我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

算符

指数 算符

在物理學裏,算符(operator),又稱算子,作用於物理系統的狀態空間,使得物理系統從某種狀態變換為另外一種狀態。這變換可能相當複雜,需要用很多方程式來表明,假若能夠使用算符來代表,可以更為簡單扼要地表達論述。 對於很多案例,假若作用的對象有所迥異,算符的物理行為也會不同;但是,對於有些案例,算符的物理行為具有一般性,這時,就可以將論題抽象化,專注於研究算符的物理行為,不必顧慮到狀態的獨特性。這方法比較適用於一些像對稱性或守恆定律的論題。因此,在經典力學裏,算符是很有用的工具。在量子力學裏,算符為理論表述不可或缺的要素。 對於更深奧的理論研究,可能會遇到很艱難的數學問題,算符理論(operator theory)能夠提供高功能的架構,使得數學推導更為簡潔精緻、易讀易懂,更能展現出內中物理涵意。 一般而言,在經典力學裏的算符大多作用於函數,這些函數的參數為各種各樣的物理量,算符將某函數映射為另一種函數。這種算符稱為「函數算符」。在量子力學裏的算符稱為「量子算符」,作用的對象是量子態。量子算符將某量子態映射為另一種量子態。.

目录

  1. 55 关系: 动能基 (線性代數)埃尔米特伴随可觀察量向量向量空间完整性守恒定律对称关系對稱矩陣不變量平移平面波廣義坐標廣義速度位置算符微分算子單位元哈密頓算符哈密顿力学函数共轭转置動量算符C*-代数磁矢势算子系綜詮釋经典力学生成集合物理学物理量特徵多項式狄拉克符号角動量算符轉動慣量薛定谔方程量子力学量子態自伴算子自旋自旋1/2酉矩阵機率幅正交规范性泡利矩陣波函数泰勒级数準確與精密期望值 (量子力學)... 扩展索引 (5 更多) »

  2. 理论物理
  3. 算子理论

动能

动能是物质运动时所得到的能量。它通常被定义成使某物体从静止状态至运动状态所做的功。由于运动是相对的,动能也是相对于某参照系而言。同一物体在不同的参照系会有不同的速率,也就是有不同的动能。动能的国际单位是焦耳(J),以基本单位表示是千克米平方每秒平方(kg·m2·s-2)。一个物体的动能只有在速率改变时才会改变。.

查看 算符和动能

基 (線性代數)

在线性代数中,基(basis)(也称为基底)是描述、刻画向量空间的基本工具。向量空间的基是它的一个特殊的子集,基的元素称为基向量。向量空间中任意一个元素,都可以唯一地表示成基向量的线性组合。如果基中元素个数有限,就称向量空间为有限维向量空间,将元素的个数称作向量空间的维数。 使用基底可以便利地描述向量空间。比如说,考察从一个向量空间\mathrm射出的线性变换f,可以查看这个变换作用在向量空间的一组基\mathfrak上的效果。掌握了f(\mathfrak),就等于掌握了f对\mathrm中任意元素的效果。 不是所有空间都拥有由有限个元素构成的基底。这样的空间称为无限维空间。某些无限维空间上可以定义由无限个元素构成的基。如果承认选择公理,那么可以证明任何向量空间都拥有一组基。一个向量空间的基不止一组,但同一个空间的两组不同的基,它们的元素个数或势(当元素个数是无限的时候)是相等的。一组基里面的任意一部分向量都是线性无关的;反之,如果向量空间拥有一组基,那么在向量空间中取一组线性无关的向量,一定能将它扩充为一组基。在内积向量空间中,可以定义正交的概念。通过特别的方法,可以将任意的一组基变换成正交基乃至标准正交基。.

查看 算符和基 (線性代數)

埃尔米特伴随

数学上,特别是泛函分析中,希尔伯特空间中的每个线性算子有一个相应的伴随算子(adjoint operator)。算子的伴随将方块矩阵共轭转置推广到(可能)无穷维情形。如果我们将希尔伯特空间上的算子视为“广义复数”,则一个算子的伴随起着一个复数的共轭的作用。 一个算子A的伴随常常也称为埃尔米特伴随(Hermitian adjoint,以夏尔·埃尔米特命名),记作A*或A†(后者尤其用于狄拉克符号记法)。.

查看 算符和埃尔米特伴随

可觀察量

在物理學裏,特別是在量子力學裏,處於某種狀態的物理系統,它所具有的一些性質,可以經過一序列的物理運作過程而得知。這些可以得知的性質,稱為可觀察量(observable)。例如,物理運作可能涉及到施加電磁場於物理系統,然後使用實驗儀器測量某物理量的數值。在經典力學的系統裏,任何可以用實驗測量獲得的可觀察量,都可以用定義於物理系統狀態的實函數來表示。在量子力學裏,物理系統的狀態稱為量子態,其與可觀察量的關係更加微妙,必須使用線性代數來解釋。根據量子力學的數學表述,量子態可以用存在於希爾伯特空間的態向量來代表,量子態的可觀察量可以用厄米算符來代表。.

