我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

自守形式

指数 自守形式

數學上所謂的自守形式,是一類特別的複變數函數,並在某個離散變換群下滿足由自守因子描述之變換規律。模形式與馬斯形式是其特例。由自守形式可定義自守表示,嚴格言之,自守表示並非尋常意義下的群表示,而是整體赫克代數上的模。 龐加萊在1880年代曾研究過自守形式,他稱之為富克斯函數。郎蘭茲綱領探討自守表示與數論的深入聯繫。.

目录

  1. 15 关系: 子商儒勒·昂利·庞加莱函數域群上同調群表示論特徵標理論解析函数賦值賦值向量環李代數模形式泛包絡代數朗蘭茲綱領数学数论

子商

在抽象代數及範疇論中,子商是很常用的概念。這是子結構(例如子群、子模、子表示)與商結構(例如商群、商模、商表示)的推廣。 固定一個範疇 \mathcal。若 \mathcal 中的對象 X 能表成某對象 Y 的子對象之商,則稱 X 為 Y 的子商。在群與阿貝爾範疇的框架下皆可定義子商。在群論中,有時也將子商稱為截面。 Z Z.

查看 自守形式和子商

儒勒·昂利·庞加莱

儒勒·昂利·庞加莱(Jules Henri Poincaré,法語发音,又译作彭加勒、昂利·彭加勒,),通常称为昂利·庞加莱,法国最伟大的数学家之一,理论科学家和科学哲学家。庞加莱被公认是19世纪后和20世纪初的领袖数学家,是繼高斯之後对于数学及其应用具有全面知识的最后數學家。 他对数学,数学物理,和天体力学做出了很多创造性的基础性的贡献。他提出的庞加莱猜想是数学中最著名的问题之一。在他对三体问题的研究中,庞加莱成了第一个发现混沌确定系统的人並为现代的混沌理论打下了基础。庞加莱比爱因斯坦的工作更早一步,并起草了一个狭义相对论的简略版。庞加莱群以他命名。.

查看 自守形式和儒勒·昂利·庞加莱

函數域

在代數幾何中,一個整概形 X 的函數域 K_X 由 X 上的有理函數組成;對於一般的概形,相應的對象是有理函數層。雙有理幾何研究的便是由 K_X 所決定的幾何性質。.

查看 自守形式和函數域

群上同調

在同調代數中,群上同調是一套研究群及其表示的代數工具。群上同調源於代數拓撲,在代數數論上也有重要應用;它是現代類域論的基本構件之一。.

查看 自守形式和群上同調

群表示論

在群論中,群表示論(group representation theory)是一个非常重要的理論。它包含了(局部)緊緻群、李群、李代數及群概形的表示等種種分支,近來無限維表示理論也漸露頭角。表示理論在量子物理與數學的各領域中均有重要應用。.

查看 自守形式和群表示論

特徵標理論

在數學裡,尤其是在群表示理論裡,一個群表示的特徵標(character)是指一個將群的每個元素連結至表示空間這個域內的每個元素之函數。特徵標蘊藏著群的許多重要性質,且因此可以用來做群的研究。 特徵標理論是對有限簡單群分類的一個有重要的工具。在范特-湯普遜定理證明接近一半的地方會有一個用到特徵標的複雜計算。另外還有一些較簡單但一樣重要的結論需用在特徵標理論,如伯恩賽德定理及理查·布勞爾和鈴木通夫所證出之定理,此定理表示有限簡單群不會有一個為廣義四元群的西洛2-子群。.

查看 自守形式和特徵標理論

解析函数

在數學中,解析函数是局部上由收斂冪級數給出的函數。解析函數可分成實解析函數與複解析函數,兩者有類似之處,同時也有重要的差異。每种类型的解析函数都是无穷可导的,但复解析函数表现出一些一般实解析函数不成立的性质。此外在超度量域上也可以定義解析函數,這套想法在當代數論與算術代數幾何中有重要應用。一个函数是解析函数当且仅当这个函数在它定义域内的每个x0的邻域内的泰勒级数都收敛。 解析函數集有時也寫作 C^\omega。.

