方程的点集形成n维空间中的一个超平面。n个超平面相交于一点的条件是线性代数研究的一个重要焦点。此项研究源于包含多个未知数的线性方程组。这样的方程组可以很自然地表示为矩阵和向量的形式。 线性代数既是纯数学也是应用数学的核心。例如,放宽向量空间的公理就产生抽象代数,也就出现若干推广。泛函分析研究无穷维情形的向量空间理论。线性代数与微积分结合,使得微分方程线性系统的求解更加便利。线性代数的理论已被泛化为。 线性代数的方法还用在解析几何、工程、物理、自然科学、計算機科學、计算机动画和社会科学(尤其是经济学)中。由于线性代数是一套完善的理论,非线性数学模型通常可以被近似为线性模型。.

新!!: 正交矩阵和线性代数 · 查看更多 »

线性映射

在数学中,线性映射(有的书上将“线性变换”作为其同义词,有的则不然)是在两个向量空间(包括由函数构成的抽象的向量空间)之间的一种保持向量加法和标量乘法的特殊映射。线性映射从抽象代数角度看是向量空间的同态,从范畴论角度看是在给定的域上的向量空间所构成的范畴中的态射。 “线性算子”也是与“线性映射”有关的概念。但是不同数学书籍上对“线性算子”的定义存在区别。在泛函分析中,“线性算子”一般被当做“线性映射”的同义词。而有的书则将“线性算子”定义为“线性映射”的自同态子类(详见下文)。为叙述方便,本条目在提及“线性算子”时,采用后一种定义,即将线性算子与线性映射区别开来。.

新!!: 正交矩阵和线性映射 · 查看更多 »

绝对值

絕對值用來表示一個數至原點的距離之大小。絕對值的概念也可以定義在複數、有序環以及域上。.

新!!: 正交矩阵和绝对值 · 查看更多 »

置换的奇偶性

在数学中,当X是一个至少有两个元素的有限集合时,X的置换(即从X到X的双射)可分为大小相同的两类:奇置换与偶置换。如果X固定了任何一个全序,X的一个置换\sigma的奇偶性可以定义为\sigma中反向对个数的奇偶性。所谓反向对即X中二元组x,y使得x且\sigma(x)>\sigma(y)。这里\sigma(x)为置换\sigma中第x位的元素。 一个置换\sigma的符号(sign或signature)记作sgn(σ):如果\sigma是偶数则定义为 +1,如果\sigma是奇数则定义为 -1。符号定义了对称群Sn的交错特征。置换的符号另一个更一般的符号为列维-奇维塔符号(\epsilon_\sigma),定义在X到X的所有映射上,而在非双射映射上取值为0。 置换的符号可以清晰地表达为 这里N(\sigma)是\sigma中反向对的个数。或者,置换\sigma的符号也可通过对换分解定义为 这里m是分解中对换的个数。尽管这样一个分解不是惟一的,所有分解中对换个数的奇偶性是相同的,蕴含着置换的符号是良定义的。.

新!!: 正交矩阵和置换的奇偶性 · 查看更多 »

置换矩阵

在数学中的矩阵论裡,置换矩阵是一种系数只由0和1组成的方块矩阵。置换矩阵的每一行和每一列都恰好有一个1,其余的系数都是0。在线性代数中,每个n阶的置换矩阵都代表了一个对n个元素(n维空间的基)的置换。当一个矩阵乘上一个置换矩阵时,所得到的是原来矩阵的横行(置换矩阵在左)或纵列(置换矩阵在右)经过置换后得到的矩阵。.