查看 算符和可觀察量

向量

向量(vector,物理、工程等也称作--)是数学、物理学和工程科学等多个自然科學中的基本概念,指一个同时具有大小和方向,且满足平行四边形法则的几何對象。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量(特别地,电流属既有大小、又有正负方向的量,但由于其运算不满足平行四边形法则,公认为其不属于向量)。向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量或数量,即只有大小、绝大多数情况下没有方向(电流是特例)、不满足平行四边形法则的量。.

查看 算符和向量

向量空间

向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.

查看 算符和向量空间

完整性

#重定向 数据完整性.

查看 算符和完整性

守恒定律

在物理學裏,假若孤立物理系統的某種可觀測性質遵守守恆定律(law of conservation),則隨著系統的演進,這種性質不會改變。 諾特定理是關於守恆定律的重要理論。諾特定理表明,每一種守恆定律,必定有其伴隨的物理對稱性。例如,伴隨著能量守恆的是物理系統對於時間的不變性。不論在空間的取向為何,物理系統的物理行為一樣,這性質導致角動量守恆。.

查看 算符和守恒定律

对称关系

数学上,若對所有的 a 和 b 屬於 X,下述語句保持有效,則集合 X 上的二元关系 R 是对称的:「若 a 关系到 b,则 b 关系到 a。」 数学上表示为: 例如:“和……结婚”是对称关系;“小于”不是对称关系。 注意,对称关系不是反对称关系(aRb 且 bRa 得到 b.

查看 算符和对称关系

對稱矩陣

在線性代數中,對稱矩陣是一個方形矩陣,其轉置矩陣和自身相等。 對稱矩陣中的右上至左下方向元素以主對角線(左上至右下)為軸進行對稱。若將其寫作A.

查看 算符和對稱矩陣

不變量

假若,在某種變換下,一個系統的某物理量保持不變,則稱此物理量為不變量(invariant)。例如,在伽利略變換下,時間是個不變量;在勞侖茲變換下,光速、靜質量、電荷量等等,都是不變量。這類變換表達出不同觀察者的參考系之間的關係。例如,在火車站台的查票員的參考系,與在移動中的火車內的乘客的參考系,這兩個參考系之間的關係。 假若,在某種變換下,一個系統的某物理性質保持不變,則稱此物理性質為不變性(invariance)。例如,在內積空間內,對於任意旋轉,向量的內積保持不變,稱此性質為旋轉不變性。 根據諾特定理,對於一種變換,每一種不變性代表一條基本的守恆定律。例如,對於平移變換的不變性導致動量守恆定律,對於的不變性導致能量守恆定律。 在現代理論物理裏,不變性是很重要的概念。許多理論是由對稱性與不變性表達。 在張量數學裏,協變性與反變性是不變性的數學性質的推廣。在電磁學和相對論裏,時常會應用到這些概念。.

查看 算符和不變量

平移

在仿射幾何,平移(translation)是將物件的每點向同一方向移動相同距離。 它是等距同構,是仿射空間中仿射變換的一種。它可以視為將同一個向量加到每點上,或將坐標系統的中心移動所得的結果。即是說,若\mathbf是一個已知的向量,\mathbf是空間中一點,平移T_(\mathbf).

查看 算符和平移

平面波

在三維空間裏,平面波(plane wave)是一種波動,其波阵面(在任何時刻,波相位相等的每一點所形成的曲面)是相互平行的平面。平面波的傳播方向垂直於波前。假若平面波的振幅不是常數,例如,振幅是位置的函數,則稱此種平面波為「非均勻平面波」。 加以延伸,平面波這術語時常用來形容,在空間的一個局部區域裏,近似於平面波的波動。例如,一個局部區域波源,像發射無線電波的天線,所發射出的電磁波,在可以近似為平面波。等價地說,對於在一個均勻介質內,波的傳播距離超長於波長的案例,在幾何光學的正確極限內,射線區域性地對應於近似平面波。.

查看 算符和平面波

廣義坐標

#重定向 廣義座標.

查看 算符和廣義坐標

廣義速度

拉格朗日力學時常涉及廣義速度。假設一個物理系統的廣義坐標是(q_1,\ q_2,\ q_3,\ \dots,\ q_N)\,\!,表示廣義速度為(\dot_1,\ \dot_2,\ \dot_3,\ \dots,\ \dot_N)\,\!。廣義速度定義為廣義坐標對於時間t\,\!的導數:.

