目录
17 关系: 向量空间,外代数,射流,开集,体积形式,微分形式,场,分部積分法,纤维丛,经典场论,节丛,量子场论,李导数,欧拉-拉格朗日方程,斯托克斯定理,时空,拉格朗日量。
- 微分拓扑学
- 微分方程
- 拉格朗日力學
- 理论物理
向量空间
向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.
查看 协变经典场论和向量空间
外代数
外代数(Exterior algebra)也稱為格拉斯曼代数(Grassmann algebra),以紀念赫爾曼·格拉斯曼。 数学上,给定向量空间V的外代數,是特定有单位的结合代数,其包含了V为其中一个子空间。它记为 Λ(V) 或 Λ•(V)而它的乘法,称为楔积或外积,记为∧。楔积是结合的和双线性的;其基本性質是它在V上交錯的,也就是: 这表示 注意这三个性质只对 V 中向量成立,不是对代数Λ(V)中所有向量成立。 外代数事实上是“最一般的”满足这些属性的代数。这意味着所有在外代数中成立的方程只从上述属性就可以得出。Λ(V)的这个一般性形式上可以用一个特定的泛性质表示,请参看下文。 形式为v1∧v2∧…∧vk的元素,其中v1,…,vk在V中,称为k-向量。所有k-向量生成的Λ(V)的子空间称为V的k-阶外幂,记为Λk(V)。外代数可以写作每个k阶幂的直和: 该外积有一个重要性质,就是k-向量和l-向量的积是一个k+l-向量。这样外代数成为一个分次代数,其中分级由k给出。这些k-向量有几何上的解释:2-向量u∧v代表以u和v为边的带方向的平行四边形,而3-向量u∧v∧w代表带方向的平行六面体,其边为u, v, 和w。 外幂的主要应用在于微分几何,其中他们用来定义微分形式。因而,微分形式有一个自然的楔积。所有这些概念由格拉斯曼提出。.
查看 协变经典场论和外代数
射流
数学上,射流(jet)是一个操作,它取一个可微函数f并在其定义域的每一点产生一个多项式,也就是f的截尾泰勒多项式。虽然这是一个射流的定义,射流理论将这些多项式作为抽象多项式而不是多项式函数。.
查看 协变经典场论和射流
开集
開集是指不包含任何自己邊界點的集合。或者說,開集包含的任意一點的充分小的鄰域都包含在其自身中。 例如,实数线上的由不等式2规定的集合称为开区间,是开集。这时候的边界为实数轴上的点2和5,如由不等式2\leq x \leq 5,或者2规定的区间由于包含其边界,因此不能称之为开集。 开集的概念一般与拓扑概念是紧密联系着的,通常先公理化开集,然后通过其定义边界的概念。(详细请参照拓扑空间).
查看 协变经典场论和开集
体积形式
数学中,体积形式提供了函数在不同坐标系(比如球坐标和圆柱坐标)下对体积积分的一种工具。更一般地,一个体积元是流形上一个测度。 在一个定向n-维流形上,体积元典型地由体积形式生成,所谓体积元是一个处处非零的n-阶微分形式。一个流形具有体积形式当且仅当它是可定向的,而可定向流形有无穷多个体积形式(细节见下)。 有一个推广的伪体积形式概念,对无论可否定向的流形都存在。 许多类型的流形有典范的(伪)体积形式,因为它们有额外的结构保证可选取一个更好的体积形式。在复情形,一个带有全纯体积形式的凯勒流形是卡拉比-丘流形。.
查看 协变经典场论和体积形式
微分形式
微分形式是多变量微积分,微分拓扑和张量分析领域的一个数学概念。现代意义上的微分形式,及其以楔积(wedge product)和外微分结构形成外代数的想法,都是由法国数学家埃里·嘉当引入的。.
查看 协变经典场论和微分形式
场
場在漢語中,指平坦的空地。有很多特定用法和不同含義,主要如下:.
