目录
复流形
微分几何中,一个复流形是一个流形,使得每个鄰域在一种连续的方式下看起来象一个複n维空间。更精确的讲,一个复流形有一个坐标图册,其每个坐标图映射到Cn,并且坐标图之间的坐标变换是全纯的。 复流形可以视为微分流形的一种特例。例如,一个1维复流形几何上就是一个曲面,称为黎曼曲面。变换函数必须全纯这个要求意味着和通常的微分流形不同,不同的''C''''k''-微分结构对于不同k没有区别,因为全纯函数解析,一次每个全纯结构也是一个Ck结构,对于任意k ≥1成立。 复流形的理论和实流形的有相当不同的感受,因为複解析函数比光滑函数更为严格。例如,使用惠特尼嵌入定理,每个实流形可以嵌入为Rn的子流形,,但是很少有复流形可以成为Cn的子流形。 Category:复流形 Category:流形上的结构.
查看 微分结构和复流形
实射影空间
数学中,实射影空间(real projective space),记作 RPn,是 Rn+1 中的直线组成的射影空间。它是一个 n 维紧光滑流形,也是格拉斯曼流形的一个特例。.
查看 微分结构和实射影空间
切丛
数学上,一个微分流形M的切丛(tangent bundle) T(M)是一个由M各點上切空間組成的向量丛,其總空間是各切空间的不交并集: 總空間T(M)每个元素都是一个二元组(x,v),其中v是在点x的切空间Tx(M)內的一枚向量。 切丛有自然的2n维微分流形结构如下: 設:\pi\colon T(M) \to M\, 為自然的投影映射,将(x,v)映射到基点x; 若M是个n维流形,U是x的一个足夠小的邻域, φ:U→Rn是一个局部坐标卡, V是U在T(M)的前象V(V.
查看 微分结构和切丛
图形
图形在数学上可以依靠不同的附加结构而形成不同的门类,按附加结构的复杂程度,可以依次分述如下:.
查看 微分结构和图形
图册 (拓扑学)
在数学,特别是在拓扑中,一个图册(atlas)描述了一个流形如何装备一个微分结构。每一小块由一个卡(chart)给出(也称为坐标卡coordinate chart或局部坐标系local coordinate system))。以圖冊來定義流形的概念是由夏尔·埃雷斯曼於1943年所提出。 在给出图册形式定义之前,我们回忆起流形M上一个卡定义为从M的一个开集U到\mathbb^n中开集V的一个同胚映射\phi。如果(U_, \varphi_)与(U_, \varphi_)是M的两个卡使得U_ \cap U_非空,则定义了转移映射(transition map) 注意到因为\varphi_与\varphi_都是同胚,转移映射也是同胚。所以,转移映射已经赋予了某种相容性,使得从一个卡上的坐标系变到另一个卡上的坐标系是连续的。 那么流形M上一个图册是一族M上的卡\mathcal.
结构 (消歧义)
结构指在一个系統或者材料之中,互相关联的元素的排列、组织。 结构还可以指:.
西蒙·唐纳森
西蒙·唐纳森,FRS(Simon Donaldson,),英国数学家,研究领域为四维微分流形的几何与拓扑。利用从规范场论发展出来的技术手段,尤其是对椭圆偏微分方程的创造性应用,他于80年代找到了四维流形的系列不变量,进而发现特定的四维流形容许无穷多个微分结构,“震惊了数学界”(Atiyah,1986)。.
查看 微分结构和西蒙·唐纳森
规范场论
规范场论(Gauge Theory)是基于对称变换可以局部也可以全局地施行这一思想的一类物理理论。非交换对称群(又称非阿贝尔群)的规范场论最常見的例子为杨-米尔斯理论。物理系統往往用在某种变换下不变的拉格朗日量表述,当变换在每一时空点同时施行,它们有全局对称性。规范场论推广了这一思想,它要求拉格朗日量必须也有局部对称性—应该可以在时空的特定区域施行这些对称变换而不影响到另外一个区域。这个要求是广义相对论的等效原理的一个推广。 规范“对称性”反映了系统表述的一个冗余性。 规范场论在物理学上的重要性,在于其成功為量子电動力学、弱相互作用和强相互作用提供了一个统一的数学形式化架构——标准模型。這套理論精确地表述了自然界的三種基本力的实验预测,它是一个规范群为SU(3) × SU(2) × U(1)的规范场论。像弦论这样的现代理论,以及广义相对论的一些表述,都是某种意义上的规范场论。 有时,规范对称性一词被用于更广泛的含义,包括任何局部对称性,例如微分同胚。该术语的这个含义不在本条目使用。.
查看 微分结构和规范场论
齐性空间
在数学,特别是李群、代数群与拓扑群的理论中,关于群G的一个齐性空间(homogeneous space)是一个非空流形或拓扑空间X,G可传递性作用在X上,G中的元素稱之為X的對稱。一个特例是群G就是空间X的自同構群,這裡自同構群可以是等矩同構群、微分同肧群或是同肧群。在這些例子中,如果直觉想成X于任何地方局部看起来一样,則X是齐性的。像是等矩同構(剛體幾何)、微分同肧(微分幾何)或是同肧(拓撲)。一些作者要求G的作用是有效的(或忠实),不过本文并不要求这样。从而X上存在可以想象为保持X上相同“几何结构”的一个群作用,使X成为一个单''G''-轨道。.
查看 微分结构和齐性空间