查看 算符和廣義速度

位置算符

在量子力學裏,位置算符(position operator)是一種量子算符。對應於位置算符的可觀察量是粒子的位置。位置算符的本徵值是位置向量。採用狄拉克標記,位置算符 \hat 的本徵態 |x\rang 滿足方程式 其中,x 是本徵值,是量子態為 |x\rang 的粒子所處的位置,x 只是一個數值。.

查看 算符和位置算符

微分算子

在数学中,微分算子是定义为微分运算之函数的算子。首先在记号上,将微分考虑为一个抽象运算是有帮助的,它接受一个函数得到另一个函数(以计算机科学中高阶函数的方式)。 当然有理由不单限制于线性算子;例如施瓦茨导数是一个熟知的非线性算子。不过这里只考虑线性的情形。.

查看 算符和微分算子

單位元

單位元是集合裏的一種特別的元素,與該集合裏的二元運算有關。當單位元和其他元素結合時,並不會改變那些元素。單位元被使用在群和其他相關概念之中。 設 (S,*)為一帶有一二元運算* 的集合S(稱之為原群),則S內的一元素e被稱為左單位元若對所有在S內的a而言,e * a .

查看 算符和單位元

哈密頓算符

#重定向 哈密顿算符.

查看 算符和哈密頓算符

哈密顿力学

哈密顿力学是哈密顿于1833年建立的经典力学的重新表述,它由拉格朗日力学演变而来。拉格朗日力学是经典力学的另一表述,由拉格朗日于1788年建立。哈密顿力学与拉格朗日力学不同的是前者可以使用辛空间而不依赖于拉格朗日力学表述。关于这点请参看其数学表述。 适合用哈密顿力学表述的动力系统称为哈密顿系统。.

查看 算符和哈密顿力学

函数

函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).

查看 算符和函数

共轭转置

矩阵A的共轭转置A^*(又称埃尔米特共轭、埃尔米特转置)定义为: 其中(\cdot)_表示矩阵i行j列上的元素,\overline表示标量的复共轭。 这一定义也可以写作: 其中A^\mathrm \,\!是矩阵A的转置,\overline\,\!表示对矩阵A中的元素取复共轭。 通常用以下记号表示矩阵A的共轭转置:.

查看 算符和共轭转置

動量算符

在量子力學裏,動量算符(momentum operator)是一種算符,可以用來計算一個或多個粒子的動量。對於一個不帶電荷、沒有自旋的粒子,作用於波函數 \psi(x)\,\! 的動量算符可以寫為 其中,\hat\,\! 是動量算符,\hbar\,\! 是約化普朗克常數,i\,\! 是虛數單位,x\,\! 是位置。 給予一個粒子的波函數 \psi(x)\,\! ,這粒子的動量期望值為 其中,p\,\! 是動量。.

查看 算符和動量算符

C*-代数

C*-代数(或读作“C星代数”)是数学分支中泛函分析的重要研究对象。C*-代数的典型例子是满足以下两个性质的复希尔伯特空间的线性算子的代数A:.

查看 算符和C*-代数

磁矢势

磁矢势,又稱磁位、磁勢(magnetic potential),通常標記為 \mathbf 。磁向量勢的旋度是磁場,以方程式表示 其中,\mathbf 是磁場。 直觀而言,磁向量勢似乎不及磁場來得「自然」、「基本」,而在一般電磁學教科書亦多以磁場來定義磁向量勢。以前,很多學者認為磁向量勢並沒有實際意義,只是人為的物理量,除了方便計算以外,別無其它用途。但是,詹姆斯·馬克士威頗不以為然,他認為磁向量勢可以詮釋為「每單位電荷儲存的能量」,就好像電勢被詮釋為「每單位電荷儲存的能量」。相關論述,稍後會有更詳盡解釋。 磁向量勢並不是唯一定義的;其數值是相對的,相對於某設定數值。因此,學者會疑問到底儲存了多少動量?不論如何,磁向量勢確實具有實際意義。尤其是在量子力學裏,於1959年,阿哈諾夫-波姆效應闡明,假設一個帶電粒子移動經過某零電場、零磁場、非零磁向量勢場區域,則此帶電粒子的波函數相位會有所改變,因而導致可觀測到的干涉現象 。現在,越來越多學者認為電勢和磁向量勢比電場和磁場更基本。不單如此,有學者認為,甚至在經典電磁學裏,磁向量勢也具有明確的意義和直接的測量值。 磁向量勢與電勢可以共同用來設定電場與磁場。許多電磁學的方程式可以以電場與磁場寫出,或者以磁向量勢與電勢寫出。較高深的理論,像量子力學理論,偏好使用的是磁向量勢與電勢,而不是電場與磁場。因為,在這些學術領域裏所使用的拉格朗日量或哈密頓量,都是以磁向量勢與電勢表達,而不是以電場與磁場表達。 開爾文男爵最先於1851年引入磁向量勢的概念,並且給定磁向量勢與磁場之間的關係。.

