徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

数字信号处理

指数 数字信号处理

数字信号处理(digital signal processing),简称DSP,是指用数学和数字计算来解决问题。大学里,数字信号处理常指用数字表示和解决问题的理论和技巧;而DSP也是数字信号处理器(digital signal processor)的简称,是一种可编程计算机芯片,常指用数字表示和解决问题的技术和芯片。 数字信号处理的目的是对真实世界的模拟信号进行加工和处理。因此在数字信号处理前,模拟信号要用模数转换器(A-D轉換器)变成数字信号;经数字信号处理后的数字信号往往要用数模转换器(D-A轉換器)变回模拟信号,才能适应真实世界的应用。 数字信号处理的算法需要用计算机或专用处理设备如数字信号处理器、专用集成电路等来实现。处理器是用乘法、加法、延时来处理信号,是0和1的数字运算,比模拟信号处理的电路稳定、准确、抗干扰、灵活。.

69 关系: 卷积反馈双线性变换天气预报小波小波分析巴特沃斯滤波器带宽互相关传递函数信息论地震地震信号处理切比雪夫滤波器傅里叶变换冲激响应图像处理倒頻譜离散信号离散傅里叶变换离散时间傅里叶变换移动电话算法线性映射线性时不变系统理论电吉他电影特殊應用積體電路階躍響應音频压缩音频信号处理遞迴關係式頻域類比數位轉換器频谱視訊壓縮高保真计算机动画计算机图形学计算机科学语音处理语音识别超低頻连续函数量化 (信号处理)自动控制自相关函数自适应滤波器采样定理采样率...零点電子計算機電機工程學通信FPGAJohn ThompsonZ轉換极点核磁共振成像椭圆函数滤波器滤波器设计有限脉冲响应最小相位数学数字信号数字信号处理器数字通信数据压缩數位類比轉換器 扩展索引 (19 更多) »

卷积

在泛函分析中,捲積、疊積、--積或旋積,是通过两个函数f和g生成第三个函数的一种数学算子,表徵函数f与经过翻转和平移的g的乘積函數所圍成的曲邊梯形的面積。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑動平均”的推广。.

新!!: 数字信号处理和卷积 · 查看更多 »

反馈

反饋(,又稱回--授),--,是控制论的基本概念,指将系统的输出返回到输入端并以某种方式改变输入,它们之间存在因果关系的回路,进而影响系统功能的过程。 在这种情况下,我们可以说系统“反馈到它自身”。在讨论反馈系统时,因果关系的概念应当特别仔细对待: “对于反馈系统,很难作出简单的推理归因,因为当系统A影响到系统B,系统B又影响到系统A,形成了循环。这使得基于因果关系的分析特别艰难,需要将系统作为一个整体来看待。” 反馈可分为负反馈和正回饋。前者使输出起到与输入相反的作用,使系统输出与系统目标的误差减小,系统趋于稳定;后者使输出起到与输入相似的作用,使系统偏差不断增大,使系统振荡,可以放大控制作用。对负反馈的研究是控制论的核心问题。.

新!!: 数字信号处理和反馈 · 查看更多 »

双线性变换

#重定向 雙線性轉換.

新!!: 数字信号处理和双线性变换 · 查看更多 »

天气预报

天气预报(測)或氣象預報(測)是使用现代科学技术对未来某一地点地球大气层的状态进行预测。从史前人类就已经开始对天气进行预测来相应地安排其工作与生活(比如农业生产、军事行动等等)。今天的天气预报主要是使用收集大量的数据(气温、湿度、风向和风速、气压等等),然后使用目前对大气过程的认识(气象学)来确定未来空气变化。由于大气过程的混乱以及今天科学并没有最终透彻地了解大气过程,因此天气预报总是有一定误差的。.

新!!: 数字信号处理和天气预报 · 查看更多 »

小波

小波可能指:.

新!!: 数字信号处理和小波 · 查看更多 »

小波分析

小波分析(wavelet analysis)或小波轉換(wavelet transform)是指用有限長或快速衰減的、稱為「母小波」(mother wavelet)的振盪波形來表示信號。該波形被縮放和平移以匹配輸入的信號。 「小波」(wavelet)一詞由Morlet和Grossman在1980年代早期提出。他們用的是法語詞ondelette,意思就是「小波」。後來在英語裡,「onde」被改為「wave」而成了wavelet。 小波變換分成兩個大類:離散小波變換(DWT) 和連續小波轉換(CWT)。兩者的主要區別在於,連續變換在所有可能的縮放和平移上操作,而離散變換採用所有縮放和平移值的特定子集。 小波理論和幾個其他課題相關。所有小波變換可以視為時域頻域表示的形式,所以和調和分析相關。所有實際有用的「離散小波變換」使用包含有限脈衝響應濾波器的濾波器段(filter band)。構成CWT的小波受海森堡的測不準原理制約,或者說,離散小波基可以在測不準原理的其他形式的情境中考慮。.

新!!: 数字信号处理和小波分析 · 查看更多 »

巴特沃斯滤波器

巴特沃斯滤波器是一种的频率响应曲线很平坦的。它也被称作最大平坦滤波器。这种滤波器最先由英国工程师、物理学家在1930年发表的论文《滤波器放大器理论研究》中提出的。In Wireless Engineer (also called Experimental Wireless and the Wireless Engineer), vol.

新!!: 数字信号处理和巴特沃斯滤波器 · 查看更多 »

带宽

带宽(Bandwidth)指信号所占据的频带--宽度;在被用来描述信道时,带宽是指能够有效通过该信道的信号的最大频带--宽度。对于模拟信号而言,带寬又称为频寬,以赫兹(Hz)为单位。例如模拟语音电话的信号带宽为3400Hz,一个PAL-D电视频道的带宽为8MHz(含保护带宽)。对于数字信号而言,带宽是指单位时间内链路能够通过的数据量。例如ISDN的B信道带宽为64Kbps。由于数字信号的传输是通过模拟信号的调制完成的,为了与模拟带宽进行区分,数字信道的带宽一般直接用波特率或符号率来描述。 带宽在信息论、无线电、通信、信号处理和波谱学等领域都是一个核心概念。.

新!!: 数字信号处理和带宽 · 查看更多 »

互相关

在统计学中,互相关有时用来表示两个随机矢量 X 和 Y 之间的协方差cov(X, Y),以与矢量 X 的“协方差”概念相区分,矢量 X 的“协方差”是 X 的各标量成分之间的协方差矩阵。 在信号处理领域中,互相关(有时也称为“互协方差”)是用来表示两个信号之间相似性的一个度量,通常通过与已知信号比较用于寻找未知信号中的特性。它是两个信号之间相对于时间的一个函数,有时也称为“滑动点积”,在模式识别以及密码分析学领域都有应用。 对于离散函数 fi 和 gi 来说,互相关定义为 其中和在整个可能的整数 j 区域取和,星号表示复共轭。对于连续信号 f(x) 和 g(x) 来说,互相关定义为 其中积分是在整个可能的 t 区域积分。 互相关实质上类似于两个函数的卷积。.

