目录
31 关系: 埃尔米特矩阵,复数,实数,對角矩陣,希尔伯特空间,三角矩阵,交換律,共轭,共轭转置,C*-代数,矩阵,线性映射,特征向量,特征值和特征向量,非奇异方阵,谱定理,转置矩阵,酉矩阵,若尔当标准型,逆命题,虚数,极分解,标准正交基,模,正定矩阵,正交,正交矩阵,正规算子,方块矩阵,斜埃尔米特矩阵,数学。
埃尔米特矩阵
埃尔米特矩阵(Hermitian matrix,又译作厄米矩阵),也稱自伴隨矩陣,是共轭對稱的方陣。埃尔米特矩阵中每一个第i行第j列的元素都与第j行第i列的元素的复共轭。 对于 有: 记做: 例如: 3&2+i\\ 2-i&1 \end 就是一个埃尔米特矩阵。 显然,埃尔米特矩阵主对角线上的元素都是实数的,其特征值也是实数。对于只包含实数元素的矩阵(实矩阵),如果它是对称阵,即所有元素关于主对角线对称,那么它也是埃尔米特矩阵。也就是说,实对称矩阵是埃尔米特矩阵的特例。.
查看 正规矩阵和埃尔米特矩阵
复数
#重定向 复数 (数学).
查看 正规矩阵和复数
实数
实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.
查看 正规矩阵和实数
對角矩陣
對角矩陣(diagonal matrix)是一個主對角線之外的元素皆為0的矩陣。對角線上的元素可以為0或其他值。因此n行n列的矩陣\mathbf.
查看 正规矩阵和對角矩陣
希尔伯特空间
在数学裡,希尔伯特空间即完备的内积空间,也就是說一個帶有內積的完備向量空間。是有限维欧几里得空间的一个推广,使之不局限于實數的情形和有限的维数,但又不失完备性(而不像一般的非欧几里得空间那样破坏了完备性)。与欧几里得空间相仿,希尔伯特空间也是一个内积空间,其上有距离和角的概念(及由此引申而来的正交性与垂直性的概念)。此外,希尔伯特空间还是一个完备的空间,其上所有的柯西序列會收敛到此空間裡的一點,从而微积分中的大部分概念都可以无障碍地推广到希尔伯特空间中。希尔伯特空间为基于任意正交系上的多项式表示的傅立叶级数和傅立叶变换提供了一种有效的表述方式,而这也是泛函分析的核心概念之一。希尔伯特空间是公設化数学和量子力学的关键性概念之一。.
查看 正规矩阵和希尔伯特空间
三角矩阵
在线性代数中,三角矩阵是方形矩阵的一种,因其非零系数的排列呈三角形状而得名。三角矩阵分上三角矩阵和下三角矩阵两种。上三角矩阵的对角线左下方的系数全部为零,下三角矩阵的对角线右上方的系数全部为零。三角矩阵可以看做是一般方阵的一种简化情形。比如,由于带三角矩阵的矩阵方程容易求解,在解多元线性方程组时,总是将其系数矩阵通过初等变换化为三角矩阵来求解;又如三角矩阵的行列式就是其对角线上元素的乘积,很容易计算。有鉴于此,在数值分析等分支中三角矩阵十分重要。一个可逆矩阵A可以通过LU分解变成一个下三角矩阵L与一个上三角矩阵U的乘积。.
查看 正规矩阵和三角矩阵
交換律
交換律(Commutative property)是被普遍使用的一個數學名詞,意指能改變某物的順序而不改變其最終結果。交換律是大多數數學分支中的基本性質,而且許多的數學證明需要倚靠交換律。簡單運算的交換律許久都被假定存在,且沒有給定其一特定的名稱,直到19世紀,數學家開始形式化數學理論之後,交換律才被聲明。.
查看 正规矩阵和交換律
共轭
共轭(conjugate)可以指:.
查看 正规矩阵和共轭
共轭转置
矩阵A的共轭转置A^*(又称埃尔米特共轭、埃尔米特转置)定义为: 其中(\cdot)_表示矩阵i行j列上的元素,\overline表示标量的复共轭。 这一定义也可以写作: 其中A^\mathrm \,\!是矩阵A的转置,\overline\,\!表示对矩阵A中的元素取复共轭。 通常用以下记号表示矩阵A的共轭转置:.
查看 正规矩阵和共轭转置
C*-代数
C*-代数(或读作“C星代数”)是数学分支中泛函分析的重要研究对象。C*-代数的典型例子是满足以下两个性质的复希尔伯特空间的线性算子的代数A:.
查看 正规矩阵和C*-代数
矩阵
數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.