查看 算符和磁矢势

算子

算子(Operator)是从一个向量空间(或模)到另一个向量空间(或模)的映射。 算子对于线性代数和泛函分析都至关重要,它在纯数学和应用数学的许多其他领域中都有应用。 例如,在经典力学中,导数的使用无处不在,而在量子力学中,可观察量由埃尔米特算子表示。 各种算子可以具有包括线性、连续性和有界性等的重要性质。.

查看 算符和算子

系綜詮釋

系综诠释是量子力学的一种诠释,也是一种最小诠释,即它提出最少的假设来表述量子力学。系综诠释有时也被称为「统计诠释」,其核心是馬克思·玻恩對於波函數給出的統計詮釋。玻恩因此基礎研究榮獲諾貝爾物理學獎。 系综诠释表明,量子態能夠描述系綜的統計性質,但量子態不一定能完備地描述單獨量子系統的性質,例如,單獨粒子。在這裏,系綜指的是,理論而言,無窮多個以相同方法製備而成的系統,而單獨系統只的是其中任何一個系統。阿爾伯特·愛因斯坦是系綜詮釋的著名支持者之一,他主張, 至今為止,系綜詮釋的最有力發言者當屬西門菲莎大學物理學教授,他撰寫的教科書《量子力學的一種現代發展》(Quantum Mechanics, a Modern Development)對於系綜詮釋有很詳細的說明。 與許多其他種詮釋不同,系綜詮釋並不試圖從任何決定性程序對於量子力學給出辯解或導引,它也不會給出任何關於量子現像真實內秉性質的說明,它只是一種對於量子態的詮釋方法。.

查看 算符和系綜詮釋

经典力学

经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,在宏观世界和低速状态下,研究物体运动的基本学科。在物理學裏,经典力学是最早被接受为力學的一个基本綱領。经典力学又分为静力学(描述静止物体)、运动学(描述物体运动)和动力学(描述物体受力作用下的运动)。16世纪,伽利略·伽利莱就已采用科学实验和数学分析的方法研究力学。他为后来的科学家提供了许多豁然开朗的启示。艾萨克·牛顿则是最早使用数学语言描述力学定律的科学家。.

查看 算符和经典力学

在數學中,群是由一個集合以及一個二元運算所組成的,符合下述四个性质(称为“群公理”)的代數結構。这四个性质是封闭性、結合律、單位元和对于集合中所有元素存在逆元素。 很多熟知的數學結構比如數系統都遵从群公理,例如整數配備上加法運算就形成一個群。如果将群公理的公式從具体的群和其運算中抽象出來,就使得人们可以用靈活的方式来處理起源于抽象代數或其他许多数学分支的實體,而同时保留對象的本質結構性质。 群在數學內外各個領域中是無處不在的,这使得它們成為當代數學的组成的中心原理。 群與對稱概念共有基礎根源。對稱群把幾何物體的如此描述物体的對稱特征:它是保持物體不變的變換的集合。這種對稱群,特別是連續李群,在很多學術學科中扮演重要角色。例如,矩陣群可以用來理解在狹義相對論底層的基本物理定律和在分子化學中的對稱現象。 群的概念引發自多項式方程的研究,由埃瓦里斯特·伽罗瓦在1830年代開創。在得到來自其他領域如數論和幾何学的貢獻之后,群概念在1870年左右形成并牢固建立。現代群論是非常活躍的數學學科,它以自己的方式研究群。為了探索群,數學家發明了各種概念來把群分解成更小的、更好理解的部分,比如子群、商群和單群。除了它們的抽象性質,群理論家還從理論和計算兩種角度來研究具體表示群的各種方式(群的表示)。對有限群已經發展出了特別豐富的理論,這在1983年完成的有限簡單群分類中達到頂峰。从1980年代中叶以来,将有限生成群作为几何对象来研究的几何群论,成为了群论中一个特别活跃的分支。.

查看 算符和群

生成集合

在数学中,表达式生成元、生成、由……生成、生成集合(generator, generate, generated by与generating set)可有许多紧密相关的技术性含义:.

查看 算符和生成集合

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

查看 算符和物理学

物理量

物理量,是物理之中能測量的量,例如質量、體積,或者是測量和通常以數和物理單位(通常偏好國際單位制單位)的積表達的結果。 在1971年第十四屆國際度量衡大會(General Conference of Weights & Measures)中,選擇了七個物理量作為基本量的國際單位系統,其法文名稱"Le Système International d’unités",縮寫為"SI",其基本七個物理量如下:.