新!!: 数字信号处理和互相关 · 查看更多 »

传递函数

在工程中,传递函数(也称系统函数、转移函数或网络函数,画出的曲线叫做传递曲线)是用来拟合或描述黑箱模型(系统)的输入与输出之间关系的数学表示。 通常它是零初始条件和零平衡点下,以空间或时间频率为变量表示的线性时不变系统(LTI)的输入与输出之间的关系。然而一些资料来源中用“传递函数”直接表示某些物理量输入输出的特性,(例如二端口网络中的输出电压作为输入电压的一个函数)而不使用变换到S平面上的结果。.

新!!: 数字信号处理和传递函数 · 查看更多 »

信息论

信息论(information theory)是应用数学、電機工程學和计算机科学的一个分支,涉及信息的量化、存储和通信等。信息论是由克劳德·香农发展,用来找出信号处理与通信操作的基本限制,如数据压缩、可靠的存储和数据传输等。自创立以来,它已拓展应用到许多其他领域,包括统计推断、自然语言处理、密码学、神经生物学、进化论和分子编码的功能、生态学的模式选择、热物理、量子计算、语言学、剽窃检测、模式识别、异常检测和其他形式的数据分析。 熵是信息的一个关键度量,通常用一条消息中需要存储或传输一个的平均比特数来表示。熵衡量了预测随机变量的值时涉及到的不确定度的量。例如,指定擲硬幣的结果(两个等可能的结果)比指定掷骰子的结果(六个等可能的结果)所提供的信息量更少(熵更少)。 信息论将信息的传递作为一种统计现象来考虑,给出了估算通信信道容量的方法。信息传输和信息压缩是信息论研究中的两大领域。这两个方面又由信道编码定理、信源-信道隔离定理相互联系。 信息论的基本内容的应用包括无损数据压缩(如ZIP文件)、有损数据压缩(如MP3和JPEG)、信道编码(如DSL))。这个领域处在数学、统计学、计算机科学、物理学、神经科学和電機工程學的交叉点上。信息论对航海家深空探测任务的成败、光盘的发明、手机的可行性、互联网的发展、语言学和人类感知的研究、对黑洞的了解,以及许多其他领域都影响深远。信息论的重要子领域有信源编码、信道编码、算法复杂性理论、算法信息论、資訊理論安全性和信息度量等。.

新!!: 数字信号处理和信息论 · 查看更多 »

地震

地震(Earthquake)震動,可由自然現象如地殼突然運動、火山活動及隕石撞擊引起,亦可由人為活動如地下核試驗造成。歷史曾記載的災害性地震主要由地殼突然運動所造成,地殼在板塊運動的過程中累積應力,當地殼無法繼續累積應力時破裂釋放出地震波,使地面發生震動,震動可能引發山泥傾瀉甚或火山活動。如果地震在海底發生,海床的移動甚至會引發海嘯。 地震可由地震儀透過對地震波的觀察來量測,地震規模表示地震所釋放出來的能量大小,地震烈度指地震在該地點造成的震動程度,地震的發生處稱為震源,其投影至地表的位置為震中。.

新!!: 数字信号处理和地震 · 查看更多 »

地震信号处理

地震信號處理(Seismic signal processing),為數位信號處理(DSP)的子研究領域之一,主要著重於地震資料的處理,來達到雜訊抑制、增強信號以及地震事件在地表下遷移位置的分析。地震信號處理有助於提供地質學家更加明顯和準確的地下構造實現更好的詮釋。.

新!!: 数字信号处理和地震信号处理 · 查看更多 »

切比雪夫滤波器

切比雪夫滤波器(又译柴比雪夫滤波器,chebyshev filter)是在通带或阻带上频率响应幅度等波纹波动的滤波器。在通带波动的为“I型切比雪夫滤波器”,在阻带波动的为“II型切比雪夫滤波器”。切比雪夫滤波器在过渡带比巴特沃斯滤波器的衰减快,但频率响应的幅频特性不如后者平坦。切比雪夫滤波器和理想滤波器的频率响应曲线之间的误差最小,但是在通频带内存在幅度波动。 这种滤波器来自切比雪夫多项式,因此得名,用以纪念俄罗斯数学家巴夫尼提·列波维奇·切比雪夫(Пафнутий Львович Чебышёв)。.

新!!: 数字信号处理和切比雪夫滤波器 · 查看更多 »

傅里叶变换

傅里叶变换(Transformation de Fourier、Fourier transform)是一种線性积分变换,用于信号在时域(或空域)和频域之间的变换,在物理学和工程学中有许多应用。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。实际上傅里叶变换就像化学分析,确定物质的基本成分;信号来自自然界,也可对其进行分析,确定其基本成分。 经傅里叶变换生成的函数 \hat f 称作原函数 f 的傅里叶变换、亦称频谱。在許多情況下,傅里叶变换是可逆的,即可通过 \hat f 得到其原函数 f。通常情况下,f 是实数函数,而 \hat f 则是复数函数,用一个复数来表示振幅和相位。 “傅里叶变换”一词既指变换操作本身(将函数 f 进行傅里叶变换),又指该操作所生成的复数函数(\hat f 是 f 的傅里叶变换)。.

新!!: 数字信号处理和傅里叶变换 · 查看更多 »

冲激响应

在信号处理中,脈衝響應(Impulse response)一般是指系统在输入为单位冲激函数时的输出(响应)。对于连续时间系统来说,冲激响应一般用函数h(t;\tau)来表示,相对应的输入信号,也就是单位冲激函数满足狄拉克δ函数的形式,其函数定义如下: 并且,在从负无穷到正无穷区间内积分为1: 在输入为狄拉克δ函数时,系统的冲激响应h(t)包含了系统的所有信息。所以对于任意输入信号x(t),可以用连续域卷积的方法得出所对应的输出y(t)。也就是: 对于离散时间系统来说,冲激响应一般用序列h来表示,相对应的离散输入信号,也就是单位脉冲函数满足克罗内克δ的形式,在信号与系统科学中可以定义函数如下: 同样道理,在输入为\delta时,离散系统的冲激响应h包含了系统的所有信息。所以对于任意输入信号x,可以用离散域卷积(求和)的方法得出所对应的输出信号y。也就是:.

新!!: 数字信号处理和冲激响应 · 查看更多 »

图像处理

图像处理是指对图像进行分析、加工、和处理,使其满足视觉、心理或其他要求的技术。图像处理是信号处理在图像领域上的一个应用。目前大多数的图像均是以数字形式存储,因而图像处理很多情况下指数字图像处理。此外,基于光学理论的处理方法依然占有重要的地位。 图像处理是信号处理的子类,另外与计算机科学、人工智能等领域也有密切的关系。 传统的一维信号处理的方法和概念很多仍然可以直接应用在图像处理上,比如降噪、量化等。然而,图像属于二维信号,和一维信号相比,它有自己特殊的一面,处理的方式和角度也有所不同。.