查看 正规矩阵和矩阵
线性映射
在数学中,线性映射(有的书上将“线性变换”作为其同义词,有的则不然)是在两个向量空间(包括由函数构成的抽象的向量空间)之间的一种保持向量加法和标量乘法的特殊映射。线性映射从抽象代数角度看是向量空间的同态,从范畴论角度看是在给定的域上的向量空间所构成的范畴中的态射。 “线性算子”也是与“线性映射”有关的概念。但是不同数学书籍上对“线性算子”的定义存在区别。在泛函分析中,“线性算子”一般被当做“线性映射”的同义词。而有的书则将“线性算子”定义为“线性映射”的自同态子类(详见下文)。为叙述方便,本条目在提及“线性算子”时,采用后一种定义,即将线性算子与线性映射区别开来。.
查看 正规矩阵和线性映射
特征向量
#重定向 特征值和特征向量.
查看 正规矩阵和特征向量
特征值和特征向量
在数学上,特别是线性代数中,对于一个给定的矩阵A,它的特征向量(eigenvector,也譯固有向量或本征向量)v 经过这个线性变换之后,得到的新向量仍然与原来的v 保持在同一條直線上,但其长度或方向也许會改变。即 \lambda為純量,即特征向量的长度在该线性变换下缩放的比例,称\lambda 为其特征值(本征值)。如果特徵值為正,则表示v 在经过线性变换的作用后方向也不变;如果特徵值為負,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。图1给出了一个以著名油画《蒙娜丽莎》为题材的例子。在一定条件下(如其矩阵形式为实对称矩阵的线性变换),一个变换可以由其特征值和特征向量完全表述,也就是說:所有的特徵向量組成了這向量空間的一組基底。一个特征空间(eigenspace)是具有相同特征值的特征向量与一个同维数的零向量的集合,可以证明该集合是一个线性子空间,比如\textstyle E_\lambda.
非奇异方阵
若方块矩阵A\,满足条件\left|A\right|(\rm(A))\ne0,则称A\,为非奇异方阵,否则称为奇异方阵。.
查看 正规矩阵和非奇异方阵
谱定理
数学上,特别是线性代数和泛函分析中,谱定理是关于线性算子或者矩阵的一些结果。泛泛来讲,谱定理给出了算子或者矩阵可以对角化的条件(也就是可以在某个基底中用对角矩阵来表示)。对角化的概念在有限维空间中比较直接,但是对于无穷维空间中的算子需要作一些修改。通常,谱定理辨认出一族可以用乘法算子来代表的线性算子,这是可以找到的最简单的情况了。用更抽象的语言来讲,谱定理是关于交换C*-代数的命题。参看谱分析中的历史观点。 可以应用谱定理的例子有希尔伯特空间上的自伴算子或者更一般的正规算子。 谱定理也提供了一个算子所作用的向量空间的标准分解,称为谱分解,特征值分解,或者特征分解。 本条目中,主要考虑谱定理的简单情况,也就是希尔伯特空间上的自伴算子。但是,如上文所述,谱定理也对希尔伯特空间上的正规算子成立。.
查看 正规矩阵和谱定理
转置矩阵
在线性代数中,矩阵A的转置是另一个矩阵AT(也写做Atr, tA或A′)由下列等价动作建立.
查看 正规矩阵和转置矩阵
酉矩阵
若一n行n列的複数矩阵U满足 其中I_n\,为n阶单位矩阵,U^\dagger \,为U的共轭转置,则U称为--(又译作--、--。英文:Unitary Matrix, Unitary是歸一或單位的意思)。即,矩阵U为酉矩阵,当且仅当其共轭转置U^\dagger \,为其逆矩阵: 若酉矩阵的元素都是实数,其即为正交矩阵。与正交矩阵G不会改变两个实向量的内积类似, 酉矩阵U不改变两个复向量的内积: 若U \,为n阶方阵,则下列条件等价:.
查看 正规矩阵和酉矩阵
若尔当标准型
在线性代数中,若尔当标准型(英語:Jordan normal form)或称若尔当正规型(英語:Jordan canonical form)是某個線性映射在有限維向量空間上的特別的矩陣表達形式,稱作若尔当矩陣(Jordan matrix),這矩陣接近对角矩阵:除了主对角线和主对角线上方元素之外,其餘都是零且主對角線上方的對角線的係數若不為零--能為1,且這1左方和下方的係數(都在主對角線上)有相同的值。谱定理和正规矩阵都是若尔当标准型的特殊情况,因為可以被對角化(diagonalizable)。若尔当矩阵理论说明了任何一个系数域为\mathbb的方块矩阵M如果特征值都在\mathbb中,那么必然和某个若尔当标准型相似。或者说,如果一个有限維向量空間上的自同态線性映射的特征值都在系数域\mathbb中,那么它可以在某个基底下表示成若尔当标准型。 若尔当标准型得名于十九世纪后期的法国数学家卡米尔·若尔当。.