查看 算符和物理量

特徵多項式

在線性代數中,對一個線性自同態(取定基即等價於方陣)可定義其特徵多項式,此多項式包含該自同態的一些重要性質,例如行列式、跡數及特徵值。.

查看 算符和特徵多項式

狄拉克符号

拉克符号或狄拉克標記(Dirac notation)是量子力学中广泛应用于描述量子态的一套标准符号系统。在这套系统中,每一个量子态都被描述为希尔伯特空间中的態向量,定义为右矢(ket):|\psi\rangle;每一个右矢的共軛轉置定义为其左矢(bra):\langle\psi|。 此標記法為狄拉克於1939年将「bracket」(括号)这个词拆开后所造的。 在中國方面,一些旧有的教科书和文献中也将其译为“刁矢”和“刃矢”、或“彳矢”和“亍矢”,现已弃用。.

查看 算符和狄拉克符号

角動量算符

在量子力學裏,角動量算符(angular momentum operator)是一種算符,類比於經典的角動量。在原子物理學涉及旋轉對稱性(rotational symmetry)的理論裏,角動量算符佔有中心的角色。角動量,動量,與能量是物體運動的三個基本特性Introductory Quantum Mechanics, Richard L.

查看 算符和角動量算符

轉動慣量

在经典力學中,轉動慣量又稱慣性矩(Moment of inertia),通常以I表示,國際單位制為·。轉動慣量是一個物體對於其旋轉運動的慣性大小的量度。一個剛體對於某轉軸的轉動慣量決定了對於這物體繞著這轉軸進行某種角加速度運動所需要施加的力矩。轉動慣量在转动動力學中的角色相當於線性動力學中的質量,描述角動量、角速度、力矩和角加速度等數個量之間的關係。.

查看 算符和轉動慣量

薛定谔方程

在量子力學中,薛定諤方程(Schrödinger equation)是描述物理系統的量子態怎樣隨時間演化的偏微分方程,为量子力學的基礎方程之一,其以發表者奧地利物理學家埃尔温·薛定諤而命名。關於量子態與薛定諤方程的概念涵蓋於基礎量子力學假說裏,無法從其它任何原理推導而出。 在古典力學裏,人们使用牛頓第二定律描述物體運動。而在量子力學裏,類似的運動方程為薛定諤方程。薛定諤方程的解完備地描述物理系統裏,微觀尺寸粒子的量子行為;這包括分子系統、原子系統、亞原子系統;另外,薛定諤方程的解還可完備地描述宏觀系統,可能乃至整個宇宙。 薛定諤方程可以分為「含時薛定諤方程」與「不含時薛定諤方程」兩種。含時薛定諤方程與時間有關,描述量子系統的波函數怎樣隨著時間而演化。不含時薛定諤方程则與時間無關,描述了定態量子系統的物理性質;該方程的解就是定態量子系統的波函數。量子事件發生的機率可以用波函數來計算,其機率幅的絕對值平方就是量子事件發生的機率密度。 薛定諤方程所屬的波動力學可以數學變換為維爾納·海森堡的矩陣力學,或理察·費曼的路徑積分表述。薛定諤方程是個非相對論性方程,不適用於相對論性理論;對於相對論性微觀系統,必須改使用狄拉克方程或克莱因-戈尔登方程等。.

查看 算符和薛定谔方程

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

查看 算符和量子力学

量子態

在量子力學裏,量子態(quantum state)指的是量子系統的狀態。態向量可以用來抽像地表示量子態。採用狄拉克標記,態向量表示為右矢|\psi\rangle;其中,在符號內部的希臘字母\psi可以是任何符號,字母,數字,或單字。例如,在計算氫原子能譜時,能級與主量子數n有關,所以,每個量子態的態向量可以表示為|n \rangle。 一般而言,量子態可以是純態或混合態。上述案例是純態。混合態是由很多純態組成的機率混合。不同的組合可能會組成同樣的混合態。當量子態是混合態時,可以用密度矩陣做數學描述,這密度矩陣實際給出的是機率,不是密度。純態也可以用密度矩陣表示。 哥本哈根詮釋以操作定義的方法對量子態做定義:量子態可以從一系列製備程序來辨認,即這程序所製成的量子系統擁有這量子態。例如,使用z-軸方向的斯特恩-革拉赫實驗儀器,如右圖所示,可以將入射的銀原子束,依照自旋的z-分量S_z分裂成兩道,一道的S_z為上旋,量子態為|\uparrow\rangle或|z+\rangle,另一道的S_z為下旋,量子態為|\downarrow\rangle或|z-\rangle,這樣,可以製備成量子態為|\uparrow\rangle的銀原子束,或量子態為|\downarrow\rangle的銀原子束。銀原子自旋態向量存在於二維希爾伯特空間。對於這純態案例,相關的態向量|\psi\rangle.

