徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

切丛

指数 切丛

数学上,一个微分流形M的切丛(tangent bundle) T(M)是一个由M各點上切空間組成的向量丛,其總空間是各切空间的不交并集: 總空間T(M)每个元素都是一个二元组(x,v),其中v是在点x的切空间Tx(M)內的一枚向量。 切丛有自然的2n维微分流形结构如下: 設:\pi\colon T(M) \to M\, 為自然的投影映射,将(x,v)映射到基点x; 若M是个n维流形,U是x的一个足夠小的邻域, φ:U→Rn是一个局部坐标卡, V是U在T(M)的前象V(V.

17 关系: 同胚向量丛不交并余切丛微分同胚微分形式微分结构微分流形图册 (拓扑学)纤维丛雅可比矩阵李导数欧几里得空间测地线数学拓扑

同胚

在拓扑学中,同胚(homeomorphism、topological isomorphism、bi continuous function)是两个拓扑空间之间的双连续函数。同胚是拓扑空间范畴中的同构;也就是说,它们是保持给定空间的所有拓扑性质的映射。如果两个空间之间存在同胚,那么这两个空间就称为同胚的,从拓扑学的观点来看,两个空间是相同的。 大致地说,拓扑空间是一个几何物体,同胚就是把物体连续延展和弯曲,使其成为一个新的物体。因此,正方形和圆是同胚的,但球面和环面就不是。有一个笑话是说,拓扑学家不能区分咖啡杯和甜甜圈,这是因为一个足够柔软的甜甜圈可以捏成咖啡杯的形状(见图)。.

新!!: 切丛和同胚 · 查看更多 »

向量丛

数学上,向量丛是一个几何构造,為拓扑空间(或流形,或代数簇)的每一点相容地附上一个向量空间,而这些向量空间“粘起来”又构成一个拓扑空间(或流形,或代数簇)。 一个典型的例子是微分流形的切丛:对流形的每一点附上流形在该点的切空间。 另一个例子是法丛:給定一个平面上的光滑曲线,可在曲线的每一点附上和曲线垂直的直线;这就是曲线的"法丛"。 这个条目主要解釋有限维纤维的实向量丛。複向量丛也在很多地方有用;他们可以视为一種有附加结构的实向量丛。 向量丛是纤维丛的一種。.

新!!: 切丛和向量丛 · 查看更多 »

层可以指:.

新!!: 切丛和层 · 查看更多 »

不交并

在集合論,一組集合的不交并指的是一種修改過的并集運算,除了普通的并集,還標記了元素的來源。不交并還有另一個意義,指的是兩兩不交的集合的并集。.

新!!: 切丛和不交并 · 查看更多 »

余切丛

微分几何中,流形的余切丛是流形每点的余切空间组成的向量丛。余切空间有一个标准的辛形式,从中可以一个余切丛的非退化的体积形式。因此,本身作为一个流形的余切丛总是可定向的。可以在余切丛上定义一组特殊的坐标系;这些被称为正则坐标。因为余切丛可以视为辛流形,任何余切丛上的实函数总是可以解释为一个哈密顿函数;这样余切丛可以理解为哈密顿力学讨论的相空间。.

新!!: 切丛和余切丛 · 查看更多 »

微分同胚

在數學中,微分同胚是適用於微分流形範疇的同構概念。這是從微分流形之間的可逆映射,使得此映射及其逆映射均為光滑(即無窮可微)的。.

新!!: 切丛和微分同胚 · 查看更多 »

微分形式

微分形式是多变量微积分,微分拓扑和张量分析领域的一个数学概念。现代意义上的微分形式,及其以楔积(wedge product)和外微分结构形成外代数的想法,都是由法国数学家埃里·嘉当引入的。.

新!!: 切丛和微分形式 · 查看更多 »

微分结构

在数学中,集合M上的一个n-维微分结构(differential structure)或可微结构(differentiable structure)是一个带有附加结构(使得我们可以在该流形上做微积分)的拓扑流形,使其成为一个n-维微分流形。如果M已经是一个拓扑流形,我们要求新拓扑与原来已有的拓扑相同。.

新!!: 切丛和微分结构 · 查看更多 »

微分流形

光滑流形(),或称-微分流形()、-可微流形(),是指一个被赋予了光滑结构的拓扑流形。一般的,如果不特指,微分流形或可微流形指的就是类的微分流形。可微流形在物理學中非常重要。特殊種類的可微流形構成了經典力學、廣義相對論和楊-米爾斯理論等物理理論的基礎。可以為可微流形開發微積分。可微流形上的微積分研究被稱為微分幾何。.