查看 正规矩阵和若尔当标准型
逆命题
逆命题:一个命题的条件与结论分别是另一个命题的结论与条件时,这两个命题互逆,也就是说其中任一个命题是另一个命题的逆命题。 两个互为逆命题的命题。在命题的四种形式中,原命题与逆命题,否命题与逆否命题是两对互逆命题。比如说有“假如事件A为真,则事件B也为真”,那么它的逆命题就是“假如事件B为真,则事件A也为真”。当然,我们是无法通过原命题的真假性来判断逆命题的真假性的。 Category:数学术语.
查看 正规矩阵和逆命题
虚数
虛數是一种複數,可以写作实数与虚数单位 i 的乘积在電子學及相關領域內,i 通常表達電流,故改為以 j 表示虛數單位。,其中 i 由 i^2.
查看 正规矩阵和虚数
极分解
在数学中,特别是线性代数和泛函分析裡,一个矩阵或线性算子的极分解是一种类似于复数之极坐标分解的分解方法。一个复数 z 可以用它的模长和辐角表示为: 其中 r 是 z 的模长(因此是一个正实数),而 \theta 则为 z 的辐角。.
查看 正规矩阵和极分解
标准正交基
在线性代数中,一个内积空间的正交基(orthogonal basis)是元素两两正交的基。称基中的元素为基向量。假若,一个正交基的基向量的模长都是单位长度1,则称这正交基为标准正交基或"规范正交基"(Orthonormal basis)。 无论在有限维还是无限维空间中,正交基的概念都是很重要的。在无限维希尔伯特空间中,正交基不再是哈默尔基,也即是说不是每个元素都可以写成有限个基中元素的线性组合。因此在无限维空间中,正交基应该被更严格地定义为由线性无关而且两两正交的元素组成、张成的空间是原空间的一个稠密子空间(而不是整个空间)的集合。 注意,在没有定义内积的空间中,“正交基”一词是没有意义的。因此,一个具有正交基的巴拿赫空间,就是一个希尔伯特空间。.
查看 正规矩阵和标准正交基
模
在數學的抽象代數中,環上的模 (module over a ring)的概念是對向量空間概念的推廣,這裡不再要求向量空間裡的純量的代數結構是體(field),進而放寬純量可以是環(ring)。 因此,模同向量空間一樣是加法交换群;在環元素和模元素之間定義了乘積運算,并且環元素和模元素的乘積是符合結合律的(在同環中的乘法一起用的時候)和分配律的。 模非常密切的關聯於群的表示理論。它們還是交換代數和同調代數的中心概念,并廣泛的用于代數幾何和代數拓撲中。.
查看 正规矩阵和模
正定矩阵
在线性代数裡,正定矩阵是埃尔米特矩阵的一种,有时会简称为正定阵。在线性代数中,正定矩阵的性质類似复数中的正实数。与正定矩阵相对应的线性算子是对称正定双线性形式(複域中则对应埃尔米特正定双线性形式)。.
查看 正规矩阵和正定矩阵
正交
正交是线性代数的概念,是垂直這一直觀概念的推廣。作為一個形容詞,只有在一個確定的內積空間中才有意義。若內積空間中兩向量的內積為0,則稱它們是正交的。如果能夠定義向量間的夾角,則正交可以直觀的理解為垂直。物理中:運動的獨立性,也可以用正交來解釋。.
查看 正规矩阵和正交
正交矩阵
在矩阵论中,正交矩阵(orthogonal matrix)是一個方块矩阵Q,其元素為实数,而且行與列皆為正交的单位向量,使得該矩陣的转置矩阵為其逆矩阵: 其中,I為單位矩陣。正交矩陣的行列式值必定為+1或-1,因為: 底下是一些重要的性質:.
查看 正规矩阵和正交矩阵
正规算子
数学上,正规算子是复希尔伯特空间上的,与其埃尔米特伴随T^*可交换的连续线性算子T,即TT^*.
查看 正规矩阵和正规算子
方块矩阵
方塊矩陣,或简称方阵,是行數及列數皆相同的矩陣。由n \times n\,矩陣組成的集合,連同矩陣加法和矩陣乘法,构成環。除了n.
查看 正规矩阵和方块矩阵
斜埃尔米特矩阵
一个方块矩阵A是斜埃尔米特矩阵或反埃尔米特矩阵,如果它的共轭转置A*也是它的负数。也就是说,它满足以下的关系: 或者,如果A.
查看 正规矩阵和斜埃尔米特矩阵
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
查看 正规矩阵和数学