查看 协变经典场论和场
分部積分法
分部積分法是種積分的技巧。它是由微分的乘法定則和微積分基本定理推導而來的。其基本思路是将不易求得结果的积分形式,转化为等价的但易于求出结果的积分形式。.
查看 协变经典场论和分部積分法
纤维丛
纖維--束(fiber bundle 或 fibre bundle)又稱纖維--叢,在数学上,特别是在拓扑学中,是一个局部看来像直积空间,但是整体可能有不同的结构。每个纤维丛對應一个连续满射 \pi:E\rightarrow B E 和乘積空間 B × F 的局部類似性可以用映射 \pi 來說明。也就是說:在每個 E 的局部空間 U,都存在一個相同的F(F 稱作纖維空間),使得 \pi 限制在 U 上時 與直积空间 B × F 的投影 P:B\times F\mapsto B,\quad P(b, f).
查看 协变经典场论和纤维丛
经典场论
经典场论是描述物理场和物质相互作用的研究的物理理论。 一个物理场可以视为在空间和时间的某一点赋予一个物理量(通常是以一种连续的方式)。例如,在气象预报中,某一天一个国家的风速可以用在空间的每一点赋予一个向量来表述(通过移动代表该日的风速的箭头)。经典场论一词通常是指表述两类基本自然力的物理理论:电磁力和重力。 这些场的表述在相对论之前就给出了,在相对论之下作了相应的改动。因此,经典理论可以归类为非相对论性和相对论性的。.
查看 协变经典场论和经典场论
节丛
在微分几何中,节丛(jet bundle,或称射流丛、射丛)是一种特殊的构造,从给定的光滑纤维丛建立一个新的光滑纤维丛。它使得在纤维丛的截面上用一种不变形式来表达微分方程成为可能。 历史上,节丛归功于埃雷斯曼,它是嘉当的延长方法上的一个进步,该方法通过在新引入的形式化变量上加入微分形式条件的办法来以几何方式处理高阶导数。节丛有时候也称为喷射(sprays)。.
查看 协变经典场论和节丛
量子场论
在理論物理學中,量子场论(Quantum field theory)是由量子力學和狹義相對論互相融合後的物理理論。已被廣泛的應用在粒子物理學和凝聚體物理學中。量子場論為描述多自由度系統,尤其是包含粒子產生和湮滅過程的過程,提供了有效的描述框架。非相對論性的量子場論又稱量子多體理論,主要被應用於凝聚體物理學,比如描述超導性的BCS理論。而相對論性的量子場論則是粒子物理學不可或缺的組成部分。自然界中人類目前所知的基本相互作用有四種:強相互作用、電磁相互作用、弱相互作用和引力。除去引力的話,另外三種相互作用都已找到了合適滿足特定對稱性的量子場論來描述:強作用有量子色動力學;電磁相互作用有量子電動力學,理論框架建立於1920到1950年間,主要的貢獻者為保羅·狄拉克,弗拉迪米爾·福克,沃爾夫岡·泡利,朝永振一郎,施溫格,理查德·費曼和弗里曼·戴森等;弱作用有費米點作用理論。後來弱作用和電磁相互作用實現了形式上的統一,通過希格斯機制產生質量,建立了弱電統一的量子規範理論,即GWS(Glashow, Weinberg, Salam)模型。量子場論成為現代理論物理學的主流方法和工具。 而這些交互作用傳統上是由費曼圖來視覺化,並且提供簡便的計算規則來計算各種多體系統過程。.
查看 协变经典场论和量子场论
李导数
在微分幾何中,李导数(Lie derivative)是一個以索甫斯·李命名的算子,作用在流形上的張量場,向量場或函数,將該張量沿著某個向量場的流做方向導數。因為該作用在座標變換下保持不變,因此,該李導數在一般的流形上都是定義良好的。 所有李导数组成的向量空间对应于如下的李括号构成一个无限维李代数。 李导数用向量场表示,这些向量场可看作M上的流(flow, 也就是时变微分同胚)的无穷小生成元。从另一角度看,M上的微分同胚组成的群,有其对应的李导数的李代数结构,在某种意义上和李群理论直接相关。.