查看 算符和量子態

自伴算子

在數學裏,作用於一個有限維的酉空間,一個自伴算子(self-adjoint operator)等於自己的伴隨算子;等價地說,在一组单位酉正交基下,表達自伴算子的矩陣是埃爾米特矩陣。埃爾米特矩陣等於自己的共軛轉置。根據有限維的譜定理,必定存在著一個正交歸一基,可以表達自伴算子為一個實值的對角矩陣。.

查看 算符和自伴算子

自旋

在量子力学中,自旋(Spin)是粒子所具有的内稟性質,其運算規則類似於經典力學的角動量,並因此產生一個磁場。雖然有時會與经典力學中的自轉(例如行星公轉時同時進行的自轉)相類比,但實際上本質是迥異的。經典概念中的自轉,是物體對於其質心的旋轉,比如地球每日的自轉是順著一個通過地心的極軸所作的轉動。 首先對基本粒子提出自轉與相應角動量概念的是1925年由、喬治·烏倫貝克與三人所開創。他們在處理電子的磁場理論時,把電子想象为一個帶電的球體,自轉因而產生磁場。後來在量子力學中,透過理論以及實驗驗證發現基本粒子可視為是不可分割的點粒子,所以物體自轉無法直接套用到自旋角動量上來,因此僅能將自旋視為一種内禀性質,為粒子與生俱來帶有的一種角動量,並且其量值是量子化的,無法被改變(但自旋角動量的指向可以透過操作來改變)。 自旋對原子尺度的系統格外重要,諸如單一原子、質子、電子甚至是光子,都帶有正半奇數(1/2、3/2等等)或含零正整數(0、1、2)的自旋;半整數自旋的粒子被稱為費米子(如電子),整數的則稱為玻色子(如光子)。複合粒子也帶有自旋,其由組成粒子(可能是基本粒子)之自旋透過加法所得;例如質子的自旋可以從夸克自旋得到。.

查看 算符和自旋

自旋1/2

在量子物理中,自旋½表示一粒子所具有的內稟角動量(自旋)為 \frac ,\hbar\,是約化普朗克常數,其中包括了電子、質子、中子、中微子與虧子(夸克)。自旋-½粒子在量子統計上屬於費米子,並遵守包立不相容原理。 對自旋½粒子進行自旋性質的量子測量會得到兩個值。有兩個結果肇因於所存有的向量空間的維度。自旋½粒子的自旋量子態可以用一種兩個維度的複數值向量來描述,稱之為二元旋量。利用這種表示法,量子力學中的算符可寫成2乘2(2 x 2)的複數厄米矩陣。 自旋投影算符S_z意義上代表了沿著z\,方向對自旋做的測量: 1&0\\ 0&-1 \end S_z算符有兩個本徵值—— \pm \frac ,有各自對應的本徵向量: 其構成描述自旋之希爾伯特空間的完整基底,即自旋的態可用這兩個態的線性組合來代表。這兩個態方便上稱之為「自旋向上」(spin up)與「自旋向下」(spin down)。 自旋算符S有些特質和角動量算符L相同,但其他特質則不相同。 可為自旋½物體建構升降算符;其遵守和其他角動量算符相同的對易關係(交換關係)。 自旋投影算符的旋轉的兩個本徵值與前面相同(相應於測量的可能結果),但本徵向量則不同——為向量自旋算符 \mathbf \cdot \hat ;其中n\,是一個順沿投影方向的單位向量,而 這些\sigma\,為包立矩陣或稱包立旋量。.

查看 算符和自旋1/2

酉矩阵

若一n行n列的複数矩阵U满足 其中I_n\,为n阶单位矩阵,U^\dagger \,为U的共轭转置,则U称为--(又译作--、--。英文:Unitary Matrix, Unitary是歸一或單位的意思)。即,矩阵U为酉矩阵,当且仅当其共轭转置U^\dagger \,为其逆矩阵: 若酉矩阵的元素都是实数,其即为正交矩阵。与正交矩阵G不会改变两个实向量的内积类似, 酉矩阵U不改变两个复向量的内积: 若U \,为n阶方阵,则下列条件等价:.