新!!: 数字信号处理和图像处理 · 查看更多 »

倒頻譜

倒頻譜(cepstrum),顧名思義,就是將頻譜(spectrum)的英文前四個字母反過來寫。倒頻譜是為了某些時候,為了計算方便,將原來信號的頻譜先轉成類似分貝的單位,再作逆傅里叶变换,把它視為一種新的訊號做處理。倒頻譜有複數倒頻譜,及實數倒頻譜。 倒頻譜被定義在1963的論文(Bogert等)。定義如下:.

新!!: 数字信号处理和倒頻譜 · 查看更多 »

离散信号

离散信号是在连续信号上采样得到的信号。与连续信号的自变量是连续的不同,离散信号是一个序列,即其自变量是“离散”的。这个序列的每一个值都可以被看作是连续信号的一个采样。由于离散信号只是采样的序列,并不能从中获得采样率,因此采样率必须另外存储。以时间为自变量的离散信号为离散时间信号。 离散信号并不等同于数字信号。数字信号不仅是离散的,而且是经过量化的。即,不仅其自变量是离散的,其值也是离散的。因此离散信号的精度可以是无限的,而数字信号的精度是有限的。而有着无限精度,亦即在值上连续的离散信号又叫抽样信号。所以离散信号包括了数字信号和抽样信号。 实际的离散信号都是从连续信号采样而来,由此引出了采样定理。.

新!!: 数字信号处理和离散信号 · 查看更多 »

离散傅里叶变换

离散傅里叶变换(Discrete Fourier Transform,缩写为DFT),是傅里叶变换在时域和频域上都呈离散的形式,将信号的时域采样变换为其DTFT的频域采样。在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。即使对有限长的离散信号作DFT,也应当将其看作其周期延拓的变换。在实际应用中通常采用快速傅里叶变换计算DFT。.

新!!: 数字信号处理和离散傅里叶变换 · 查看更多 »

离散时间傅里叶变换

在数学中,离散时间傅里叶变换(DTFT,Discrete-time Fourier Transform)是傅里叶分析的一种形式,适用于连续函数的均匀间隔采样。离散时间是指对采样间隔通常以时间为单位的离散数据(样本)的变换。仅根据这些样本,它就可以产生原始连续函数的连续傅里叶变换的的以频率为变量的函数。在采样定理所描述的一定理论条件下,可以由DTFT完全恢复出原来的连续函数,因此也能从原来的离散样本恢复。DTFT本身是频率的连续函数,但可以通过离散傅里叶变换(DFT)很容易计算得到它的离散样本(参见对DTFT采样),而DFT是迄今为止现代傅里叶分析最常用的方法。 这两种变换都是可逆的。离散时间傅里叶逆变换得到的是原始采样数据序列。离散傅里叶逆变换是原始序列的周期求和。快速傅里叶变换(FFT)是用于计算DFT的一个周期的算法,而它的逆变换会产生一个周期的离散傅里叶逆变换。.

新!!: 数字信号处理和离散时间傅里叶变换 · 查看更多 »

移动电话

行動電話,又稱「手提式電話機」或「手提電話」,簡稱「手--機」,是可以在較廣範圍内使用的可攜式電話,與固定電話(座機)相對。1990年代中期以前價格昂貴,只有極少部分經濟實力較佳的人才買得起,而且體積龐大,因此又有大哥大的俗稱。1990年代後期大幅降價,如今已成為現代人日常不可或缺的電子用品之一。 目前在全球範圍内使用最廣是的第三代行動通訊技術。在台湾和中國大陸以GSM和LTE最為普及。第二代移动通信技术以GSM為主,它是數位制式的,除了可以進行語音通信以外,還可以收發短信、MMS、無線應用協議等。目前整個行業正在向第三代和第四代行動通訊技術遷移。 手機外觀上一般都應該包括至少一個液晶顯示器和一套按鍵,現時採用觸控式螢幕的手機減少了按鍵。現代的手機除了典型的電話功能外,還包含了個人數位助理、遊戲機、MP3、照相機、錄音機、GPS和連接網際網路等更多功能,它們都概括性地統稱作智慧型手機。.

新!!: 数字信号处理和移动电话 · 查看更多 »

算法

-- 算法(algorithm),在數學(算學)和電腦科學之中,為任何良定义的具體計算步驟的一个序列,常用於計算、和自動推理。精確而言,算法是一個表示爲有限長列表的。算法應包含清晰定義的指令用於計算函數。 算法中的指令描述的是一個計算,當其時能從一個初始狀態和初始輸入(可能爲空)開始,經過一系列有限而清晰定義的狀態最終產生輸出並停止於一個終態。一個狀態到另一個狀態的轉移不一定是確定的。隨機化算法在内的一些算法,包含了一些隨機輸入。 形式化算法的概念部分源自尝试解决希尔伯特提出的判定问题,並在其后尝试定义或者中成形。这些尝试包括库尔特·哥德尔、雅克·埃尔布朗和斯蒂芬·科尔·克莱尼分别于1930年、1934年和1935年提出的遞歸函數,阿隆佐·邱奇於1936年提出的λ演算,1936年的Formulation 1和艾倫·圖靈1937年提出的圖靈機。即使在當前,依然常有直覺想法難以定義爲形式化算法的情況。.

新!!: 数字信号处理和算法 · 查看更多 »

线性映射

在数学中,线性映射(有的书上将“线性变换”作为其同义词,有的则不然)是在两个向量空间(包括由函数构成的抽象的向量空间)之间的一种保持向量加法和标量乘法的特殊映射。线性映射从抽象代数角度看是向量空间的同态,从范畴论角度看是在给定的域上的向量空间所构成的范畴中的态射。 “线性算子”也是与“线性映射”有关的概念。但是不同数学书籍上对“线性算子”的定义存在区别。在泛函分析中,“线性算子”一般被当做“线性映射”的同义词。而有的书则将“线性算子”定义为“线性映射”的自同态子类(详见下文)。为叙述方便,本条目在提及“线性算子”时,采用后一种定义,即将线性算子与线性映射区别开来。.

新!!: 数字信号处理和线性映射 · 查看更多 »

线性时不变系统理论

线性非时变系统理论俗称LTI系统理论,源自应用数学,直接在核磁共振頻譜學、地震学、电路、信号处理和控制理论等技术领域运用。它研究的是线性、非时变系统对任意输入信号的响应。虽然这些系统的轨迹通常会随时间变化(例如声学波形)来测量和跟踪,但是应用到图像处理和场论时,LTI系统在空间维度上也有轨迹。因此,这些系统也被称为线性非時變平移,在最一般的范围理论给出此理论。在离散(即采样)系统中对应的术语是线性非時變平移系统。由电阻、电容、电感组成的电路是LTI系统的一个很好的例子。.