新!!: 正交矩阵和置换矩阵 · 查看更多 »

在數學中,群是由一個集合以及一個二元運算所組成的,符合下述四个性质(称为“群公理”)的代數結構。这四个性质是封闭性、結合律、單位元和对于集合中所有元素存在逆元素。 很多熟知的數學結構比如數系統都遵从群公理,例如整數配備上加法運算就形成一個群。如果将群公理的公式從具体的群和其運算中抽象出來,就使得人们可以用靈活的方式来處理起源于抽象代數或其他许多数学分支的實體,而同时保留對象的本質結構性质。 群在數學內外各個領域中是無處不在的,这使得它們成為當代數學的组成的中心原理。 群與對稱概念共有基礎根源。對稱群把幾何物體的如此描述物体的對稱特征:它是保持物體不變的變換的集合。這種對稱群,特別是連續李群,在很多學術學科中扮演重要角色。例如,矩陣群可以用來理解在狹義相對論底層的基本物理定律和在分子化學中的對稱現象。 群的概念引發自多項式方程的研究,由埃瓦里斯特·伽罗瓦在1830年代開創。在得到來自其他領域如數論和幾何学的貢獻之后,群概念在1870年左右形成并牢固建立。現代群論是非常活躍的數學學科,它以自己的方式研究群。為了探索群,數學家發明了各種概念來把群分解成更小的、更好理解的部分,比如子群、商群和單群。除了它們的抽象性質,群理論家還從理論和計算兩種角度來研究具體表示群的各種方式(群的表示)。對有限群已經發展出了特別豐富的理論,這在1983年完成的有限簡單群分類中達到頂峰。从1980年代中叶以来,将有限生成群作为几何对象来研究的几何群论,成为了群论中一个特别活跃的分支。.

新!!: 正交矩阵和群 · 查看更多 »

瑕旋轉

在幾何中,瑕旋轉(improper rotation)或稱為旋轉反射(rotoreflection),是一種「旋轉後再反射」的線性變換或仿射變換。正式的說:.

新!!: 正交矩阵和瑕旋轉 · 查看更多 »

点反演

在欧几里得几何中,点X关于一个点P的反演是点X*使得P是以X和X*为端点的线段的中点。换句话说,从X到P的向量同于从P到X*的向量。 给P的反演的公式是 这里的a,x和x*分别是P,X和X*的位置向量。 这个映射是等距对合仿射变换,它有精确的一个不动点,就是P。 在奇数维的欧几里得空间中,它不保持方向。它是间接等距同构。 在几何上说,在3维空间中,它是绕通过P点的轴的180°角旋转,组合上在垂直于这个轴的经过P的平面上反射的总和;结果不依赖这个轴的方向(在其他意义上)。 与点反演密切相关的是关于平面的反射,它可以被认为是“面反演”。.

新!!: 正交矩阵和点反演 · 查看更多 »

点积

在数学中,点积(Skalarprodukt、Dot Product)又称--或标量积(Skalarprodukt、Scalar Product),是一种接受两个等长的数字序列(通常是坐标向量)、返回单个数字的代数运算。在欧几里得几何中,两个笛卡尔坐标向量的点积常称为內積(inneres Produkt、Inner Product),见内积空间。 从代数角度看,先对两个数字序列中的每组对应元素求积,再对所有积求和,结果即为点积。从几何角度看,点积则是两个向量的长度与它们夹角余弦的积。这两种定义在笛卡尔坐标系中等价。 点积的名称源自表示点乘运算的点号(a·b),标量积的叫法则是在强调其运算结果为标量而非向量。向量的另一种乘法是叉乘(a×b),其结果为向量,称为叉积或向量积。 點积是--的一种特殊形式。.

新!!: 正交矩阵和点积 · 查看更多 »

特征分解

线性代数中,特征分解(Eigendecomposition),又称谱分解(Spectral decomposition)是将矩阵分解为由其特征值和特征向量表示的矩阵之积的方法。需要注意只有对可对角化矩阵才可以施以特征分解。.

