目录
双射
數學中,一個由集合X映射至集合Y的函數,若對每一在Y內的y,存在唯一一個在X內的x与其对应,則此函數為對射函數。 換句話說,f為雙射的若其為兩集合間的一一對應,亦即同時為單射和滿射。 例如,由整數集合\Z至\Z的函數\operatorname,其將每一個整數x連結至整數\operatorname(x).
查看 微分结构和双射
同胚
在拓扑学中,同胚(homeomorphism、topological isomorphism、bi continuous function)是两个拓扑空间之间的双连续函数。同胚是拓扑空间范畴中的同构;也就是说,它们是保持给定空间的所有拓扑性质的映射。如果两个空间之间存在同胚,那么这两个空间就称为同胚的,从拓扑学的观点来看,两个空间是相同的。 大致地说,拓扑空间是一个几何物体,同胚就是把物体连续延展和弯曲,使其成为一个新的物体。因此,正方形和圆是同胚的,但球面和环面就不是。有一个笑话是说,拓扑学家不能区分咖啡杯和甜甜圈,这是因为一个足够柔软的甜甜圈可以捏成咖啡杯的形状(见图)。.
查看 微分结构和同胚
向量空间
向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.
查看 微分结构和向量空间
希爾伯特第五問題
#重定向 希尔伯特第五问题.
庞加莱猜想
庞加莱猜想最早是由法国数学家龐加萊提出的一个猜想,是克雷數學研究所悬赏的数学方面七大千禧年难题之一。2006年确认由俄罗斯数学家格里戈里·佩雷尔曼完成最终证明,他也因此在同年获得菲尔兹奖,但並未現身領獎, Interfax 1 July 2010。.
查看 微分结构和庞加莱猜想
微分流形
光滑流形(),或称-微分流形()、-可微流形(),是指一个被赋予了光滑结构的拓扑流形。一般的,如果不特指,微分流形或可微流形指的就是类的微分流形。可微流形在物理學中非常重要。特殊種類的可微流形構成了經典力學、廣義相對論和楊-米爾斯理論等物理理論的基礎。可以為可微流形開發微積分。可微流形上的微積分研究被稱為微分幾何。.
查看 微分结构和微分流形
微积分学
微積分學(Calculus,拉丁语意为计数用的小石頭) 是研究極限、微分學、積分學和無窮級數等的一個數學分支,並成為了現代大學教育的重要组成部分。歷史上,微積分曾經指無窮小的計算。更本質的講,微積分學是一門研究變化的科學,正如:幾何學是研究形狀的科學、代數學是研究代數運算和解方程的科學一樣。微積分學又稱為“初等數學分析”。 微積分學在科學、經濟學、商業管理學和工業工程學領域有廣泛的應用,用來解决那些僅依靠代數學和幾何學不能有效解決的問題。微積分學在代數學和解析幾何學的基礎上建立起来,主要包括微分學、積分學。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和斜率等均可用一套通用的符號進行演绎。積分學,包括求積分的運算,為定義和計算長度、面積、體積等提供一套通用的方法。微積分學基本定理指出,微分和積分互為逆運算,這也是兩種理論被統一成微積分學的原因。我們能以兩者中任意一者為起點來討論微積分學,但是在教學中一般會先引入微分學。在更深的數學領域中,高等微積分學通常被稱為分析學,並被定義為研究函數的科學,是現代數學的主要分支之一。.
查看 微分结构和微积分学
哈斯勒·惠特尼
哈斯勒·惠特尼(Hassler Whitney,),美國數學家,專長為微分幾何,早年研究圖論。 1982年沃爾夫數學獎得主。 Whitney Whitney Category:沃尔夫数学奖得主 Category:美国国家科学奖获奖者 Category:普林斯顿高等研究院教职员.