新!!: 数字信号处理和线性时不变系统理论 · 查看更多 »

电吉他

电吉他,是一种拨弦乐器。不同于原声吉他(),电吉他的发声不依赖于共鸣箱,而是运用了电磁学原理。电吉他的琴身上装有拾音器,拾音器中有線圈和磁体(用于磁化金属琴弦)。当电吉他的琴弦振动时,磁化琴弦的磁场随琴弦震动切割拾音器中的线圈发生电磁感应,从而使线圈中产生电信号。这些电信号会经过放大,并且通过吉他音箱转换成声音信号发声。 由于电吉他不是原声乐器而是通过电信号发声的,所以一些电子仪器被制造出来通过各类改变电信号的方法(例如滤波、放大等)来改变电吉他的声音。这些设备被称做效果器。 人们普遍认为,最早的现代电吉他是由乔治·布尚(George Beauchamp)于1932年发明制作的一把夏威夷钢棒吉他。后经过众多人的努力,发展成今天的样子。 为了美感或者是实用性的需要,电吉他有各式各样的琴型。.

新!!: 数字信号处理和电吉他 · 查看更多 »

电影

電影是一種表演藝術、視覺藝術及聽覺藝術,利用膠卷、錄影帶或數位媒體將影像和聲音捕捉起來,再加上後期的編輯工作而成。電影中看起來連續的畫面,是由一幀幀單獨的照片構成的,至於關於電影中運動的感知,是因為人們因為視覺上的飛現象(Phi phenomenon),使得對一連串靜態圖片卻會造成移動的錯覺。傳統對電影中運動感知的理解是因為視覺暫留,使得圖像離開後,仍能在眼睛保留「視像」約十分之一秒。因此大腦感覺到圖像是「運動」的。但在1916年出版的德國心理學家(Hugo Münsterberg)的《電影:一次心理學研究》中第三章《深度感和運動感》中,雨果·明斯特伯格證明了外觀運動絕不是影像滯留(即視覺暫留)的結果,而是(但不僅僅是)對運動的連續階段的感知。 電影製作本身是藝術也是。電影可以由電影攝影機拍攝真實影像再製作而成,也可以利用傳統的動畫技巧繪製圖畫再拍攝圖畫而成,甚至可以利用電腦成像及计算机动画製作電影,也可以在電影中利用上述所有的技術及其他視覺效果。電影技術發展初期有各種不同的放映速度,但現時電影都多以每秒二十四格圖像作放映標準。 路易斯·普林斯于1888年10月14日,使用改进版的单镜头摄影机(即MkII)拍摄了电影《朗德海花园场景》。他在利兹的汉斯莱特区的惠特利工厂以及惠特利位于朗德海的家--奥克伍德农庄展出了他这第一部电影。 电影成为第七艺术的来由是意大利诗人和电影先驱者(Ricciotto Canudo),他在于1911年发表的一篇《第六艺术的誕生》(Birth of the 6th art),將電影放在建築、雕塑、繪畫、音樂、詩之後,他後來又加入了早在電影之前就有的舞蹈,因此电影就成為第七藝術。也有一些說法是將早在電影問世前就有的戲劇放在电影之前,以此方法來算,電影就成為第八藝術。 如今,許多電影仍然用能把影像記錄到膠捲上的攝影機來拍攝。膠卷經過沖洗之後,再用放映機來運行膠卷。放映機可以發出光線,透過膠卷,這樣影像就在銀幕上顯示出了。自從有聲電影發明以來,大多數的電影都是有聲電影。最近許多電影都用數碼攝像機來拍攝,放映的時候,可以用數位放映機,也可以把數位影像轉置到傳統的膠片上。这种方法可避免膠片長時間存放的失真。.

新!!: 数字信号处理和电影 · 查看更多 »

特殊應用積體電路

特殊應用積體電路(Application-specific integrated circuit,縮寫:ASIC),是指依產品需求不同而客製化的特殊規格集成電路;相反地,非客製化的是應用特定標準產品(Application-specific standard product)集成電路。 特殊應用積體電路是由特定使用者要求和特定電子系統的需要而設計、製造。由于单个专用集成电路芯片的生产成本很高,如果出货量较小,则采用特殊應用積體電路在经济上不太实惠。这种情况可以使用可编程逻辑器件(如現場可程式邏輯門陣列)来作为目标硬件实现集成电路设计。此外,可编程逻辑器件具有用户可编程特性,因此适合于大规模芯片量产之前的原型机,来进行调试等工作。但是可编程逻辑器件在面积、速度方面的优化程度不如全定制的集成电路。 一般特殊應用積體電路的ROM和RAM都在出厂前经过掩膜(MASK),如常用的红外线遥控器发射芯片就是这种芯片。 特殊應用積體電路的特点是面向特定用户的需求,品种多、批量少,要求设计和生产周期短,它作为集成电路技术与特定用户的整机或系统技术紧密结合的产物,与通用集成电路相比具有体积更小、重量更轻、功耗更低、可靠性提高、性能提高、保密性增强、成本降低等优点。.

新!!: 数字信号处理和特殊應用積體電路 · 查看更多 »

階躍響應

階躍響應是指系統在其輸入為單位階躍函數時,其輸出的變化。在電子工程或自動控制領域中,階躍響應是指系統的輸入在很短時間由0變成1時,其輸出的時域特性。此概念可以延伸到使用抽象数学概念的动力系统,以演化参数表示其特性。 分析系統的階躍響應有助於了解系統的特性,因為當輸入在長時間穩態後,有快速而大幅度的變化,可以看出系統各個部份的特性。而且也可以知道系統的穩定性。.

新!!: 数字信号处理和階躍響應 · 查看更多 »

音频压缩

音频压缩可以指:.

新!!: 数字信号处理和音频压缩 · 查看更多 »

音频信号处理

音頻訊號處理,又稱音訊處理,音樂訊號處理等,可以用來調整音樂訊號的震幅、頻率、波形等資訊。 利用一些簡單的加減乘除,升降頻,及窗函數(window function),就可以做出各式的聲音訊號,創造屬於自己的電子音樂。 甚至透過一些訊號處理的技巧,可以從聲音訊號取得背後所代表的頻率高低,做更進一步的分析與應用。.

新!!: 数字信号处理和音频信号处理 · 查看更多 »

遞迴關係式

在數學上,递推关系(recurrence relation),也就是差分方程(difference equation),是一種递推地定義一個序列的方程式:序列的每一項目是定義為前一項的函數。 像戶口調查映射(logistic map)即為递推关系 某些簡單定義的遞迴關係式可能會表現出非常複雜的(混沌的)性質,他們屬於數學中的非線性分析領域。 所謂解一個遞迴關係式,也就是求其解析解,即關於n的非遞迴函數。.