新!!: 正交矩阵和特征分解 · 查看更多 »

特征值和特征向量

在数学上,特别是线性代数中,对于一个给定的矩阵A,它的特征向量(eigenvector,也譯固有向量或本征向量)v 经过这个线性变换之后,得到的新向量仍然与原来的v 保持在同一條直線上,但其长度或方向也许會改变。即 \lambda為純量,即特征向量的长度在该线性变换下缩放的比例,称\lambda 为其特征值(本征值)。如果特徵值為正,则表示v 在经过线性变换的作用后方向也不变;如果特徵值為負,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。图1给出了一个以著名油画《蒙娜丽莎》为题材的例子。在一定条件下(如其矩阵形式为实对称矩阵的线性变换),一个变换可以由其特征值和特征向量完全表述,也就是說:所有的特徵向量組成了這向量空間的一組基底。一个特征空间(eigenspace)是具有相同特征值的特征向量与一个同维数的零向量的集合,可以证明该集合是一个线性子空间,比如\textstyle E_\lambda.

新!!: 正交矩阵和特征值和特征向量 · 查看更多 »

特征空间

#重定向 特征值和特征向量.

新!!: 正交矩阵和特征空间 · 查看更多 »

直积

在數學中,經常定義已知對象的直積(direct product)來給出新對象。例子有集合的乘積(參見笛卡爾積),群的乘積(下面描述),環的乘積和其他代數結構的乘積。拓撲空間的乘積是另一個例子。.

新!!: 正交矩阵和直积 · 查看更多 »

行列式

行列式(Determinant)是数学中的一個函數,将一个n \times n的矩陣A映射到一個純量,记作\det(A)或|A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现线性自同态和向量组的行列式的定义。 行列式的特性可以被概括为一个交替多线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。.

新!!: 正交矩阵和行列式 · 查看更多 »

高斯消去法

数学上,高斯消去法(Gaussian Elimination),是线性代数中的一个算法,可用來為線性方程組求解,求出矩陣的秩,以及求出可逆方陣的逆矩陣。当用于一个矩陣时,高斯消去法會产生出一個行梯陣式。.

新!!: 正交矩阵和高斯消去法 · 查看更多 »

豪斯霍尔德变换

豪斯霍尔德变换(Householder transformation)或譯「豪斯霍德轉換」,又称初等反射(Elementary reflection),最初由A.C Aitken在1932年提出。Alston Scott Householder在1958年指出了这一变换在数值线性代数上的意义。这一变换将一个向量变换为由一个超平面反射的镜像,是一种线性变换。其变换矩阵被称作豪斯霍尔德矩阵,在一般内积空间中的类比被称作豪斯霍尔德算子。超平面的法向量被称作豪斯霍尔德向量。.

新!!: 正交矩阵和豪斯霍尔德变换 · 查看更多 »

點群

在數學裡,點群是指固定一點不動之幾何對稱(等距同構)的群。.

新!!: 正交矩阵和點群 · 查看更多 »

转置矩阵

在线性代数中,矩阵A的转置是另一个矩阵AT(也写做Atr, tA或A′)由下列等价动作建立.

新!!: 正交矩阵和转置矩阵 · 查看更多 »

辛矩陣

在數學中,辛矩阵是指一個2n \times 2n的矩阵M(通常佈於實數或複數域上),使之滿足 其中M^T表M的轉置矩陣,而\Omega是一個固定的可逆斜對稱矩陣;這類矩陣在適當的變化後皆能表為 \begin 0 & I_n \\ -I_n & 0 \\ \end 或 \begin0 & 1\\ -1 & 0\end & & 0 \\ 0 & & \begin0 & 1 \\ -1 & 0\end \end 兩者的差異僅在於基的置換,其中I_n是n \times n 單位矩陣。此外,\Omega 行列式值等於一,且其逆矩陣等於-\Omega。.

新!!: 正交矩阵和辛矩陣 · 查看更多 »

连通空间

拓扑空间X称为是连通的。当且仅当以下叙述之一成立:.

新!!: 正交矩阵和连通空间 · 查看更多 »

酉矩阵

若一n行n列的複数矩阵U满足 其中I_n\,为n阶单位矩阵,U^\dagger \,为U的共轭转置,则U称为--(又译作--、--。英文:Unitary Matrix, Unitary是歸一或單位的意思)。即,矩阵U为酉矩阵,当且仅当其共轭转置U^\dagger \,为其逆矩阵: 若酉矩阵的元素都是实数,其即为正交矩阵。与正交矩阵G不会改变两个实向量的内积类似, 酉矩阵U不改变两个复向量的内积: 若U \,为n阶方阵,则下列条件等价:.

