徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

相似矩陣

指数 相似矩陣

在线性代数中,相似矩阵是指存在相似关系的矩阵。相似关系是两个矩阵之间的一种等价关系。两个n×n矩阵A与B为相似矩阵当且仅当存在一个n×n的可逆矩阵P,使得: P被称为矩阵A与B之间的相似变换矩阵。 相似矩阵保留了矩阵的许多性质,因此许多对矩阵性质的研究可以通过研究更简单的相似矩阵而得到解决。 判断两个矩阵是否相似的辅助方法: 1.判断特征值是否相等; 2.判断行列式是否相等; 3.判断跡是否相等; 4.判断秩是否相等; 以上条件可以作为判断矩阵是否相似的必要条件,而非充分条件。.

27 关系: 基 (線性代數)可对角化矩阵双射合同矩阵子域對角矩陣不变因子当且仅当矩阵秩 (线性代数)等价关系等价矩阵线性代数线性映射置换矩阵特征值和特征向量特徵多項式行列式谱定理酉矩阵若尔当标准形逆矩阵正规矩阵映射

域(field)可以指:.

新!!: 相似矩陣和域 · 查看更多 »

基 (線性代數)

在线性代数中,基(basis)(也称为基底)是描述、刻画向量空间的基本工具。向量空间的基是它的一个特殊的子集,基的元素称为基向量。向量空间中任意一个元素,都可以唯一地表示成基向量的线性组合。如果基中元素个数有限,就称向量空间为有限维向量空间,将元素的个数称作向量空间的维数。 使用基底可以便利地描述向量空间。比如说,考察从一个向量空间\mathrm射出的线性变换f,可以查看这个变换作用在向量空间的一组基\mathfrak上的效果。掌握了f(\mathfrak),就等于掌握了f对\mathrm中任意元素的效果。 不是所有空间都拥有由有限个元素构成的基底。这样的空间称为无限维空间。某些无限维空间上可以定义由无限个元素构成的基。如果承认选择公理,那么可以证明任何向量空间都拥有一组基。一个向量空间的基不止一组,但同一个空间的两组不同的基,它们的元素个数或势(当元素个数是无限的时候)是相等的。一组基里面的任意一部分向量都是线性无关的;反之,如果向量空间拥有一组基,那么在向量空间中取一组线性无关的向量,一定能将它扩充为一组基。在内积向量空间中,可以定义正交的概念。通过特别的方法,可以将任意的一组基变换成正交基乃至标准正交基。.

新!!: 相似矩陣和基 (線性代數) · 查看更多 »

可对角化矩阵

可对角化矩阵是线性代数和矩阵论中重要的一类矩阵。如果一个方块矩阵 A 相似于对角矩阵,也就是说,如果存在一个可逆矩阵 P 使得 P −1AP 是对角矩阵,则它就被称为可对角化的。如果 V 是有限维度的向量空间,则线性映射 T: V → V 被称为可对角化的,如果存在 V 的一个基,T 关于它可被表示为对角矩阵。对角化是找到可对角化矩阵或映射的相应对角矩阵的过程。 可对角化矩阵和映射在线性代数中有重要价值,因为对角矩阵特别容易处理: 它们的特征值和特征向量是已知的,且其次方可通过計算对角元素同样的次方来獲得。 若尔当-谢瓦莱分解表达一个算子为它的对角部分与它的幂零部分的和。.

新!!: 相似矩陣和可对角化矩阵 · 查看更多 »

双射

數學中,一個由集合X映射至集合Y的函數,若對每一在Y內的y,存在唯一一個在X內的x与其对应,則此函數為對射函數。 換句話說,f為雙射的若其為兩集合間的一一對應,亦即同時為單射和滿射。 例如,由整數集合\Z至\Z的函數\operatorname,其將每一個整數x連結至整數\operatorname(x).

新!!: 相似矩陣和双射 · 查看更多 »

合同矩阵

在线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。两个矩阵A和B是合同的,如果有同数域上的可逆矩阵 P,使得 其中的P^\mathrm表示矩阵P的转置矩阵。 对于二次型的矩阵表示来说,做一次非退化的线性替换相当于将二次型的矩阵变为一个与其合同的矩阵。.

新!!: 相似矩陣和合同矩阵 · 查看更多 »

子域

子域可以指:.

新!!: 相似矩陣和子域 · 查看更多 »

對角矩陣

對角矩陣(diagonal matrix)是一個主對角線之外的元素皆為0的矩陣。對角線上的元素可以為0或其他值。因此n行n列的矩陣\mathbf.