新!!: 数字信号处理和遞迴關係式 · 查看更多 »

頻域

在電子學、控制系統及統計學中,頻域(frequency domain)是指在對函數或信號進行分析時,分析其和頻率有關部份,而不是和時間有關的部份,和時域一詞相對。 函數或信號可以透過一對數學的運算子在時域及頻域之間轉換。例如傅里葉變換可以將一個時域信號轉換成在不同頻率下對應的振幅及相位,其頻譜就是時域信號在頻域下的表現,而反傅里葉變換可以將頻譜再轉換回時域的信號。.

新!!: 数字信号处理和頻域 · 查看更多 »

類比數位轉換器

模拟数字转换器(Analog-to-digital converter, ADC, A/D or A to D)是用于将模拟形式的连续信号转换为数字形式的离散信号的一类设备。一个模拟数字转换器可以提供信号用于测量。与之相对的设备成为数字模拟转换器。 典型的模拟数字转换器将模拟信号转换为表示一定比例电压值的数字信号。然而,有一些模拟数字转换器并非纯的电子设备,例如旋转编码器,也可以被视为模拟数字转换器。 数字信号输出可能会使用不同的编码结构。通常会使用二进制二补数(也称作“补码”)进行表示,但也有其他情况,例如有的设备使用格雷码(一种循环码)。.

新!!: 数字信号处理和類比數位轉換器 · 查看更多 »

频谱

頻譜是指一個時域的信號在頻域下的表示方式,可以針對信號進行傅立葉變換而得,所得的結果會是以分別以振幅及相位為縱軸,頻率為橫軸的兩張圖,不過有時也會省略相位的資訊,只有不同頻率下對應振幅的資料。有時也以「振幅頻譜」表示振幅隨頻率變化的情形,「相位頻譜」表示相位隨頻率變化的情形 。 簡單來說,頻譜可以表示一個訊號是由哪些頻率的弦波所組成,也可以看出各頻率弦波的大小及相位等資訊。.

新!!: 数字信号处理和频谱 · 查看更多 »

視訊壓縮

視訊壓縮(Video compression)是指運用資料壓縮技術將數位視訊資料中的冗餘資訊去除,降低表示原始視訊所需的資料量,以便視訊資料的傳輸與儲存。實際上,原始視訊資料的資料量往往過大,例如未經壓縮的電視品質視訊資料的位元率高達216Mbps,絕大多數的應用無法處理如此龐大的資料量,因此視訊壓縮是必要的。目前最新的視訊編碼標準為ITU-T視訊編碼專家組(VCEG)和ISO/IEC動態圖像專家組(MPEG)聯合組成的聯合視訊組(JVT,Joint Video Team)所提出的H.264/AVC。.

新!!: 数字信号处理和視訊壓縮 · 查看更多 »

高保真

傳真(High fidelity,簡稱hi-fi)是家庭音响愛好者使用的术语,总体上要求音响系统在额定输出功率下具有足够高的信噪比,波形与输入信号相比失真足够低,並具有范围足够宽且在范围内没有明显起伏的频率响应。这一概念大约诞生于50年代,最初是完全主观而无定量标准,1966年西德DIN(德国标准化学会)制定DIN 45500标准为高保真的定量化和产品使用此称谓的技术指标最低限提供了指导。 到21世纪之后,随着电子器件平均性能的提高,集成电路和数字技术的普及,市售的绝大多数廉价设备都能轻易达到60年代DIN所规定的最低标准,于是音响爱好者对“高保真”概念赋予了更主观,更严苛的要求。为了追求听感上的些微优越性,一些“发烧友”不惜在器材上投入巨资,比如更换贵金属导线,而带来的提高如用常用的技术指标来形容,有时微不足道,其提高的原理有时也不易用普及性的电物理知识解释,比如发烧友提出金质导线能带来更纯粹的音质,而从物理上说,金材料的电阻率甚至大于铜。于是,对高档“高保真”音响设备音质优越性的论断,一直存在争议,一些人试图证明心理作用的影响,而发明了「AB盲听」等一系列有趣的实验,不过迄今也没有得出确切的结论,一般认为,理解的偏差可能和生理听觉,大脑处理声音的敏感度和未受重视的次要指标有关,也未必尽然是玄学。.

新!!: 数字信号处理和高保真 · 查看更多 »

计算机动画

计算机动画(Computer Animation),又稱计算机繪圖,是通过使用计算机制作动画的技术。它是计算机图形学和动画的子领域。近年動畫師越来越多的借助于三维计算机图形学,縱使二维计算机图形学仍然被广泛使用着。有时动画最后播放的地方就是计算机本身,有时候则是另外的媒体,譬如电影。 为了制造运动的影像,画面显示在计算机屏幕上,然后很快被一幅和前面的画面相似但移动一些的新画面所代替。这个技术和电视和电影制造移动的假象的原理一样。 三维计算机动画本质上是定格动画(stop motion,或称静帧采集)的数字化后代;动画中的形象建立在计算机屏幕上并被装上了一个骨架。然后,三维形象的四肢,眼睛,嘴巴,衣服由动画制作者来操纵。最后,动画由计算机绘制出来。.

新!!: 数字信号处理和计算机动画 · 查看更多 »

计算机图形学

计算机图形学(computer graphics,縮寫为CG)是研究计算机在硬件和软件的帮助下创建计算机图形的科学学科,是计算机科学的一個分支領域,主要關注數位合成與操作視覺的圖形內容。雖然這個詞通常被認為是指三維圖形,事實上同時包括了二維圖形以及影像處理。.

新!!: 数字信号处理和计算机图形学 · 查看更多 »