新!!: 正交矩阵和酉矩阵 · 查看更多 »

雅可比旋转

在数值线性代数中,雅可比旋转是 n 维内积空间的二维线性子空间的旋转 Qkℓ,在用做相似变换的时候,被选择来置零 n×n 实数对称矩阵 A 的非对角元素的对称对: \begin \end \to \begin \end 它是雅可比特征值算法的核心运算,它是数值上稳定的并适合用并行计算实现。 注意到只有 A 的行 k 和 ℓ 与列 k 和 ℓ 受到影响,并且 A′ 将保持对称。还有给 Qkℓ 的明显的矩阵很少被计算,转而计算辅助值,A 也有效率和数值上稳定的方式更新。但是,为了引用,我们写矩阵为 Q_.

新!!: 正交矩阵和雅可比旋转 · 查看更多 »

逆矩阵

逆矩陣(inverse matrix):在线性代数中,給定一个n階方陣\mathbf,若存在一n階方陣\mathbf,使得\mathbf.

新!!: 正交矩阵和逆矩阵 · 查看更多 »

陪集

数学上,若G为群,H为其子群,而g为G中元素,则 仅当H为正规子群时,左右陪集相同,这也是子群正规性的一个定义。 陪集指某个G中子群的左或右陪集。因为Hg.

新!!: 正交矩阵和陪集 · 查看更多 »

MP3

动态图像专家组-1或动态图像专家组-2 音频层III(MPEG-1 or MPEG-2 Audio Layer III),经常称为MP3,是当今相當流行的一种数字音频编码和有损压缩格式,它被设计来大幅降低音频数据量,它舍弃PCM音讯资料中,对人类听觉不重要的资料,从而达到了压缩成较小的档案。而对于大多数用户的聽覺感受来说,MP3的音质与最初的不压缩音频相比没有明显的下降。它是在1991年,由位于德国埃爾朗根的研究組織Fraunhofer-Gesellschaft的一组工程师发明和标准化的。MP3的普及,曾對音樂產業造成衝擊與影響。.

新!!: 正交矩阵和MP3 · 查看更多 »

QR分解

QR分解法是三種将矩阵分解的方式之一。這種方式,把矩阵分解成一个半正交矩阵与一个上三角矩阵的积。QR分解经常用来解线性最小二乘法问题。QR分解也是特定特征值算法即QR算法的基础。.

新!!: 正交矩阵和QR分解 · 查看更多 »

极分解

在数学中,特别是线性代数和泛函分析裡,一个矩阵或线性算子的极分解是一种类似于复数之极坐标分解的分解方法。一个复数 z 可以用它的模长和辐角表示为: 其中 r 是 z 的模长(因此是一个正实数),而 \theta 则为 z 的辐角。.

新!!: 正交矩阵和极分解 · 查看更多 »

李群

數學中,李群(Lie group,)是具有群结构的光滑微分流形,其群作用與微分结构相容。李群的名字源於索菲斯·李的姓氏,以其為連續變換群奠定基礎。1893年,法文名詞groupes de Lie首次出現在李的學生Arthur Tresse的論文第三頁中。.

新!!: 正交矩阵和李群 · 查看更多 »

条件数

数值分析中,一个问题的条件数是该数量在数值计算中的容易程度的衡量,也就是该问题的适定性。一个低条件数的问题称为良置的,而高条件数的问题称为病态(或者说非良置)的。.