新!!: 相似矩陣和對角矩陣 · 查看更多 »

不变因子

数学中,不变因子是λ-矩阵理论中的概念。不变因子定义为λ-矩阵的若尔当标准型中主对角线上出现的非零元素。对矩阵进行初等变换不会影响不变因子,所以两个等价的矩阵拥有相同的不变因子。在不变因子的概念上可以进一步定义初等因子的概念。.

新!!: 相似矩陣和不变因子 · 查看更多 »

当且仅当

当且仅当(If and only if)(中国大陆又称作当且--仅当,臺灣又称作若且--唯若),在--邏輯中,逻辑算符反互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XNOR或ENOR或\Leftrightarrow。与一般的邏輯或非NOR不同,當兩兩數值相同為是,而數值不同時為否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在,并且仅仅在这些条件成立的时候”之意,在英语中的对应标记为iff。“A当且仅当B”其他等价的说法有“当且仅当A則B”;“A是B的充分必要条件(充要條件)”。 一般而言,當我們看到“A当且仅当B”,我們可以知道“如果A成立時,則B一定成立;如果B成立時,則A也一定成立”;“如果A不成立時,則B一定不成立;如果B不成立時,則A也一定不成立”。.

新!!: 相似矩陣和当且仅当 · 查看更多 »

矩阵

數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.

新!!: 相似矩陣和矩阵 · 查看更多 »

秩可以指:.

新!!: 相似矩陣和秩 · 查看更多 »

秩 (线性代数)

在线性代数中,一个矩阵A的列秩是A的线性獨立的纵列的极大数目。类似地,行秩是A的线性獨立的横行的极大数目。 矩阵的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。通常表示为r(A),rk(A)或rank A。.

新!!: 相似矩陣和秩 (线性代数) · 查看更多 »

等价关系

等價關係(equivalence relation)即设R是某個集合A上的一个二元关系。若R满足以下條件:.

新!!: 相似矩陣和等价关系 · 查看更多 »

等价矩阵

在线性代数和矩阵论中,两个矩阵之间的等价是一种矩阵之间的等价关系。假设有两个m \times n 的矩阵,记作A和B。它们之间等价当且仅当存在两个可逆的方块矩阵:n \times n 的矩阵P以及m \times m 的矩阵Q,使得 \mathbf.

新!!: 相似矩陣和等价矩阵 · 查看更多 »

线性代数

线性代数是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 坐标满足线性方程的点集形成n维空间中的一个超平面。n个超平面相交于一点的条件是线性代数研究的一个重要焦点。此项研究源于包含多个未知数的线性方程组。这样的方程组可以很自然地表示为矩阵和向量的形式。 线性代数既是纯数学也是应用数学的核心。例如,放宽向量空间的公理就产生抽象代数,也就出现若干推广。泛函分析研究无穷维情形的向量空间理论。线性代数与微积分结合,使得微分方程线性系统的求解更加便利。线性代数的理论已被泛化为。 线性代数的方法还用在解析几何、工程、物理、自然科学、計算機科學、计算机动画和社会科学(尤其是经济学)中。由于线性代数是一套完善的理论,非线性数学模型通常可以被近似为线性模型。.

新!!: 相似矩陣和线性代数 · 查看更多 »

线性映射

在数学中,线性映射(有的书上将“线性变换”作为其同义词,有的则不然)是在两个向量空间(包括由函数构成的抽象的向量空间)之间的一种保持向量加法和标量乘法的特殊映射。线性映射从抽象代数角度看是向量空间的同态,从范畴论角度看是在给定的域上的向量空间所构成的范畴中的态射。 “线性算子”也是与“线性映射”有关的概念。但是不同数学书籍上对“线性算子”的定义存在区别。在泛函分析中,“线性算子”一般被当做“线性映射”的同义词。而有的书则将“线性算子”定义为“线性映射”的自同态子类(详见下文)。为叙述方便,本条目在提及“线性算子”时,采用后一种定义,即将线性算子与线性映射区别开来。.

新!!: 相似矩陣和线性映射 · 查看更多 »

置换矩阵

在数学中的矩阵论裡,置换矩阵是一种系数只由0和1组成的方块矩阵。置换矩阵的每一行和每一列都恰好有一个1,其余的系数都是0。在线性代数中,每个n阶的置换矩阵都代表了一个对n个元素(n维空间的基)的置换。当一个矩阵乘上一个置换矩阵时,所得到的是原来矩阵的横行(置换矩阵在左)或纵列(置换矩阵在右)经过置换后得到的矩阵。.