查看 微分结构和哈斯勒·惠特尼
图册 (拓扑学)
在数学,特别是在拓扑中,一个图册(atlas)描述了一个流形如何装备一个微分结构。每一小块由一个卡(chart)给出(也称为坐标卡coordinate chart或局部坐标系local coordinate system))。以圖冊來定義流形的概念是由夏尔·埃雷斯曼於1943年所提出。 在给出图册形式定义之前,我们回忆起流形M上一个卡定义为从M的一个开集U到\mathbb^n中开集V的一个同胚映射\phi。如果(U_, \varphi_)与(U_, \varphi_)是M的两个卡使得U_ \cap U_非空,则定义了转移映射(transition map) 注意到因为\varphi_与\varphi_都是同胚,转移映射也是同胚。所以,转移映射已经赋予了某种相容性,使得从一个卡上的坐标系变到另一个卡上的坐标系是连续的。 那么流形M上一个图册是一族M上的卡\mathcal.
等价类
在数学中,假設在一个集合X上定義一个等价关系(用 \sim來表示),则X中的某個元素a的等价类就是在X中等价于a的所有元素所形成的子集: 等价类的概念有助于从已经构造了的集合构造新集合。在X中的给定等价关系 \sim的所有等价类的集合表示为X/ \sim并叫做X除以\sim的商集。这种运算可以(实际上非常不正式的)被认为是输入集合除以等价关系的活动,所以名字“商”和这种记法都是模仿的除法。商集类似于除法的一个方面是,如果X是有限的并且等价类都是等势的,则X/ \sim的序是X的序除以一个等价类的序的商。商集被认为是带有所有等价点都识别出来的集合X。 对于任何等价关系,都有从X到X/ \sim的一个规范投影映射\pi,给出为\pi(x).
查看 微分结构和等价类
约翰·米尔诺
约翰·米尔诺(John Milnor,),美国数学家。他的主要贡献在于微分拓扑、K-理论和动力系统及其著作。他曾获得1962年度菲尔兹奖、1989年度沃尔夫奖及2011年度阿贝尔奖。.
查看 微分结构和约翰·米尔诺
貝蒂數
在代數拓撲學中,拓撲空間之貝蒂數 b_0, b_1, b_2, \ldots 是一族重要的不變量,取值為非負整數或無窮大。直觀地看,b_0 是連通成份之個數,b_1 是沿著閉曲線剪開空間而保持連通的最大剪裁次數。更高次的 b_k 可藉同調群定義。 「貝蒂數」一詞首先由龐加萊使用,以義大利數學家恩里科·貝蒂命名。.
查看 微分结构和貝蒂數
阻碍理论
在数学中,阻碍理论(obstruction theory)是两个不同数学理论的名字,两者都导出了上同调不变量。.
查看 微分结构和阻碍理论
流形
流形(Manifolds),是局部具有欧几里得空间性质的空间,是欧几里得空间中的曲线、曲面等概念的推广。欧几里得空间就是最简单的流形的实例。地球表面这样的球面则是一个稍微复杂的例子。一般的流形可以通过把许多平直的片折弯并粘连而成。 流形在数学中用于描述几何形体,它们为研究形体的可微性提供了一个自然的平台。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。位形空间中也可以定义流形。环面就是双摆的位形空间。 一般可以把几何形体的拓扑结构看作是完全“柔软”的,因为所有变形(同胚)会保持拓扑结构不变;而把解析几何结构看作是“硬”的,因为整体的结构都是固定的。例如一个多项式,如果你知道 (0,1) 区间的取值,则整个实数范围的值都是固定的,所以局部的变动会导致全局的变化。光滑流形可以看作是介于两者之间的模型:其无穷小的结构是“硬”的,而整体结构则是“柔软”的。这也许是中文译名“流形”的原因(整体的形态可以流动)。该译名由著名数学家和数学教育学家江泽涵引入。这样,流形的硬度使它能够容纳微分结构,而它的软度使得它可以作为很多需要独立的局部扰动的数学和物理的模型。.
查看 微分结构和流形
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
查看 微分结构和数学
拓扑流形
拓扑流形的定义为:拓扑空间\mathcal在满足以下条件时,称\mathcal为m维流形,即.
查看 微分结构和拓扑流形
另见
微分結構
- 希尔伯特第五问题
- 微分结构