计算机科学

计算机科学用于解决信息与计算的理论基础,以及实现和应用它们的实用技术。 计算机科学(computer science,有时缩写为CS)是系统性研究信息与计算的理论基础以及它们在计算机系统中如何与应用的实用技术的学科。 它通常被形容为对那些创造、描述以及转换信息的算法处理的系统研究。计算机科学包含很多分支领域;有些强调特定结果的计算,比如计算机图形学;而有些是探討计算问题的性质,比如计算复杂性理论;还有一些领域專注于怎样实现计算,比如程式語言理論是研究描述计算的方法,而程式设计是应用特定的程式語言解决特定的计算问题,人机交互则是專注于怎样使计算机和计算变得有用、好用,以及随时随地为人所用。 有时公众会误以为计算机科学就是解决计算机问题的事业(比如信息技术),或者只是与使用计算机的经验有关,如玩游戏、上网或者文字处理。其实计算机科学所关注的,不仅仅是去理解实现类似游戏、浏览器这些软件的程序的性质,更要通过现有的知识创造新的程序或者改进已有的程序。 尽管计算机科学(computer science)的名字里包含计算机这几个字,但实际上计算机科学相当数量的领域都不涉及计算机本身的研究。因此,一些新的名字被提议出来。某些重点大学的院系倾向于术语计算科学(computing science),以精确强调两者之间的不同。丹麦科学家Peter Naur建议使用术语"datalogy",以反映这一事实,即科学学科是围绕着数据和数据处理,而不一定要涉及计算机。第一个使用这个术语的科学机构是哥本哈根大学Datalogy学院,该学院成立于1969年,Peter Naur便是第一任教授。这个术语主要被用于北欧国家。同时,在计算技术发展初期,《ACM通讯》建议了一些针对计算领域从业人员的术语:turingineer,turologist,flow-charts-man,applied meta-mathematician及applied epistemologist。 三个月后在同样的期刊上,comptologist被提出,第二年又变成了hypologist。 术语computics也曾经被提议过。在欧洲大陆,起源于信息(information)和数学或者自动(automatic)的名字比起源于计算机或者计算(computation)更常见,如informatique(法语),Informatik(德语),informatika(斯拉夫语族)。 著名计算机科学家Edsger Dijkstra曾经指出:“计算机科学并不只是关于计算机,就像天文学并不只是关于望远镜一样。”("Computer science is no more about computers than astronomy is about telescopes.")设计、部署计算机和计算机系统通常被认为是非计算机科学学科的领域。例如,研究计算机硬件被看作是计算机工程的一部分,而对于商业计算机系统的研究和部署被称为信息技术或者信息系统。然而,现如今也越来越多地融合了各类计算机相关学科的思想。计算机科学研究也经常与其它学科交叉,比如心理学,认知科学,语言学,数学,物理学,统计学和经济学。 计算机科学被认为比其它科学学科与数学的联系更加密切,一些观察者说计算就是一门数学科学。 早期计算机科学受数学研究成果的影响很大,如Kurt Gödel和Alan Turing,这两个领域在某些学科,例如数理逻辑、范畴论、域理论和代数,也不断有有益的思想交流。.

新!!: 数字信号处理和计算机科学 · 查看更多 »

语音处理

語音處理(Speech processing),又稱語音訊號處理、人聲處理,其目的是希望做出想要的訊號,進一步做語音辨識,應用到手機介面甚至一般生活中,使人與電腦能進行溝通。.

新!!: 数字信号处理和语音处理 · 查看更多 »

语音识别

语音识别(speech recognition;語音辨識/言語辨別)技术,也被称为自动语音识别(Automatic Speech Recognition, ASR)、電腦語音識別(Computer Speech Recognition)或是語音轉文本識別(Speech To Text, STT),其目标是以電腦自動将人类的语音内容转换为相應的文字。与及说话人确认不同,后者尝试识别或确认发出语音的说话人而非其中所包含的词汇内容。 语音识别技术的应用包括语音拨号、语音导航、室内设备控制、语音文档检索、简单的听写数据录入等。语音识别技术与其他自然语言处理技术如机器翻译及语音合成技术相结合,可以构建出更加复杂的应用,例如语音到语音的翻译。 语音识别技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。.

新!!: 数字信号处理和语音识别 · 查看更多 »

超低頻

超低頻(Super Low Frequency,SLF)指的是頻率介於30Hz(赫茲)與300Hz間的电磁波。一般由變電所配送到居家的交流電頻率多在此范围內,即50Hz~60Hz間。 在無線電通訊的收發上,美國的Saguine系统使用76Hz,俄羅斯的ZEVS系统使用82Hz,都屬於超低頻,不過也經常被人誤以為是極低頻(ELF,Extremely Low Frequency)。這兩種低頻無線電通訊都是用在與水中的潛艦溝通之用。有傳言表示德國柏林泰波霍夫機場(Tempelhof)也將有一個名為「泰迪熊」(teddybear)的超低頻發送器,但此傳言未獲得證實。.

新!!: 数字信号处理和超低頻 · 查看更多 »

连续函数

在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。 举例来说,考虑描述一棵树的高度随时间而变化的函数h(t),那么这个函数是连续的(除非树被砍断)。又例如,假设T(P)表示地球上某一点P的空气温度,则这个函数也是连续的。事实上,古典物理学中有一句格言:“自然界中,一切都是连续的。”相比之下,如果M(t)表述在时间t的时候银行账户上的钱币金额,则这个函数无论在存钱或者取钱的时候都会有跳跃,因此函数M(t)是不连续的。.

新!!: 数字信号处理和连续函数 · 查看更多 »

量化 (信号处理)

在数字信号处理领域,量化指将信号的连续取值(或者大量可能的离散取值)近似为有限多个(或较少的)离散值的过程。量化主要应用于从连续信号到数字信号的转换中。连续信号经过采样成为离散信号,离散信号经过量化即成为数字信号。注意离散信号并不需要经过量化的过程。信号的采样和量化通常都是由ADC实现的。 例如CD音频信号就是按照44100Hz的频率采样,按16位元量化为有着65536(.

新!!: 数字信号处理和量化 (信号处理) · 查看更多 »

自动控制

自動化控制(automation control)屬於自動化技術的一門,廣義來說,通常是指不需藉著人力親自操作機器或機構,而能利用動物以外的其他裝置元件或能源,來達成人類所期盼執行的工作。更狹義地說即是以生化、機電、電腦、通訊、水力、蒸汽等科學知識與應用工具,進行設計來代替人力或減輕人力或簡化人類工作程序的機構機制,皆可稱之。 自动控制是相对人工控制概念而言的。指的是在没人参与的情况下,利用控制装置使被控对象或过程自动地按预定规律运行。自动控制技术的研究有利于将人类从复杂、危险、繁琐的劳动环境中解放出来并大大提高控制效率。 自动控制系统的理论主要是反馈论,包括从功能的观点对机器和物体中(神经系统、内分泌及其他系统)的调节和控制的一般规律的研究。离散控制理论在计算中也有很广泛的应用。 自动控制是工程科学的一个分支。它涉及利用反馈原理的对动态系统的自动影响,以使得输出值接近我们想要的值。从方法的角度看,它以数学的系统理论为基础。我们今天称作自动控制的是二十世纪中叶产生的控制论的一个分支。基础的结论是由诺伯特·维纳、鲁道夫·卡尔曼提出的。 室内温度的调节是一个简明易懂的例子。目的是把室内温度保持在一个定值θ,尽管开窗等因素使得室内热量散发出室外(干扰d)。为了达到这个目的,加热必须被适当的影响。通过阀门的调节,温度就会保持恒定。除此之外,在人们有感觉之前,暖器热水的温度也会受外界温度的干扰。.

新!!: 数字信号处理和自动控制 · 查看更多 »

自相关函数

自相关(Autocorrelation),也叫序列相关,是一个信号于其自身在不同时间点的互相关。非正式地来说,它就是两次观察之间的相似度对它们之间的时间差的函数。它是找出重复模式(如被噪声掩盖的周期信号),或识别隐含在信号谐波频率中消失的基頻的数学工具。它常用于信号处理中,用来分析函数或一系列值,如時域信号。.

