目录
14 关系: 实数,布朗运动,平均数,皮埃尔-西蒙·拉普拉斯,积分,累积分布函数,统计学,绝对值,随机变量,連續型均勻分布,概率分布,概率论,機率密度函數,正态分布。
- 指数族分布
- 皮埃尔-西蒙·拉普拉斯
- 连续分布
实数
实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.
查看 拉普拉斯分布和实数
布朗运动
此文是关于布朗运动。对于随机的过程,请参阅 维纳过程。从热力学的角度定义的话,需要参阅热力学温度以及能量均分定理。对于数学模型,请参阅随机游走。 布朗运动(Brownian motion)是微小粒子或者颗粒在流体中做的无规则运动。布朗运动过程是一种正态分布的独立增量连续随机过程。它是随机分析中基本概念之一。其基本性质为:布朗运动W(t)是期望为0、方差为t(时间)的正态随机变量。对于任意的r小于等于s,W(t)-W(s)独立于的W(r),且是期望为0、方差为t-s的正态随机变量。可以证明布朗运动是马尔可夫过程、鞅过程和伊藤过程。 它是在西元1827年英國植物學家罗伯特·布朗利用一般的顯微鏡觀察懸浮於水中由花粉所迸裂出之微粒時,發現微粒會呈現不規則狀的運動,因而稱它布朗運動。布朗運動也能測量原子的大小,因為就是有水中的水分子對微粒的碰撞產生的,而不規則的碰撞越明顯,就是原子越大,因此根據布朗運動,定義原子的直徑為10-8厘米。.
查看 拉普拉斯分布和布朗运动
平均数
平均数(Mean,或稱平均值)是统计中的一个重要概念。为集中趋势的最常用测度值,目的是确定一组数据的均衡点。 算术平均数(或简称平均數)是一组样本 x_1, x_2, \ldots, x_n 的和除以样本的数量。其通常记作 \bar: 例如, 4, 36, 45, 50, 75 这组数的算术平均数是: 在统计中算术平均数常用于表示统计对象的一般水平,它是描述数据集中程度的一个统计量。我们既可以用它来反映一组数据的一般情况,也可以用它进行不同组数据的比较,以看出组与组之间的差别。用平均数表示一组数据的情况,有直观、简明的特点,所以在日常生活中经常用到,如平均的速度、平均的身高、平均的产量、平均的成绩......
查看 拉普拉斯分布和平均数
皮埃尔-西蒙·拉普拉斯
埃尔-西蒙·拉普拉斯侯爵(Pierre-Simon marquis de Laplace,),法国著名的天文学家和数学家,他的工作对天体力学和统计学有举足轻重的发展。.
积分
积分是微积分学与数学分析裡的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数 f(x), f(x)在一个实数区间 上的定积分 可以理解为在 \textstyle Oxy坐标平面上,由曲线 (x,f(x))、直线x.
查看 拉普拉斯分布和积分
累积分布函数
累积分布函数,又叫分布函数,是概率密度函數的积分,能完整描述一個實随机变量X的概率分佈。一般以大寫“CDF”(Cumulative Distribution Function)标记。 對於所有實數x ,累积分布函数定義如下:.
统计学
统计学是在資料分析的基础上,研究测定、收集、整理、归纳和分析反映數據資料,以便给出正确訊息的科學。這一门学科自17世纪中叶产生并逐步发展起来,它廣泛地應用在各門學科,從自然科学、社會科學到人文學科,甚至被用於工商業及政府的情報決策。隨著大数据(Big Data)時代來臨,統計的面貌也逐漸改變,與資訊、計算等領域密切結合,是資料科學(Data Science)中的重要主軸之一。 譬如自一組數據中,可以摘要並且描述這份數據的集中和離散情形,這個用法稱作為描述統計學。另外,觀察者以數據的形態,建立出一個用以解釋其隨機性和不確定性的數學模型,以之來推論研究中的步驟及母體,這種用法被稱做推論統計學。這兩種用法都可以被稱作為應用統計學。數理統計學则是討論背後的理論基礎的學科。.
查看 拉普拉斯分布和统计学
绝对值
絕對值用來表示一個數至原點的距離之大小。絕對值的概念也可以定義在複數、有序環以及域上。.
查看 拉普拉斯分布和绝对值
随机变量
給定樣本空间(S, \mathbb),如果其上的實值函數 X:S \to \mathbb是\mathbb (實值)可測函數,则稱X為(實值)随机变量。初等概率論中通常不涉及到可測性的概念,而直接把任何X:S \to \mathbb的函數稱為随机变量。 如果X指定给概率空间S中每一个事件e有一个实数X(e),同时针对每一个实数r都有一个事件集合A_r与其相对应,其中A_r.