新!!: 正交矩阵和条件数 · 查看更多 »

标准正交基

在线性代数中,一个内积空间的正交基(orthogonal basis)是元素两两正交的基。称基中的元素为基向量。假若,一个正交基的基向量的模长都是单位长度1,则称这正交基为标准正交基或"规范正交基"(Orthonormal basis)。 无论在有限维还是无限维空间中,正交基的概念都是很重要的。在无限维希尔伯特空间中,正交基不再是哈默尔基,也即是说不是每个元素都可以写成有限个基中元素的线性组合。因此在无限维空间中,正交基应该被更严格地定义为由线性无关而且两两正交的元素组成、张成的空间是原空间的一个稠密子空间(而不是整个空间)的集合。 注意,在没有定义内积的空间中,“正交基”一词是没有意义的。因此,一个具有正交基的巴拿赫空间,就是一个希尔伯特空间。.

新!!: 正交矩阵和标准正交基 · 查看更多 »

欧几里得空间

欧几里得几何是在约公元前300年,由古希腊数学家欧几里得建立的角和空间中距离之间联系的法则。欧几里得首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里得的公理被编排到幾何原本。 这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做 n维欧几里得空间(甚至简称 n 维空间)或有限维实内积空间。 这些数学空间还可被扩展到任意维的情形,称为实内积空间(不一定完备), 希尔伯特空间在高等代数教科书中也被称为欧几里得空间。 为了开发更高维的欧几里得空间,空间的性质必须非常仔细的表达并被扩展到任意维度。 尽管结果的数学非常抽象,它却捕获了我们熟悉的欧几里得空间的根本本质,根本性质是它的平面性。 另存在其他種類的空间,例如球面非欧几里得空间,相对论所描述的四维时空在重力出现的时候也不是欧几里得空间。.

新!!: 正交矩阵和欧几里得空间 · 查看更多 »

欧拉角

萊昂哈德·歐拉用歐拉角來描述剛體在三維歐幾里得空間的取向。對於任何參考系,一個剛體的取向,是依照順序,從這參考系,做三個歐拉角的旋轉而設定的。所以,剛體的取向可以用三個基本旋轉矩陣來決定。換句話說,任何關於剛體旋轉的旋轉矩陣是由三個基本旋轉矩陣複合而成的。.

新!!: 正交矩阵和欧拉角 · 查看更多 »

正交

正交是线性代数的概念,是垂直這一直觀概念的推廣。作為一個形容詞,只有在一個確定的內積空間中才有意義。若內積空間中兩向量的內積為0,則稱它們是正交的。如果能夠定義向量間的夾角,則正交可以直觀的理解為垂直。物理中:運動的獨立性,也可以用正交來解釋。.

新!!: 正交矩阵和正交 · 查看更多 »

正交变换

在線性代數中,正交變換是線性變換的一種。對一個由空間R^n 投射到同一空間R^n 的線性轉換,如果轉換後的向量長度與轉換前的長度相同,則為正交變換。 \|T(\mathbf)\|.

新!!: 正交矩阵和正交变换 · 查看更多 »

正交群

数学上,数域F上的n阶正交群,记作O(n,F),是F上的n×n 正交矩阵在矩阵乘法下构成的群。它是一般线性群GL(n,F)的子群,由 这里QT是Q的转置。实数域上的经典正交群通常就记为O(n)。 更一般地,F上一个非奇异二次型的正交群是保持二次型不变的矩阵构成的群。嘉当-迪奥多内定理描述了这个正交群的结构。 每个正交矩阵的行列式为1或−1。行列式为1的n×n正交矩阵组成一个O(n,F)的正规子群,称为特殊正交群SO(n,F)。如果F的特征为2,那么1.

新!!: 正交矩阵和正交群 · 查看更多 »

正规子群

在抽象代数中,正规子群或不变子群指一类特殊的子群。由正规子群,可以引导出商群的概念。 埃瓦里斯特·伽罗瓦是最早认识到正规子群的重要性的人。.

新!!: 正交矩阵和正规子群 · 查看更多 »

正规矩阵

在数学中,正规矩阵 \mathbf是与自己的共轭转置交换的复系数方块矩阵,也就是说, \mathbf满足 其中\mathbf^*是\mathbf的共轭转置。 如果\mathbf是实系数矩阵,则\mathbf^*.