查看 自守形式和解析函数

賦值

在代数中,赋值是域元素的阶(多少)或元素重复度一个度量。推广到交换代数,就是对复分析中极点,零点重复度度量,推广到代数数论中的代数整数整性的度量,在代数几何中也有类似概念,一个域与它的赋值被称为赋值域。.

查看 自守形式和賦值

賦值向量環

在數論中,賦值向量環或阿代爾環(法文:adèle,英譯多用原文)是由一個域 F 的所有完備化構成的拓撲環 \mathbb_F,原域 F 可以對角方式嵌入其中。 在現代代數數論中,賦值向量環是處理整體問題的基本語言。 法文原文 adèle 是 idèle additif 的縮寫,其中 idèle 意指理想元(élément idéal)。adèle 也是法文中常見的女性名字。.

查看 自守形式和賦值向量環

李代數

数学上,李代数是一个代数结构,主要用于研究象李群和微分流形之类的几何对象。李代数因研究无穷小变换的概念而引入。“李代数”(以索菲斯·李命名)一词是由赫尔曼·外尔在1930年代引入的。在旧文献中,无穷小群指的就是李代数。.

查看 自守形式和李代數

模形式

模形式是數學上一個滿足一些泛函方程與增長條件、在上半平面上的(複)解析函數。因此,模形式理論屬於数论的範疇。模形式也出現在其他領域,例如代數拓撲和弦理論。 模形式理論是更廣泛的自守形式理論的特例。自守形式理論的發展大致可分成三期:.

查看 自守形式和模形式

泛包絡代數

在數學中,我們可以構造任意李代數 L 的泛包絡代數 U(L)。李代數一般並非結合代數,但泛包絡代數則是帶乘法單位元的結合代數。李代數的表示理論可以理解為其泛包絡代數的表示理論。在幾何上,泛包絡代數可以解釋為李群上的左不變微分算子。.

查看 自守形式和泛包絡代數

朗蘭茲綱領

朗蘭茲綱領是數學中一系列影響深遠的構想,聯繫數論、代數幾何與约化群表示理論;綱領最初由羅伯特·朗蘭茲於1967年在一封給韦伊的中提出。.

查看 自守形式和朗蘭茲綱領

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

查看 自守形式和数学

数论

數論是纯粹数学的分支之一,主要研究整数的性質。被譽為「最純」的數學領域。 正整数按乘法性质划分,可以分成質数,合数,1,質数產生了很多一般人也能理解而又懸而未解的問題,如哥德巴赫猜想,孿生質數猜想等,即。很多問題虽然形式上十分初等,事实上却要用到许多艰深的数学知识。这一领域的研究从某种意义上推动了数学的发展,催生了大量的新思想和新方法。數論除了研究整數及質數外,也研究一些由整數衍生的數(如有理數)或是一些廣義的整數(如代數整數)。 整数可以是方程式的解(丟番圖方程)。有些解析函數(像黎曼ζ函數)中包括了一些整數、質數的性質,透過這些函數也可以了解一些數論的問題。透過數論也可以建立實數和有理數之間的關係,並且用有理數來逼近實數(丟番圖逼近)。 數論早期稱為算術。到20世紀初,才開始使用數論的名稱,而算術一詞則表示「基本運算」,不過在20世紀的後半,有部份數學家仍會用「算術」一詞來表示數論。1952年時數學家Harold Davenport仍用「高等算術」一詞來表示數論,戈弗雷·哈羅德·哈代和愛德華·梅特蘭·賴特在1938年寫《數論介紹》簡介時曾提到「我們曾考慮過將書名改為《算術介紹》,某方面而言是更合適的書名,但也容易讓讀者誤會其中的內容」。 卡尔·弗里德里希·高斯曾說:「數學是科學的皇后,數論是數學的皇后。.

查看 自守形式和数论

亦称为 自守尖點表示,自守式。