查看 算符和酉矩阵

機率幅

在量子力學裏,機率幅,又稱為量子幅,是一個描述粒子的量子行為的複函數。例如,機率幅可以描述粒子的位置。當描述粒子的位置時,機率幅是一個波函數,表達為位置的函數。這波函數必須符合薛丁格方程。 一個機率幅\psi\,\!的機率密度函數是 \psi^*\psi\,\!,等於 \mid\psi\mid^2\,\!,又稱為機率密度。在使用前,不一定要將機率密度函數歸一化。尚未歸一化的機率密度函數可以給出關於機率的相對大小的資訊。 假若,在整個三維空間內,機率密度 \mid\psi\mid^2\,\!是一個有限積分。那麼,可以計算一個歸一常數 c\,\!,替代 \psi\,\!為 c\psi\,\!,使得有限積分等於1。這樣,就可以將機率幅歸一化。粒子存在於某一個特定區域V\,\!內的機率是 \mid\psi\mid^2\,\!在區域V\,\!的積分。這句話的含義是,根據量子力學的哥本哈根詮釋,假若,某一位觀察者試著測量這粒子的位置。他找到粒子在 \varepsilon\,\!區域內的機率 P(\varepsilon)\,\!是 不光局限於粒子觀,機率幅的絕對值平方可以詮釋為「在某時間、某位置發生相互作用的概率」。.

查看 算符和機率幅

正交规范性

在線性代數裏,假若,內積空間的兩個向量是互相正交的,並且,兩個向量的範數都是 1 ,則稱這兩個向量互相具有正交规范性,又译單範正交性,正交歸一性。假若,一組向量全都是互相正交规范的,則稱這組向量為正交规范集。假若,這正交规范集形成了一個基,則稱這集合為正交规范基。 Z Z.

查看 算符和正交规范性

泡利矩陣

在數學和數學物理中,包立矩陣是一組三個2×2的么正厄米複矩陣,一般都以希臘字母σ來表示,但有時當他們在和同位旋的對稱性做連結時,會被寫成τ。他們在包立表像(σz表像)可以寫成: \end 這些矩陣是以物理學家沃爾夫岡·包立命名的。在量子力學中,它們出現在包立方程式中描述磁場和自旋之間交互作用的一項。所有的包立矩陣都是厄米矩陣,它們和單位矩陣(有時候又被稱為為第零號包立矩陣),的線性張成為2×2厄米矩陣的向量空間。 從量子力學的角度來看,哈密頓矩陣(算符)代表可觀測的物理量,因此,σk, k.

查看 算符和泡利矩陣

波函数

在量子力學裏,量子系統的量子態可以用波函數(wave function)來描述。薛丁格方程式設定波函數如何隨著時間流逝而演化。從數學角度來看,薛丁格方程式乃是一種波動方程式,因此,波函數具有類似波的性質。這說明了波函數這術語的命名原因。 波函數 \Psi (\mathbf,t) 是一種複值函數,表示粒子在位置 \mathbf 、時間 t 的機率幅,它的絕對值平方 |\Psi(\mathbf,t)|^2 是在位置 \mathbf 、時間 t 找到粒子的機率密度。以另一種角度詮釋,波函數\Psi (\mathbf,t)是「在某時間、某位置發生相互作用的概率幅」。 波函數的概念在量子力學裏非常基礎與重要,諸多關於量子力學詮釋像謎一樣之結果與困惑,都源自於波函數,甚至今天,這些論題仍舊尚未獲得滿意解答。.

查看 算符和波函数

泰勒级数

在数学中,泰勒级数(Taylor series)用无限项连加式——级数来表示一个函数,这些相加的项由函数在某一点的导数求得。泰勒级数是以于1715年发表了泰勒公式的英國数学家布魯克·泰勒(Sir Brook Taylor)来命名的。通过函数在自变量零点的导数求得的泰勒级数又叫做麦克劳林级数,以苏格兰数学家科林·麦克劳林的名字命名。 拉格朗日在1797年之前,最先提出帶有餘項的現在形式的泰勒定理。实际应用中,泰勒级数需要截断,只取有限项,可以用泰勒定理估算这种近似的误差。一个函数的有限项的泰勒级数叫做泰勒多项式。一个函数的泰勒级数是其泰勒多项式的极限(如果存在极限)。即使泰勒级数在每点都收敛,函数与其泰勒级数也可能不相等。开区间(或复平面开片)上,与自身泰勒级数相等的函数称为解析函数。.