新!!: 正交矩阵和正规矩阵 · 查看更多 »

方块矩阵

方塊矩陣,或简称方阵,是行數及列數皆相同的矩陣。由n \times n\,矩陣組成的集合,連同矩陣加法和矩陣乘法,构成環。除了n.

新!!: 正交矩阵和方块矩阵 · 查看更多 »

旋转

旋转在几何和线性代数中是描述刚体围绕一个固定点的运动的在平面或空间中的变换。旋转不同于没有固定点的平移,和翻转变换的形体的反射。旋转和上面提及的变换是等距的,它们保留在任何两点之间的距离在变换之后不变。.

新!!: 正交矩阵和旋转 · 查看更多 »

旋转矩阵

旋转矩阵(Rotation matrix)是在乘以一个向量的时候有改变向量的方向但不改变大小的效果并保持了手性的矩阵。旋转矩阵不包括点反演,点反演可以改变手性,也就是把右手坐标系改变成左手坐标系或反之。所有旋转加上反演形成了正交矩阵的集合。旋转可分为主动旋转与被动旋转。主动旋转是指将向量逆时针围绕旋转轴所做出的旋转。被动旋转是对坐标轴本身进行的逆时针旋转,它相当于主动旋转的逆操作。.

新!!: 正交矩阵和旋转矩阵 · 查看更多 »

数值分析

数值分析(numerical analysis),是指在数学分析(区别于离散数学)问题中,对使用数值近似(相对于一般化的符号运算)算法的研究。 巴比伦泥板YBC 7289是关于数值分析的最早数学作品之一,它给出了 \sqrt 在六十进制下的一个数值逼近,\sqrt是一個邊長為1的正方形的對角線,在西元前1800年巴比倫人也已在巴比倫泥板上計算勾股數(畢氏三元數)(3, 4, 5),即直角三角形的三邊長比。 数值分析延續了實務上數學計算的傳統。巴比倫人利用巴比伦泥板計算\sqrt的近似值,而不是精確值。在許多實務的問題中,精確值往往無法求得,或是無法用有理數表示(如\sqrt)。数值分析的目的不在求出正確的答案,而是在其誤差在一合理範圍的條件下找到近似解。 在所有工程及科學的領域中都會用到数值分析。像天體力學研究中會用到常微分方程,最優化會用在资产组合管理中,數值線性代數是資料分析中重要的一部份,而隨機微分方程及馬可夫鏈是在醫藥或生物學中生物細胞模擬的基礎。 在電腦發明之前,数值分析主要是依靠大型的函數表及人工的內插法,但在二十世紀中被電腦的計算所取代。不過電腦的內插演算法仍然是数值分析軟體中重要的一部份。.

新!!: 正交矩阵和数值分析 · 查看更多 »

数值稳定性

在数值分析中,数值稳定性是一种希望得到的数值算法特性。根据算法的不同,稳定性的精确定义也有所不同,但是都与算法的精确性与正确性相关。 理论上有些计算下可以用多种代数上等价的理想实数或者复数算法来实现,但是实际上由于不同的数值稳定性可能会得到不同的结果。数值稳定性的一项任务就是选择健壮即有良好数值稳定性的算法。.

新!!: 正交矩阵和数值稳定性 · 查看更多 »

数值线性代数

数值线性代数是一门研究在计算机上进行线性代数计算,特别是矩阵运算的算法的学科,是工程学和计算科学问题中的基本部分,这些问题包括图像处理、信号处理、金融工程学、材料科学模拟、结构生物学、数据挖掘、生物信息学、流体动力学和其他很多领域。这类软件多依赖於解决多种数值线性代数问题的先进算法的发展、分析和实现,在很大程度上是依靠矩阵在有限差分法和有限元法中的作用。 数值线性代数中的常见问题包括下列计算问题:LU分解、QR分解、奇异值分解、特征值。.

新!!: 正交矩阵和数值线性代数 · 查看更多 »

重定向到这里:

正交阵

传出传入
嘿!我们在Facebook上吧! »