查看 拉普拉斯分布和随机变量
連續型均勻分布
連續型均匀分布,如果连续型随机变量\mathit具有如下的概率密度函数,则称\mathit服从上的均匀分布(uniform distribution),记作X \sim U.
概率分布
概率分布(Wahrscheinlichkeitsverteilung,probability distribution)或簡稱分布,是概率論的一個概念。使用時可以有以下兩種含義:.
查看 拉普拉斯分布和概率分布
概率论
概率论(Probability theory)是集中研究概率及随机现象的数学分支,是研究隨機性或不確定性等現象的數學。概率论主要研究对象为随机事件、随机变量以及随机过程。对于随机事件是不可能准确预测其结果的,然而对于一系列的独立随机事件——例如掷骰子、扔硬币、抽扑克牌以及輪盤等,会呈现出一定的、可以被用于研究及预测的规律,两个用来描述这些规律的最具代表性的数学结论分别是大数定律和中心极限定理。 作为统计学的数学基础,概率论对诸多涉及大量数据定量分析的人类活动极为重要,概率论的方法同样适用于其他方面,例如是对只知道系统部分状态的复杂系统的描述——统计力学,而二十世纪物理学的重大发现是以量子力学所描述的原子尺度上物理现象的概率本质。 數學家和精算師認為概率是在0至1閉區間内的數字,指定給一發生與失敗是隨機的「事件」。概率P(A)根據概率公理來指定給事件A。 一事件A在一事件B確定發生後會發生的概率稱為B給之A的條件概率;其數值為。若B給之A的條件概率和A的概率相同時,則稱A和B為獨立事件。且A和B的此一關係為對稱的,這可以由一同價敘述:「當A和B為獨立事件時,P(A \cap B).
查看 拉普拉斯分布和概率论
機率密度函數
在数学中,连续型随机变量的概率密度函數(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。圖中,橫軸為隨機變量的取值,縱軸為概率密度函數的值,而随机变量的取值落在某个区域内的概率為概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累積分佈函數是概率密度函数的积分。概率密度函数一般以大写“PDF”(Probability Density Function)標记。 概率密度函数有时也被称为概率分布函数,但这种称法可能会和累积分布函数或概率质量函数混淆。.
正态分布
常態分布(normal distribution)又名高斯分布(Gaussian distribution),是一個非常常見的連續機率分布。常態分布在统计学上十分重要,經常用在自然和社会科学來代表一個不明的隨機變量。 若隨機變量X服從一個位置參數為\mu、尺度參數為\sigma的常態分布,記為: 則其機率密度函數為 常態分布的數學期望值或期望值\mu等於位置參數,決定了分布的位置;其方差\sigma^2的開平方或標準差\sigma等於尺度參數,決定了分布的幅度。 常態分布的機率密度函數曲線呈鐘形,因此人們又經常稱之為鐘形曲線(类似于寺庙里的大钟,因此得名)。我們通常所說的標準常態分布是位置參數\mu.
查看 拉普拉斯分布和正态分布
另见
指数族分布
- Β分布
- 伯努利分布
- 伽玛分布
- 多元正态分布
- 威沙特分佈
- 对数正态分布
- 帕累托分布
- 幾何分佈
- 广义逆高斯分布
- 拉普拉斯分布
- 指数分布
- 正态分布
- 爱尔朗分布
- 狄利克雷分布
- 瑞利分布
- 负二项分布
- 逆威沙特分佈
- 逆高斯分布
- 韦伯分布
皮埃尔-西蒙·拉普拉斯
- 拉普拉斯分布
- 拉普拉斯妖
- 拉普拉斯方程
- 拉普拉斯算子
- 皮埃尔-西蒙·拉普拉斯
连续分布
- Β分布
- Erlang分布
- F-分布
- 三角形分布
- 伽玛分布
- 多元正态分布
- 威沙特分佈
- 对数正态分布
- 帕累托分布
- 广义逆高斯分布
- 拉普拉斯分布
- 指数分布
- 朗道分布
- 柯西分布
- 歐文–賀爾分佈
- 正态分布
- 爱尔朗分布
- 狄利克雷分布
- 瑞利分布
- 矩阵正态分布
- 福格特函数
- 稳定分布
- 維格納半圓分布
- 維格納準概率分佈
- 莱斯分布
- 逆威沙特分佈
- 逆高斯分布
- 連續型均勻分布
- 韦伯分布
- 麦克斯韦-玻尔兹曼分布
亦称为 Laplace分布。