查看 协变经典场论和李导数
欧拉-拉格朗日方程
#重定向 歐拉-拉格朗日方程.
斯托克斯定理
斯托克斯定理(英文:Stokes' theorem)是微分几何中关于微分形式的积分的定理,因為維數跟空間的不同而有不同的表現形式,它的一般形式包含了向量分析的几个定理,以斯托克斯爵士命名。.
时空
时空(时间-空间,时间和空间)是一种基本概念,分别属于物理学、天文学、空间物理学和哲学。并且也是这几个学科最重要的最基本的概念之一。 空间在力学和物理学上,是描述物体以及其运动的位置、形状和方向等抽象概念;而时间则是描述运动之持续性,事件发生之顺序等。时空的特性,主要就是通过物体,其运动以及与其他物体的相互作用之间的各种关系之汇总。空间和时.
查看 协变经典场论和时空
拉格朗日量
在分析力學裏,一个动力系统的拉格朗日量(Lagrangian),又稱為拉格朗日函數,是描述整个物理系统的动力状态的函数,對於一般經典物理系統,通常定義為動能減去勢能,以方程式表示為 其中,\mathcal為拉格朗日量,T為動能,V為勢能。 在分析力学裡,假設已知一个系统的拉格朗日量,则可以将拉格朗日量直接代入拉格朗日方程式,稍加运算,即可求得此系统的运动方程式。 拉格朗日量是因數學家和天文學家約瑟夫·拉格朗日而命名。.
查看 协变经典场论和拉格朗日量
另见
微分拓扑学
- 余切丛
- 切丛
- 切空间
- 切线
- 协变经典场论
- 反函数定理
- 可定向性
- 可平行化流形
- 向量場
- 子流形
- 嵌入 (数学)
- 庞加莱-霍普夫定理
- 张量场
- 微分拓扑
- 截面 (纤维丛)
- 拓撲學術語
- 斯梅爾悖論
- 映射度
- 李代数胚
- 李导数
- 正則座標
- 法丛
- 浸入
- 球面
- 联络
- 节丛
- 辛流形
- 辛空间
- 連通和
- 配丛
- 铅直丛
- 链复形
- 阻碍理论
- 隐函数
- 非完整系統
- 高斯曲率
微分方程
- Lax 对
- 偏微分方程
- 兰彻斯特方程
- 分布 (数学分析)
- 刘维尔定理 (微分代数)
- 初始條件
- 匹配渐近展开法
- 协变经典场论
- 可分離變數的偏微分方程
- 向量球諧函數
- 奇异摄动
- 守恆量
- 常微分方程
- 弗洛凱理論
- 弱解
- 微分方程
- 悬链线
- 拉姆齐-卡斯-库普曼斯模型
- 拉普拉斯变换
- 斜率场
- 时滞微分方程
- 本迪克森-杜拉克定理
- 柱諧函數
- 格林函數
- 波
- 线性微分方程
- 自治系统 (数学)
- 节丛
- 薛定谔方程
- 路徑積分表述
- 通用微分方程
- 重力火車
- 阿多米安分解法
- 隨機微分方程
拉格朗日力學
- 作用量
- 全微分
- 利薩如軌道
- 协变经典场论
- 哈密頓原理
- 單演系統
- 定常系統
- 廣義力
- 廣義座標
- 拉格朗日力学
- 拉格朗日点
- 李雅普诺夫稳定性
- 正則座標
- 约瑟夫·拉格朗日
- 经典场论
- 虛位移
- 達朗貝爾原理
- 重言1形式
- 雅可比坐標