查看 算符和泰勒级数

準確與精密

準確度(accuracy)與精密度(英语:precision)是科學、工程學、工業及統計學等範疇的重要概念。 準確度是每一次獨立的測量之間,其平均值與已知的數據真值之間的差距(與理論值相符合的程度)。例如:多次實驗結果其平均值接近於已知的數據真值(理論值),可知道數據「準確」,或是數據具有「高準確度」;反之,平均值與已知的數據真值差距較大,表示實驗數據不準確,或準確度不高。 精密則是當實驗數據很精準時,會要求實驗有高度的再現性,表示實驗數據是可信的,也就是實驗數據需要具有高精密度(多次量度或計算的結果的一致程度)。 一個結果必須要同時符合準確與精密這兩個條件,才可算是精準。 常見文獻以射擊彈着點分佈情形來說明準確度與精密度的意義,如圖示,初看似乎簡明易懂,實際仍隱含認知的盲點。以射擊而言每一彈着點均儘量接近靶心才稱得上精確或是精準;最左邊圖示就一般射擊而言屬於高準確度高精密度。如果是期望求得彈道與瞄準機制間的關係、以槍枝調校為目的的射擊,其本質與一般真值未知的測量或實驗相同,图1因為彈着點分佈其平均值接近靶心,依準確度的定義則屬於高準確度低精密度。 日益受到重視的國際標準組織ISO發表一份標準文件ISO5725,其名稱為“Accuracy (trueness and precision) of measurement methods and results”(量測方法與成果之準確度(真實度與精密度)),其內涵最大的改變是趨向從俗的定義accuracy為一般用語(the general term),即一般用來描述量測、實驗整體成果的「精準」度一詞,或者簡稱為「精度」。其間差異主要在於ISO5725使用「真實度」(trueness)替代原本的準確度(accuracy)。 「精度」為真實度與精密度的組合,包含受到偶然與系統兩部分誤差的影響,實務上,以被認可的參考值視為真值。.

查看 算符和準確與精密

期望值 (量子力學)

在量子力學裏,重複地做同樣實驗,通常會得到不同的測量結果,期望值(expectation value)是理論平均值,可以用來預測測量結果的統計平均值。 量子力學顯露出一種內稟統計行為。同樣的一個實驗重複地做很多次,每次實驗的測量結果通常不會一樣,只有從很多次的實驗結果計算出來的統計平均值,才是可複製的數值。量子理論不能預測單次實驗的測量結果,量子理論可以用期望值來預測多次實驗得到的統計平均值。 採用狄拉克標記,假設量子系統的量子態為 |\psi\rang ,則對於這量子態,可觀察量 O 的期望值 \lang O\rang 定義為 其中,\hat 是對應於可觀察量 O 的算符。.

查看 算符和期望值 (量子力學)

本徵態

#重定向 特征值和特征向量.

查看 算符和本徵態

有界算符

#重定向 有界算子.

查看 算符和有界算符

映射

映射,或者射影,在数学及相关的领域经常等同于函数。基于此,部分映射就相当于部分函数,而完全映射相当于完全函数。 在很多特定的数学领域中,这个术语用来描述具有与该领域相关联的特定性质函数,例如,在拓扑学中的连续函数,线性代数中的线性变换等等。.

查看 算符和映射

態向量

在量子力學裏,一個量子系統的量子態可以抽象地用態向量來表示。態向量存在於內積空間。定義內積空間為增添了一個額外的內積結構的向量空間。態向量滿足向量空間所有的公理。態向量是一種特殊的向量,它也允許內積的運算。態向量的範度是1,是一個單位向量。標記量子態\psi\,\!的態向量為|\psi\rangle\,\!。 每一個內積空間都有單範正交基。態向量是單範正交基的所有基向量的線性組合: 其中,|e_1\rangle,\,|e_2\rangle,\,\dots,\,|e_n\rangle\,\!是單範正交基的基向量,n\,\!是單範正交基的基數,c_1,\,c_2,\,\dots,\,c_n\,\!是複值的係數,是|\psi\rangle\,\!的分量,c_i\,\!是|\psi\rangle\,\!投射於基向量|e_i\rangle\,\!的分量,也是|\psi\rangle\,\!處於|e_i\rangle\,\!的機率幅。 換一種方法表達: \end\,\!。 在狄拉克標記方法裏,態向量|\psi\rangle\,\!稱為右矢。對應的左矢為\langle\psi|\,\!,是右矢的厄米共軛,用方程式表達為 其中,\dagger\,\!象徵為取厄米共軛。 設定兩個態向量|\alpha\rangle.

查看 算符和態向量

拉格朗日量

在分析力學裏,一个动力系统的拉格朗日量(Lagrangian),又稱為拉格朗日函數,是描述整个物理系统的动力状态的函数,對於一般經典物理系統,通常定義為動能減去勢能,以方程式表示為 其中,\mathcal為拉格朗日量,T為動能,V為勢能。 在分析力学裡,假設已知一个系统的拉格朗日量,则可以将拉格朗日量直接代入拉格朗日方程式,稍加运算,即可求得此系统的运动方程式。 拉格朗日量是因數學家和天文學家約瑟夫·拉格朗日而命名。.

查看 算符和拉格朗日量

另见

理论物理

算子理论

亦称为 時間演化算子。

本徵態有界算符映射態向量拉格朗日量