新!!: 切丛和微分流形 · 查看更多 »

图册 (拓扑学)

在数学,特别是在拓扑中,一个图册(atlas)描述了一个流形如何装备一个微分结构。每一小块由一个卡(chart)给出(也称为坐标卡coordinate chart或局部坐标系local coordinate system))。以圖冊來定義流形的概念是由夏尔·埃雷斯曼於1943年所提出。 在给出图册形式定义之前,我们回忆起流形M上一个卡定义为从M的一个开集U到\mathbb^n中开集V的一个同胚映射\phi。如果(U_, \varphi_)与(U_, \varphi_)是M的两个卡使得U_ \cap U_非空,则定义了转移映射(transition map) 注意到因为\varphi_与\varphi_都是同胚,转移映射也是同胚。所以,转移映射已经赋予了某种相容性,使得从一个卡上的坐标系变到另一个卡上的坐标系是连续的。 那么流形M上一个图册是一族M上的卡\mathcal.

新!!: 切丛和图册 (拓扑学) · 查看更多 »

纤维丛

纖維--束(fiber bundle 或 fibre bundle)又稱纖維--叢,在数学上,特别是在拓扑学中,是一个局部看来像直积空间,但是整体可能有不同的结构。每个纤维丛對應一个连续满射 \pi:E\rightarrow B E 和乘積空間 B × F 的局部類似性可以用映射 \pi 來說明。也就是說:在每個 E 的局部空間 U,都存在一個相同的F(F 稱作纖維空間),使得 \pi 限制在 U 上時 與直积空间 B × F 的投影 P:B\times F\mapsto B,\quad P(b, f).

新!!: 切丛和纤维丛 · 查看更多 »

雅可比矩阵

在向量分析中,雅可比矩阵是函數的一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式。 在代数几何中,代数曲线的雅可比行列式表示雅可比簇:伴随该曲线的一个代數群,曲线可以嵌入其中。 它们全部都以数学家卡爾·雅可比命名。.

新!!: 切丛和雅可比矩阵 · 查看更多 »

李导数

在微分幾何中,李导数(Lie derivative)是一個以索甫斯·李命名的算子,作用在流形上的張量場,向量場或函数,將該張量沿著某個向量場的流做方向導數。因為該作用在座標變換下保持不變,因此,該李導數在一般的流形上都是定義良好的。 所有李导数组成的向量空间对应于如下的李括号构成一个无限维李代数。 李导数用向量场表示,这些向量场可看作M上的流(flow, 也就是时变微分同胚)的无穷小生成元。从另一角度看,M上的微分同胚组成的群,有其对应的李导数的李代数结构,在某种意义上和李群理论直接相关。.

新!!: 切丛和李导数 · 查看更多 »

欧几里得空间

欧几里得几何是在约公元前300年,由古希腊数学家欧几里得建立的角和空间中距离之间联系的法则。欧几里得首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里得的公理被编排到幾何原本。 这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做 n维欧几里得空间(甚至简称 n 维空间)或有限维实内积空间。 这些数学空间还可被扩展到任意维的情形,称为实内积空间(不一定完备), 希尔伯特空间在高等代数教科书中也被称为欧几里得空间。 为了开发更高维的欧几里得空间,空间的性质必须非常仔细的表达并被扩展到任意维度。 尽管结果的数学非常抽象,它却捕获了我们熟悉的欧几里得空间的根本本质,根本性质是它的平面性。 另存在其他種類的空间,例如球面非欧几里得空间,相对论所描述的四维时空在重力出现的时候也不是欧几里得空间。.

新!!: 切丛和欧几里得空间 · 查看更多 »

测地线

测地线又称大地线或短程线,数学上可视作直线在弯曲空间中的推广;在有度规定义存在之时,测地线可以定义为空间中两点的局域最短路径。测地线(geodesic)的名字来自对于地球尺寸与形状的大地测量学(geodesy)。.

新!!: 切丛和测地线 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 切丛和数学 · 查看更多 »

拓扑

拓扑有以下領域的意義與應用:.

新!!: 切丛和拓扑 · 查看更多 »

重定向到这里:

切線束

传出传入
嘿!我们在Facebook上吧! »