目录
贝塞尔函数
貝索函数(Bessel functions),是数学上的一类特殊函数的总称。通常单说的貝索函数指第一类貝索函数(Bessel function of the first kind)。一般貝索函数是下列常微分方程(一般称为貝索方程)的标准解函数y(x): 这类方程的解是无法用初等函数系统地表示。 由於貝索微分方程是二階常微分方程,需要由兩個獨立的函數來表示其标准解函数。典型的是使用第一类貝索函数和第二类貝索函数來表示标准解函数: 注意,由於 Y_\alpha(x) 在 x.
查看 莱斯分布和贝塞尔函数
连续概率分布
#重定向 概率分布#连续分布.
查看 莱斯分布和连续概率分布
概率论
概率论(Probability theory)是集中研究概率及随机现象的数学分支,是研究隨機性或不確定性等現象的數學。概率论主要研究对象为随机事件、随机变量以及随机过程。对于随机事件是不可能准确预测其结果的,然而对于一系列的独立随机事件——例如掷骰子、扔硬币、抽扑克牌以及輪盤等,会呈现出一定的、可以被用于研究及预测的规律,两个用来描述这些规律的最具代表性的数学结论分别是大数定律和中心极限定理。 作为统计学的数学基础,概率论对诸多涉及大量数据定量分析的人类活动极为重要,概率论的方法同样适用于其他方面,例如是对只知道系统部分状态的复杂系统的描述——统计力学,而二十世纪物理学的重大发现是以量子力学所描述的原子尺度上物理现象的概率本质。 數學家和精算師認為概率是在0至1閉區間内的數字,指定給一發生與失敗是隨機的「事件」。概率P(A)根據概率公理來指定給事件A。 一事件A在一事件B確定發生後會發生的概率稱為B給之A的條件概率;其數值為。若B給之A的條件概率和A的概率相同時,則稱A和B為獨立事件。且A和B的此一關係為對稱的,這可以由一同價敘述:「當A和B為獨立事件時,P(A \cap B).
查看 莱斯分布和概率论
機率密度函數
在数学中,连续型随机变量的概率密度函數(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。圖中,橫軸為隨機變量的取值,縱軸為概率密度函數的值,而随机变量的取值落在某个区域内的概率為概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累積分佈函數是概率密度函数的积分。概率密度函数一般以大写“PDF”(Probability Density Function)標记。 概率密度函数有时也被称为概率分布函数,但这种称法可能会和累积分布函数或概率质量函数混淆。.
查看 莱斯分布和機率密度函數
另见
连续分布
- Β分布
- Erlang分布
- F-分布
- 三角形分布
- 伽玛分布
- 多元正态分布
- 威沙特分佈
- 对数正态分布
- 帕累托分布
- 广义逆高斯分布
- 拉普拉斯分布
- 指数分布
- 朗道分布
- 柯西分布
- 歐文–賀爾分佈
- 正态分布
- 爱尔朗分布
- 狄利克雷分布
- 瑞利分布
- 矩阵正态分布
- 福格特函数
- 稳定分布
- 維格納半圓分布
- 維格納準概率分佈
- 莱斯分布
- 逆威沙特分佈
- 逆高斯分布
- 連續型均勻分布
- 韦伯分布
- 麦克斯韦-玻尔兹曼分布
亦称为 Rice分配。