新!!: 数字信号处理和自相关函数 · 查看更多 »

自适应滤波器

自适应滤波器是能够根据输入信号自动调整性能进行数字信号处理的数字滤波器。作为对比,非自适应滤波器有静态的滤波器系数,这些静态系数一起组成传递函数。 对于一些应用来说,由于事先并不知道所需要进行操作的参数,例如一些噪声信号的特性,所以要求使用自适应的系数进行处理。在这种情况下,通常使用自适应滤波器,自适应滤波器使用反馈来调整滤波器系数以及频率响应。 总的来说,自适应的过程涉及到将代价函数用于确定如何更改滤波器系数从而减小下一次迭代过程成本的算法。价值函数是滤波器最佳性能的判断准则,比如减小输入信号中的噪声成分的能力。 随着数字信号处理器性能的增强,自适应滤波器的应用越来越常见,时至今日它们已经广泛地用于手机以及其它通信设备、数码录像机和数码照相机以及医疗监测设备中。.

新!!: 数字信号处理和自适应滤波器 · 查看更多 »

采样定理

在数字信号处理领域,采样定理是连续信号(通常称作“模拟信号”)与离散信号(通常称作“数字信号”)之间的一个基本桥梁。它确定了信号带宽的上限,或能捕获连续信号的所有信息的离散采样信号所允许的采样频率的下限。 严格地说,定理仅适用于具有傅里叶变换的一类数学函数,即频率在有限区域以外为零(参照图1)。离散时间傅里叶变换(的一种形式)提供了实际信号的解析延拓,但只能近似该条件。直观上我们希望,当把连续函数化为采样值(叫做“样本”)的离散序列并插值到连续函数中,结果的保真度取决于原始采样的密度(或采样率)。采样定理介绍了对带宽限制的函数类型来说保真度足够完整的采样率的概念;在采样过程中"信息"实际没有损失。定理用函数的带宽来表示采样率。定理也导出了一个数学上理想的原连续信号的重构公式。 该定理没有排除一些并不满足采样率准则的特殊情况下完整重构的可能性。(参见下文非基带信号采样,以及壓縮感知。) 奈奎斯特–香农采样定理的名字是为了紀念哈里·奈奎斯特和克劳德·香农。该定理也被、等人独立发现。所以它还叫做奈奎斯特–香农–科特尔尼科夫定理、惠特克–香农–科特尔尼科夫定理、惠特克–奈奎斯特–科特尔尼科夫–香农定理及插值基本定理。.

新!!: 数字信号处理和采样定理 · 查看更多 »

采样率

采样率(也称为采样速度或者采样频率)定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。采样频率的倒数叫作采样周期或采样时间,它是采样之间的时间间隔。注意不要将采样率与比特率(bit rate,亦称“位速率”)相混淆。 采样频率只能用于周期性采样的采样器,对于非周期性采样的采样器没有规则限制。 采样频率的常用的表示符号是f_s\,。.

新!!: 数字信号处理和采样率 · 查看更多 »

零点

对全纯函数f,称满足f(a).

新!!: 数字信号处理和零点 · 查看更多 »

電子計算機

--,亦稱--,计算机是一种利用数字电子技术,根据一系列指令指示其自动执行任意算术或逻辑操作序列的设备。计算机遵循被称为“程序”的一般操作集的能力使他们能够执行极其广泛的任务。 计算机被用作各种工业和消费设备的控制系统。这包括简单的特定用途设备(如微波炉和遥控器)、工业设备(如工业机器人和计算机辅助设计),以及通用设备(如个人电脑和智能手机之类的移动设备)等。尽管计算机种类繁多,但根据图灵机理论,一部具有最基本功能的计算机,应当能够完成任何其它计算机能做的事情。因此,理论上从智能手机到超级计算机都应该可以完成同样的作业(不考虑时间和存储因素)。由于科技的飞速进步,下一代计算机总是在性能上能够显著地超过其前一代,这一现象有时被称作“摩尔定律”。通过互联网,计算机互相连接,极大地提高了信息交换速度,反过来推动了科技的发展。在21世纪的现在,计算机的应用已经涉及到方方面面,各行各业了。 自古以来,简单的手动设备——就像算盘——帮助人们进行计算。在工业革命初期,各式各样的机械的出现,其初衷都是为了自动完成冗长而乏味的任务,例如织机的编织图案。更复杂的机器在20世纪初出现,通过模拟电路进行复杂特定的计算。第一台数字电子计算机出现于二战期间。自那时以来,电脑的速度,功耗和多功能性不断增加。在现代,机械计算--机的应用已经完全被电子计算机所取代。 计算机在组成上形式不一,早期计算机的体积足有一间房屋的大小,而今天某些嵌入式计算机可能比一副扑克牌还小。当然,即使在今天依然有大量体积庞大的巨型计算机为特别的科学计算或面向大型组织的事务处理需求服务。比较小的,为个人应用而设计的称为微型计算机(Personal Computer,PC),在中國地區简称為「微机」。我們今天在日常使用“计算机”一词时通常也是指此,不过现在计算机最为普遍的应用形式却是嵌入式,嵌入式计算机通常相对简单、体积小,并被用来控制其它设备——无论是飞机、工业机器人还是数码相机。 同计算机相关的技术研究叫计算--机科学,而「计算机技术」指的是将计算--机科学的成果应用于工程实践所派生的诸多技术性和经验性成果的总合。「计算机技术」与「计算机科学」是两个相关而又不同的概念,它们的不同在于前者偏重于实践而后者偏重于理论。至於由数据为核心的研究則称為信息技术。 传统上,现代计算机包括至少一个处理单元(通常是中央处理器(CPU))和某种形式的存储器。处理元件执行算术和逻辑运算,并且排序和控制单元可以响应于存储的信息改变操作的顺序。外围设备包括输入设备(键盘,鼠标,操纵杆等)、输出设备(显示器屏幕,打印机等)以及执行两种功能(例如触摸屏)的输入/输出设备。外围设备允许从外部来源检索信息,并使操作结果得以保存和检索。.

新!!: 数字信号处理和電子計算機 · 查看更多 »

電機工程學

電機工程學是以電子學、電磁學等物理学分支为基础,涵盖電子學、電子計算機、電力工程、电信、控制工程、訊號處理等子领域的一門工程學。十九世紀後半期以來,隨著電報、電話、電能在供應與使用方面的商業化,該學科逐漸發展為相對獨立的專業領域。 電機工程廣義上涵蓋該領域的分支,但在有些地方,「電機工程學」(Electrical Engineering)一詞的意義有時不包括「電子工程學」(Electronic Engineering)。 這個情況下,「電機工程學」是指涉及到大能量的電力系統(如電能傳輸、重型電機機械及電動機),而「電子工程」則是指處理小信號的電子系統(如計算機和積體電路)。 另一種區分法為,電力工程師著重於電能的傳輸,而電子工程師則著重於利用電子訊號進行資訊的傳輸。這些子領域的範圍有時也會重疊:例如,電力電子學使用電力電子元件對電能進行變換和控制;又如,智慧電網偵測電能供應者的電能供應狀況與一般家庭使用者的電能使用狀況,并据之調整家電用品的耗電量,以此达到节约能源、降低损耗、增强輸電網路可靠性的目的。因此,電機工程亦函蓋電子工程部分領域的專業知識。.