新!!: 相似矩陣和置换矩阵 · 查看更多 »

特征值和特征向量

在数学上,特别是线性代数中,对于一个给定的矩阵A,它的特征向量(eigenvector,也譯固有向量或本征向量)v 经过这个线性变换之后,得到的新向量仍然与原来的v 保持在同一條直線上,但其长度或方向也许會改变。即 \lambda為純量,即特征向量的长度在该线性变换下缩放的比例,称\lambda 为其特征值(本征值)。如果特徵值為正,则表示v 在经过线性变换的作用后方向也不变;如果特徵值為負,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。图1给出了一个以著名油画《蒙娜丽莎》为题材的例子。在一定条件下(如其矩阵形式为实对称矩阵的线性变换),一个变换可以由其特征值和特征向量完全表述,也就是說:所有的特徵向量組成了這向量空間的一組基底。一个特征空间(eigenspace)是具有相同特征值的特征向量与一个同维数的零向量的集合,可以证明该集合是一个线性子空间,比如\textstyle E_\lambda.

新!!: 相似矩陣和特征值和特征向量 · 查看更多 »

特徵多項式

在線性代數中,對一個線性自同態(取定基即等價於方陣)可定義其特徵多項式,此多項式包含該自同態的一些重要性質,例如行列式、跡數及特徵值。.

新!!: 相似矩陣和特徵多項式 · 查看更多 »

行列式

行列式(Determinant)是数学中的一個函數,将一个n \times n的矩陣A映射到一個純量,记作\det(A)或|A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现线性自同态和向量组的行列式的定义。 行列式的特性可以被概括为一个交替多线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。.

新!!: 相似矩陣和行列式 · 查看更多 »

谱定理

数学上,特别是线性代数和泛函分析中,谱定理是关于线性算子或者矩阵的一些结果。泛泛来讲,谱定理给出了算子或者矩阵可以对角化的条件(也就是可以在某个基底中用对角矩阵来表示)。对角化的概念在有限维空间中比较直接,但是对于无穷维空间中的算子需要作一些修改。通常,谱定理辨认出一族可以用乘法算子来代表的线性算子,这是可以找到的最简单的情况了。用更抽象的语言来讲,谱定理是关于交换C*-代数的命题。参看谱分析中的历史观点。 可以应用谱定理的例子有希尔伯特空间上的自伴算子或者更一般的正规算子。 谱定理也提供了一个算子所作用的向量空间的标准分解,称为谱分解,特征值分解,或者特征分解。 本条目中,主要考虑谱定理的简单情况,也就是希尔伯特空间上的自伴算子。但是,如上文所述,谱定理也对希尔伯特空间上的正规算子成立。.

新!!: 相似矩陣和谱定理 · 查看更多 »

在线性代数中,一個n \times n的矩陣\mathbf的跡(或跡數),是指\mathbf的主對角線(從左上方至右下方的對角線)上各個元素的總和,一般記作\operatorname(\mathbf)或\operatorname(\mathbf): 其中\mathbf_代表矩陣的第i行j列上的元素的值。一個矩陣的跡是其特徵值的總和(按代數重數計算)。 跡的英文為trace,是來自德文中的Spur這個單字(與英文中的Spoor是同源詞),在數學中,通常簡寫為「Sp」或「tr」。.

新!!: 相似矩陣和跡 · 查看更多 »

酉矩阵

若一n行n列的複数矩阵U满足 其中I_n\,为n阶单位矩阵,U^\dagger \,为U的共轭转置,则U称为--(又译作--、--。英文:Unitary Matrix, Unitary是歸一或單位的意思)。即,矩阵U为酉矩阵,当且仅当其共轭转置U^\dagger \,为其逆矩阵: 若酉矩阵的元素都是实数,其即为正交矩阵。与正交矩阵G不会改变两个实向量的内积类似, 酉矩阵U不改变两个复向量的内积: 若U \,为n阶方阵,则下列条件等价:.

新!!: 相似矩陣和酉矩阵 · 查看更多 »

若尔当标准形

#重定向 若尔当标准型.

新!!: 相似矩陣和若尔当标准形 · 查看更多 »

逆矩阵

逆矩陣(inverse matrix):在线性代数中,給定一个n階方陣\mathbf,若存在一n階方陣\mathbf,使得\mathbf.

新!!: 相似矩陣和逆矩阵 · 查看更多 »

正规矩阵

在数学中,正规矩阵 \mathbf是与自己的共轭转置交换的复系数方块矩阵,也就是说, \mathbf满足 其中\mathbf^*是\mathbf的共轭转置。 如果\mathbf是实系数矩阵,则\mathbf^*.

新!!: 相似矩陣和正规矩阵 · 查看更多 »

映射

映射,或者射影,在数学及相关的领域经常等同于函数。基于此,部分映射就相当于部分函数,而完全映射相当于完全函数。 在很多特定的数学领域中,这个术语用来描述具有与该领域相关联的特定性质函数,例如,在拓扑学中的连续函数,线性代数中的线性变换等等。.

新!!: 相似矩陣和映射 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »