我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

瑞利分布

指数 瑞利分布

没有描述。

目录

  1. 2 关系: 機率密度函數正态分布

  2. 指数族分布
  3. 连续分布

機率密度函數

在数学中,连续型随机变量的概率密度函數(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。圖中,橫軸為隨機變量的取值,縱軸為概率密度函數的值,而随机变量的取值落在某个区域内的概率為概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累積分佈函數是概率密度函数的积分。概率密度函数一般以大写“PDF”(Probability Density Function)標记。 概率密度函数有时也被称为概率分布函数,但这种称法可能会和累积分布函数或概率质量函数混淆。.

查看 瑞利分布和機率密度函數

正态分布

常態分布(normal distribution)又名高斯分布(Gaussian distribution),是一個非常常見的連續機率分布。常態分布在统计学上十分重要,經常用在自然和社会科学來代表一個不明的隨機變量。 若隨機變量X服從一個位置參數為\mu、尺度參數為\sigma的常態分布,記為: 則其機率密度函數為 常態分布的數學期望值或期望值\mu等於位置參數,決定了分布的位置;其方差\sigma^2的開平方或標準差\sigma等於尺度參數,決定了分布的幅度。 常態分布的機率密度函數曲線呈鐘形,因此人們又經常稱之為鐘形曲線(类似于寺庙里的大钟,因此得名)。我們通常所說的標準常態分布是位置參數\mu.

查看 瑞利分布和正态分布

另见

指数族分布

连续分布