我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

反射 (数学)和正交矩阵

快捷方式: 差异相似杰卡德相似系数参考

反射 (数学)和正交矩阵之间的区别

反射 (数学) vs. 正交矩阵

在数学中,反射是把一个物体变换成它的镜像的映射。要反射一个平面图形,需要“镜子”是一条直线(反射轴),对于三维空间中的反射就要使用平面作为镜子。反射有时被认为是圆反演的特殊情情况,参考圆有无限半径。 在几何上说,要找到一个点的反射,可从这个点向反射轴画一条垂线。并在另一边延续相同的距离。要找到一个图形的反射,需要反射这个图形的每个点。 两次反射回到原来的地方。反射保持在点之间的距离。反射不移动在镜子上的点,镜子的维数比发生反射的空间的维数要小1。这些观察允许我们形式化反射的定义:反射是欧几里得空间的对合等距同构,它的不动点集合是余维数为1的仿射子空间。 在经历特定反射后不改变的图形被称为有反射对称性。 密切关联于反射的是斜反射和圆反演。这些变换仍对合于有余维数1的不动点的集合,但它们不再是等距的。. 在矩阵论中,正交矩阵(orthogonal matrix)是一個方块矩阵Q,其元素為实数,而且行與列皆為正交的单位向量,使得該矩陣的转置矩阵為其逆矩阵: 其中,I為單位矩陣。正交矩陣的行列式值必定為+1或-1,因為: 底下是一些重要的性質:.

之间反射 (数学)和正交矩阵相似

反射 (数学)和正交矩阵有(在联盟百科)6共同点: 等距同构点反演点积欧几里得空间正交旋转

等距同构

在数学中,「等距同构」或稱「保距映射」(isometry),是指在度量空间之中保持距离不变的同构关系。几何学中的对应概念是全等变换。 等距同构经常用于将一个空间嵌入到另一空间的构造中。例如,测度空间M的完备化即涉及从M到M' 的等距同构,这里M' 是M上柯西序列所构成的空间关于“距离为零”的等价关系的商集。这样,原空间M就等距同构到完备的度量空间的一个稠密子空间并且通常用这一空间来指代原空间M。 其它的嵌入构造表明每一度量空间都等距同构到某一賦範向量空間的一个闭子集以及每一完备度量空间都等距同构到某一巴拿赫空间的一个闭子集。 一个希尔伯特空间上的等距、满射的线性算子被称为酉算子。.

反射 (数学)和等距同构 · 正交矩阵和等距同构 · 查看更多 »

点反演

在欧几里得几何中,点X关于一个点P的反演是点X*使得P是以X和X*为端点的线段的中点。换句话说,从X到P的向量同于从P到X*的向量。 给P的反演的公式是 这里的a,x和x*分别是P,X和X*的位置向量。 这个映射是等距对合仿射变换,它有精确的一个不动点,就是P。 在奇数维的欧几里得空间中,它不保持方向。它是间接等距同构。 在几何上说,在3维空间中,它是绕通过P点的轴的180°角旋转,组合上在垂直于这个轴的经过P的平面上反射的总和;结果不依赖这个轴的方向(在其他意义上)。 与点反演密切相关的是关于平面的反射,它可以被认为是“面反演”。.

反射 (数学)和点反演 · 正交矩阵和点反演 · 查看更多 »

点积

在数学中,点积(Skalarprodukt、Dot Product)又称--或标量积(Skalarprodukt、Scalar Product),是一种接受两个等长的数字序列(通常是坐标向量)、返回单个数字的代数运算。在欧几里得几何中,两个笛卡尔坐标向量的点积常称为內積(inneres Produkt、Inner Product),见内积空间。 从代数角度看,先对两个数字序列中的每组对应元素求积,再对所有积求和,结果即为点积。从几何角度看,点积则是两个向量的长度与它们夹角余弦的积。这两种定义在笛卡尔坐标系中等价。 点积的名称源自表示点乘运算的点号(a·b),标量积的叫法则是在强调其运算结果为标量而非向量。向量的另一种乘法是叉乘(a×b),其结果为向量,称为叉积或向量积。 點积是--的一种特殊形式。.

反射 (数学)和点积 · 正交矩阵和点积 · 查看更多 »

欧几里得空间

欧几里得几何是在约公元前300年,由古希腊数学家欧几里得建立的角和空间中距离之间联系的法则。欧几里得首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里得的公理被编排到幾何原本。 这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做 n维欧几里得空间(甚至简称 n 维空间)或有限维实内积空间。 这些数学空间还可被扩展到任意维的情形,称为实内积空间(不一定完备), 希尔伯特空间在高等代数教科书中也被称为欧几里得空间。 为了开发更高维的欧几里得空间,空间的性质必须非常仔细的表达并被扩展到任意维度。 尽管结果的数学非常抽象,它却捕获了我们熟悉的欧几里得空间的根本本质,根本性质是它的平面性。 另存在其他種類的空间,例如球面非欧几里得空间,相对论所描述的四维时空在重力出现的时候也不是欧几里得空间。.

反射 (数学)和欧几里得空间 · 欧几里得空间和正交矩阵 · 查看更多 »

正交

正交是线性代数的概念,是垂直這一直觀概念的推廣。作為一個形容詞,只有在一個確定的內積空間中才有意義。若內積空間中兩向量的內積為0,則稱它們是正交的。如果能夠定義向量間的夾角,則正交可以直觀的理解為垂直。物理中:運動的獨立性,也可以用正交來解釋。.

反射 (数学)和正交 · 正交和正交矩阵 · 查看更多 »

旋转

旋转在几何和线性代数中是描述刚体围绕一个固定点的运动的在平面或空间中的变换。旋转不同于没有固定点的平移,和翻转变换的形体的反射。旋转和上面提及的变换是等距的,它们保留在任何两点之间的距离在变换之后不变。.

反射 (数学)和旋转 · 旋转和正交矩阵 · 查看更多 »

上面的列表回答下列问题

反射 (数学)和正交矩阵之间的比较

反射 (数学)有24个关系,而正交矩阵有68个。由于它们的共同之处6,杰卡德指数为6.52% = 6 / (24 + 68)。

参考

本文介绍反射 (数学)和正交矩阵之间的关系。要访问该信息提取每篇文章,请访问: