目录
35 关系: 偏导数,协变导数,卡爾·弗里德里希·高斯,可展曲面,尖点,不變量,主曲率,三角形,平均曲率,度量张量,微分同胚,微分几何,微分流形,圆柱体,刘维尔定理 (哈密顿力学),嵌入,周长,克里斯托费尔符号,球面,第一基本形式,第二基本形式,等距同构,絕妙定理,面积,行列式,高斯-博内定理,高斯映射,黑塞矩阵,欧几里得空间,欧拉示性数,截面曲率,测地线,曲率,曲面,曲面积分。
- 卡尔·弗里德里希·高斯
- 微分拓扑学
- 曲面
- 曲面的微分几何
偏导数
在数学中,一个多变量的函数的偏导数是它关于其中一个变量的导数,而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。 函数f关于变量x的偏导数写为f_x^或\frac。偏导数符号\partial是全导数符号 d的变体,这个符号是阿德里安-马里·勒让德引入的,并在雅可比的重新引入后得到普遍接受。.
查看 高斯曲率和偏导数
协变导数
#重定向 协变微商.
查看 高斯曲率和协变导数
卡爾·弗里德里希·高斯
约翰·卡爾·弗里德里希·高斯(Johann Karl Friedrich Gauß;), 德国数学家、物理学家、天文学家、大地测量学家,生于布伦瑞克,卒于哥廷根。高斯被认为是历史上最重要的数学家之一Dunnington, G. Waldo.
可展曲面
可展曲面是在其上每一点处高斯曲率为零的曲面。有一个一般性的定理表明:一片具有常数高斯曲率的曲面能够经弯曲(非拉伸、收缩、皱褶或撕裂)而变为任何一片具有相同常数高斯曲率的曲面。因为平面就是在每一点处高斯曲率为常数零的特殊曲面,所以每一点处曲率为零的任何一片曲面,能够经弯曲而展开成一片平面。这就是可展曲面这个术语所要表达的。另外,三维空间中可展曲面都是直纹曲面(反之不成立,三维空间中的双曲面是非可展的直纹曲面的例子),但是在高维空间中可以举出非直纹曲面的可展曲面的例子。.
查看 高斯曲率和可展曲面
尖点
#重定向 尖點.
查看 高斯曲率和尖点
不變量
假若,在某種變換下,一個系統的某物理量保持不變,則稱此物理量為不變量(invariant)。例如,在伽利略變換下,時間是個不變量;在勞侖茲變換下,光速、靜質量、電荷量等等,都是不變量。這類變換表達出不同觀察者的參考系之間的關係。例如,在火車站台的查票員的參考系,與在移動中的火車內的乘客的參考系,這兩個參考系之間的關係。 假若,在某種變換下,一個系統的某物理性質保持不變,則稱此物理性質為不變性(invariance)。例如,在內積空間內,對於任意旋轉,向量的內積保持不變,稱此性質為旋轉不變性。 根據諾特定理,對於一種變換,每一種不變性代表一條基本的守恆定律。例如,對於平移變換的不變性導致動量守恆定律,對於的不變性導致能量守恆定律。 在現代理論物理裏,不變性是很重要的概念。許多理論是由對稱性與不變性表達。 在張量數學裏,協變性與反變性是不變性的數學性質的推廣。在電磁學和相對論裏,時常會應用到這些概念。.
查看 高斯曲率和不變量
主曲率
在微分几何中,在曲面给定点的两个主曲率(principal curvatures)衡量了在给定点一个曲面在这一点的不同方向怎样不同弯曲的程度。 在曲面上取一点E,曲面在E点的法线为z轴,过z轴可以有无限多个剖切平面,每个剖切平面与曲面相交,其交线为一条平面曲线,每条平面曲线在E点有一个曲率半径。不同的剖切平面上的平面曲线在E点的曲率半径一般是不相等的。这些曲率半径中,有一个最大和最小的曲率半径,称之为主曲率半径,记作 k1 与 k2,这两个曲率半径所在的方向,数学上可以证明是相互垂直的。 这里一条曲线的曲率由定义是密切圆半径的倒数。当曲线转向与平面给定法向量相同方向时,曲率取正值,否则取负值。当曲率取最大与最小值的两个法平面方向总是垂直的,这是欧拉在1760年的一个结论,称之为主方向。从现代的观点来看,这个定理来自谱定理因为它们可以作为对应于高斯映射微分的一个对称矩阵的本征向量。对主曲率和主方向的系统研究由达布使用达布标架完成。 两个主曲率的乘积 k1k2 是高斯曲率 K,而平均值 (k1+k2)/2 是平均曲率 H。 如果在每一点至少有一个主曲率是零,则高斯曲率是零,这种曲面是可展曲面。对极小曲面,平均曲率在每一点是零。.
查看 高斯曲率和主曲率
三角形
三角形,又稱三邊形,是由三条线段顺次首尾相连,或不共線的三點兩兩連接,所组成的一个闭合的平面图形,是最基本和最少邊的多边形。 一般用大写英语字母A、B和C为三角形的顶点标号;用小写英语字母a、b和c表示边;用\alpha、\beta和\gamma給角標號,又或者以\angle ABC這樣的顶点标号表示。.
查看 高斯曲率和三角形
平均曲率
在微分几何中,一个曲面 S 的平均曲率(mean curvature)H,是一个“外在的”弯曲测量标准,局部地描述了一个曲面嵌入周围空间(比如二维曲面嵌入三维欧几里得空间)的曲率。 这个概念由索菲·热尔曼在她的著作《弹性理论》中最先引入。.
查看 高斯曲率和平均曲率
度量张量
在黎曼幾何裡面,度量張量(英語:Metric tensor)又叫黎曼度量,物理学译为度規張量,是指一用來衡量度量空间中距離,面積及角度的二階張量。 當选定一個局部坐標系統x^i,度量張量為二階張量一般表示為 \textstyle ds^2.
查看 高斯曲率和度量张量
微分同胚
在數學中,微分同胚是適用於微分流形範疇的同構概念。這是從微分流形之間的可逆映射,使得此映射及其逆映射均為光滑(即無窮可微)的。.
查看 高斯曲率和微分同胚
微分几何
微分幾何研究微分流形的幾何性質,是現代數學中一主流;是廣義相對論的基礎,與拓撲學、代數幾何及理論物理關係密切。 古典微分几何起源于微积分,主要内容为曲线论和曲面论。歐拉、蒙日和高斯被公认为古典微分几何的奠基人。近代微分几何的创始人是黎曼,他在1854年创立了黎曼几何(实际上黎曼提出的是芬斯勒几何),这成为近代微分几何的主要内容,并在相对论有极为重要的作用。埃利·嘉当和陈省身等人曾在微分几何领域做出极为杰出的贡献。.
查看 高斯曲率和微分几何
微分流形
光滑流形(),或称-微分流形()、-可微流形(),是指一个被赋予了光滑结构的拓扑流形。一般的,如果不特指,微分流形或可微流形指的就是类的微分流形。可微流形在物理學中非常重要。特殊種類的可微流形構成了經典力學、廣義相對論和楊-米爾斯理論等物理理論的基礎。可以為可微流形開發微積分。可微流形上的微積分研究被稱為微分幾何。.
查看 高斯曲率和微分流形
圆柱体
数学上,圆柱(古稱圓堡壔、圓囷,英語:cylinder)是一个二次曲面,也就是说,一个三维曲面,满足以下直角坐标系中的方程: 这个方程是用于椭圆柱的,是对于普通圆柱(a.
查看 高斯曲率和圆柱体
刘维尔定理 (哈密顿力学)
在物理学中,刘维尔定理(Liouville's theorem)是经典统计力学与哈密顿力学中的关键定理。该定理断言相空间的分布函数沿着系统的轨迹是常数——即给定一个系统点,在相空间游历过程中,该点邻近的系统点的密度关于时间是常数。 它以法国数学家约瑟夫·刘维尔命名。这也是辛拓扑与遍历论中的有关数学结果。.
嵌入
嵌入可以指:.
查看 高斯曲率和嵌入
周长
周長(Perimeter)指封閉曲線一周的長度(可以代號P表示)。.
查看 高斯曲率和周长
克里斯托费尔符号
克氏符号,全称克里斯托费尔符号(Christoffel symbols),在数学和物理中,是从度量张量导出的列维-奇维塔联络(Levi-Civita connection)的坐标表达式。因埃爾溫·布魯諾·克里斯托費爾(1829年-1900年)命名。克氏符号在每当进行涉及到几何的实用演算时都会被用到,因为他们使得非常复杂的演算不被搞混。不幸的是,它们写起来较繁琐,并要求对细节的仔细关注。相反,无下标的形式化的列维-奇维塔联络的概念是相当漂亮,并允许定理用典雅的方式表达,但是在实用演算中没有什么用处。.
球面
球面 (sphere)是三维空间中完全圆形的几何物体,它是圆球的表面(类似于在二维空间中,“圆 ”包围着“圆盘”那样)。 就像在二维空间中的圆的定义一样,球面在数学上定义为三维空间中离给定的点距离相同的点的集合 。 这个距离 是球的半径 ,球(ball)则是由离给定点距离小于 的所有点构成的几何体,而这个给定点就是球心。球的半径和球心也是球面的半径和中心。两端都在球面上的最长线段通过球心,其长度是其半径的两倍;它是球面和球体的直径 。 尽管在数学之外,术语“球面”和“球”有时可互换使用,但在数学中是明确区分的:球面是一种嵌在三维欧几里得空间内的二维封闭曲面,而球是一种三维图形,其包括球面和球面内部的一切(闭球),不过更常见的定义是只包括球面内部的所有点,不包括球面上的点(开球)。这种区别并不总是保持不变,尤其是在旧的数学文献里,sphere(球面)被当作固体。这与在平面上混用术语“圆”(circle)和“圆盘”(disk)的情况类似。.
查看 高斯曲率和球面
第一基本形式
在微分几何中,第一基本形式(first fundamental form)是三维欧几里得空间中一个曲面的切空间中内积,由 R3 中标准点积诱导。它使得曲面的曲率和度量性质(比如长度与面积)可与环绕空间一致地计算。第一基本形式用罗马数字 I 表示: 设 X(u, v) 是一个参数曲面,则两个切向量的内积为 \begin & \quad \mathrm(aX_u+bX_v,cX_u+dX_v) \\ &.
查看 高斯曲率和第一基本形式
第二基本形式
微分几何中,第二基本形式(second fundamental form)是三维欧几里得空间中一个光滑曲面的切丛上一个二次形式,通常记作 II。与第一基本形式一起,他们可定义曲面的外部不变量,主曲率。更一般地,若在黎曼流形中或洛伦兹流形中,的一个光滑超曲面上,选取了一个光滑单位法向量场,则可定义这样一个二形式。.
查看 高斯曲率和第二基本形式
等距同构
在数学中,「等距同构」或稱「保距映射」(isometry),是指在度量空间之中保持距离不变的同构关系。几何学中的对应概念是全等变换。 等距同构经常用于将一个空间嵌入到另一空间的构造中。例如,测度空间M的完备化即涉及从M到M' 的等距同构,这里M' 是M上柯西序列所构成的空间关于“距离为零”的等价关系的商集。这样,原空间M就等距同构到完备的度量空间的一个稠密子空间并且通常用这一空间来指代原空间M。 其它的嵌入构造表明每一度量空间都等距同构到某一賦範向量空間的一个闭子集以及每一完备度量空间都等距同构到某一巴拿赫空间的一个闭子集。 一个希尔伯特空间上的等距、满射的线性算子被称为酉算子。.
查看 高斯曲率和等距同构
絕妙定理
絕妙定理(Theorema Egregium)是微分幾何中關於曲面的曲率的重要定理,由高斯發現。這定理說曲面的高斯曲率可以從曲面上的長度和角度的測量完全決定,無需理會曲面如何嵌入三維空間內。換言之,高斯曲率是曲面的內蘊不變量。用現代術語可表述為:.
查看 高斯曲率和絕妙定理
面积
面積是一個用作表示一個曲面或平面圖形所佔範圍的量,可看成是長度(一維度量)及體積(三維度量)的二維類比。對三維立體圖形而言,圖形的邊界的面積稱為表面積。 計算各基本平面圖形面積及基本立體圖形的表面積公式早已為古希臘及古中國人所熟知。 面積在近代數學中佔相當重要的角色。面積除與幾何學及微積分有關外,亦與線性代數中的行列式有關。在分析學中,平面的面積通常以勒貝格測度(Lebesgue measure)定義。 我們可以利用公理,將面積定義為一個由平面圖形的集合映射至實數的函數。.
查看 高斯曲率和面积
行列式
行列式(Determinant)是数学中的一個函數,将一个n \times n的矩陣A映射到一個純量,记作\det(A)或|A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现线性自同态和向量组的行列式的定义。 行列式的特性可以被概括为一个交替多线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。.
查看 高斯曲率和行列式
高斯-博内定理
在微分几何中,高斯-博内定理(亦称高斯-博内公式)是关于曲面的图形(由曲率表征)和拓扑(由欧拉示性数表征)间联系的一项重要表述。它是以卡尔·弗里德里希·高斯和皮埃尔·奥西安·博内命名的,前者发现了定理的一个版本但从未发表,后者1848年发表了该定理的一个特例。.
查看 高斯曲率和高斯-博内定理
高斯映射
在微分幾何裡,高斯映射是從歐氏空間R3中的一個曲面到單位球面S2的一個映射。高斯映射是以卡爾·弗里德里希·高斯命名。 給出R3中的曲面X,高斯映射是一個連續映射N: X → S2,使得N(p)是在點p上正交於X的單位向量,就是曲面X在點p處的法向量。 高斯映射可以在曲面的整體上定義,當且僅當曲面是可定向的,此時其映射度等於歐拉示性數的一半。無論何時高斯映射都可以在曲面的局部上(即曲面的一小塊上)定義。高斯映射的雅可比行列式等於高斯曲率,而高斯映射的微分稱為形狀算子。 高斯以此為題在1825年寫了一份初稿,並在1827年發表。.
查看 高斯曲率和高斯映射
黑塞矩阵
#重定向 海森矩阵.
查看 高斯曲率和黑塞矩阵
欧几里得空间
欧几里得几何是在约公元前300年,由古希腊数学家欧几里得建立的角和空间中距离之间联系的法则。欧几里得首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里得的公理被编排到幾何原本。 这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做 n维欧几里得空间(甚至简称 n 维空间)或有限维实内积空间。 这些数学空间还可被扩展到任意维的情形,称为实内积空间(不一定完备), 希尔伯特空间在高等代数教科书中也被称为欧几里得空间。 为了开发更高维的欧几里得空间,空间的性质必须非常仔细的表达并被扩展到任意维度。 尽管结果的数学非常抽象,它却捕获了我们熟悉的欧几里得空间的根本本质,根本性质是它的平面性。 另存在其他種類的空间,例如球面非欧几里得空间,相对论所描述的四维时空在重力出现的时候也不是欧几里得空间。.
查看 高斯曲率和欧几里得空间
欧拉示性数
在代数拓扑中,欧拉示性数(Euler characteristic)是一个拓扑不变量(事实上,是同伦不变量),对于一大类拓扑空间有定义。它通常记作\chi。 二维拓扑多面体的欧拉示性数可以用以下公式计算: 其中V,E和F分别是点,边和面的个数。特别的有,对于所有和一个球面同胚的多面体,我们有 例如,对于立方体,我们有6 − 12 + 8.
查看 高斯曲率和欧拉示性数
截面曲率
在黎曼几何中,截面曲率是描述黎曼流形的曲率的一种方式。截面曲率K(\sigma_p) 依赖于p点的切空间裡的一个二维平面 \sigma_p 。它就定义为该截面,考慮在 p 点以平面 \sigma_p 作为切平面的曲面 S_p,這曲面是收集流形中某包含 p 的鄰域內從 p 点出發的測地線且這測地線在 p 點的切向量屬於截面 \sigma_p (換句話說就是 S_p.
查看 高斯曲率和截面曲率
测地线
测地线又称大地线或短程线,数学上可视作直线在弯曲空间中的推广;在有度规定义存在之时,测地线可以定义为空间中两点的局域最短路径。测地线(geodesic)的名字来自对于地球尺寸与形状的大地测量学(geodesy)。.
查看 高斯曲率和测地线
曲率
曲率,符号以Kappa:κ表示,是几何体不平坦程度的一种衡量。平坦对不同的几何体有不同的意義。 曲率半径,符号以Rho:ρ表示,是曲率的倒数,单位为米。.
查看 高斯曲率和曲率
曲面
在数学(拓扑学)中,一个曲面(surface)是一个二维流形。三维空间中的例子有三维实心物体的边界。流体的表面,例如雨滴或肥皂泡是一种理想化的曲面。关于雪花的表面,它有很多精细的结构,超越了这个简单的数学定义。关于实际的曲面的资料,请参看表面张力,表面化学,曲面能量。.
查看 高斯曲率和曲面
曲面积分
数学上,曲面积分(面积分)是在曲面上的定积分(曲面可以是空间中的弯曲子集);它可以视为和线积分相似的双重积分。给定一个曲面,可以在上面对标量场(也就是實数值的函数)进行积分,也可以对向量场(也就是向量值的函数)积分。 面积分在物理中有大量应用,特别是在电磁学的經典物理學中。.
查看 高斯曲率和曲面积分
另见
卡尔·弗里德里希·高斯
- 二百五十七邊形
- 卡爾·弗里德里希·高斯
- 可作图多边形
- 小行星1001
- 正65537邊形
- 算术研究
- 絕妙定理
- 高斯 (单位)
- 高斯單位制
- 高斯定律
- 高斯映射
- 高斯曲率
- 高斯獎
- 高斯环形山
- 高斯磁定律
- 高斯重力定律
- 高斯面
微分拓扑学
- 余切丛
- 切丛
- 切空间
- 切线
- 协变经典场论
- 反函数定理
- 可定向性
- 可平行化流形
- 向量場
- 子流形
- 嵌入 (数学)
- 庞加莱-霍普夫定理
- 张量场
- 微分拓扑
- 截面 (纤维丛)
- 拓撲學術語
- 斯梅爾悖論
- 映射度
- 李代数胚
- 李导数
- 正則座標
- 法丛
- 浸入
- 球面
- 联络
- 节丛
- 辛流形
- 辛空间
- 連通和
- 配丛
- 铅直丛
- 链复形
- 阻碍理论
- 隐函数
- 非完整系統
- 高斯曲率
曲面
- 主曲率
- 二维空间
- 亏格
- 克莱因瓶
- 可定向性
- 可展曲面
- 圆柱体
- 圆锥
- 实射影平面
- 平均曲率
- 托里拆利小號
- 抛物面
- 措爾曲面
- 曲面
- 曲面积分
- 椭球
- 法线
- 环面
- 球面
- 直紋曲面
- 空間填充模型
- 第一基本形式
- 等值曲面
- 絕妙定理
- 莫比乌斯带
- 螺旋曲面
- 表面紋理
- 超曲面
- 雙圓錐
- 雙曲面
- 類球面
- 高斯映射
- 高斯曲率
- 高斯面