新!!: 数字信号处理和電機工程學 · 查看更多 »

通信

通信是發送者通过某種媒體以某種格式來傳遞信息到收信者以達致某個目的。在古代,人們通過驛站、飛鴿傳書、烽火報警、符號、語言、眼神、觸碰等方式進行信息傳遞。到了今天,隨著科技水平的飛速發展,通訊基本完全利用有線或無線電完成,相繼出現了有線電話、固定電話、無線電話、手機、網際網路甚至視訊電話等各種通訊方式。通訊技術拉近了人與人之間的距離,提高了通訊的效率,深刻的改變了人類的通訊。交流也是一種方法讓其他人理解你。.

新!!: 数字信号处理和通信 · 查看更多 »

FPGA

#重定向 现场可编程逻辑门阵列.

新!!: 数字信号处理和FPGA · 查看更多 »

John Thompson

#重定向 约翰·斯帕洛·戴维·汤普森.

新!!: 数字信号处理和John Thompson · 查看更多 »

Z轉換

在數學和信号处理中,Z轉換(Z-transform)把一連串離散的實數或複數訊號,從時域轉為复頻域表示。 可以把它认为是拉普拉斯变换的离散时间等价。在时标微积分中会探索它们的相似性.

新!!: 数字信号处理和Z轉換 · 查看更多 »

极点

极点可以指:.

新!!: 数字信号处理和极点 · 查看更多 »

核磁共振成像

核磁共振成像(Nuclear Magnetic Resonance Imaging,简称NMRI),又稱自旋成像(spin imaging),也称磁共振成像(Magnetic Resonance Imaging,简称MRI),臺湾又称磁振造影,香港又稱磁力共振成像,是利用核磁共振(nuclear magnetic resonance,简称NMR)原理,依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核的位置和种类,据此可以绘制成物体内部的结构图像。 将这种技术用于人体内部结构的成像,就产生出一种革命性的医学诊断工具。快速变化的梯度磁场的应用,大大加快了核磁共振成像的速度,使该技术在临床诊断、科学研究的应用成为现实,极大地推动了医学、神经生理学和认知神经科学的迅速发展。 從核磁共振現象發現到MRI技術成熟這幾十年期間,有关核磁共振的研究领域曾在三个领域(物理學、化学、生理学或医学)内获得了6次诺贝尔奖,足以说明此领域及其衍生技术的重要性。.

新!!: 数字信号处理和核磁共振成像 · 查看更多 »

椭圆函数滤波器

椭圆滤波器(Elliptic filter)又称考尔滤波器(Cauer filter),是在通带和阻带等波纹的一种滤波器。椭圆滤波器相比其他类型的滤波器,在阶数相同的条件下有着最小的通带和阻带波动。它在通带和阻带的波动相同,这一点区别于在通带和阻带都平坦的巴特沃斯滤波器,以及通带平坦、阻带等波纹或是阻带平坦、通带等波纹的切比雪夫滤波器。 一个低通椭圆滤波器的频率响应的幅度为: G_n(\omega).

新!!: 数字信号处理和椭圆函数滤波器 · 查看更多 »

滤波器设计

频域电子滤波器的设计必须首先考虑任务所需滤波器的类型。首先必须确定滤波器的基本功能,如低通滤波器、高通滤波器、带通滤波器、全通滤波器或者是更为复杂的功能。.

新!!: 数字信号处理和滤波器设计 · 查看更多 »

有限脉冲响应

#重定向 有限冲激响应.

新!!: 数字信号处理和有限脉冲响应 · 查看更多 »

最小相位

最小相位(minimum-phase)是控制理论及信號處理中有特殊性質的系統,對於线性时不变系统,若本身為因果系统且穩定,且其也是穩定的因果系统,此系統即為最小相位系統。 相反的,非最小相位(non-minimum phase)系統可以用最小相位系統串接,使部份的零點移到右半面。若有零點在右半面,表示其逆系統不穩定。全通濾波器加入了「額外的相位」(有些可能是传送迟延),這也是為何所得系統稱為非最小相位的原因。 例如一個離散系統,其有理傳遞函數若其所有的極點都在單位圓內,此系統為符合因果性的穩定系統。不過此系統的零點可以單位圓內或是圓外的任意位置。若離散系統的零點也都在單位圓內,則這個系統也是最小相位的系統。以下會說明為何這様的系統會稱為最小相位系統。.

新!!: 数字信号处理和最小相位 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 数字信号处理和数学 · 查看更多 »

数字信号

數位訊號可以有多重的含义。它可以用来表示已经数字化的离散时间信号,或者表示數位系統中的波形信号。.

新!!: 数字信号处理和数字信号 · 查看更多 »

数字信号处理器

#重定向 數位訊號處理器.

新!!: 数字信号处理和数字信号处理器 · 查看更多 »

数字通信

#重定向 数据传输.

新!!: 数字信号处理和数字通信 · 查看更多 »

数据压缩

在计算机科学和信息论中,数据压缩或者源编码是按照特定的编码机制用比未经编码少的数据位元(或者其它信息相关的单位)表示信息的过程。例如,如果我们将「compression」编码为「comp」那么这篇文章可以用较少的数据位表示。常見的例子是ZIP文件格式,此格式不仅仅提供压缩功能,还可作为归档工具(Archiver),能够将许多文件存储到同一个文件中。.

新!!: 数字信号处理和数据压缩 · 查看更多 »

數位類比轉換器

数字模拟转换器(Digital to analog converter,英文缩写:DAC)是一种将数字信号转换为模拟信号(以电流、电压或电荷的形式)的设备。模拟数字转换器(ADC)则是以相反的方向工作。在很多数字系统中(例如计算机),信号以数字方式存储和传输,而数字模拟转换器可以将这样的信号转换为模拟信号,从而使得它们能够被外界(人或其他非数字系统)识别。 数字模拟转换器的常见用法是在音乐播放器中将数字形式存储的音频信号输出为模拟的声音。有的电视机的显像也有类似的过程。数字模拟转换器有时会降低原有模拟信号的精度,因此转换细节常常需要筛选,使得误差可以忽略。 由于成本的考虑以及对于模块化电子元件的需求,数字模拟转换器基本上是以集成电路的形式制造。数字模拟转换器有多重架构,它们各自都有各自的优缺点。在特定的应用中,数字模拟转换器的选用是否合适,取决于其一系列参数(包括转换速率以及分辨率)是否合适。.

新!!: 数字信号处理和數位類比轉換器 · 查看更多 »

重定向到这里:

數位信號處理數位訊號處理數碼訊號處理

传出传入
嘿!我们在Facebook上吧! »