目录
垂直
垂直是一个几何术语。在平面几何中,如果一条直线与另一条直线相交,且它们构成的任意相邻两个角相等,那么这两条直线相互垂直。术语“垂直”(垂直符號:⊥)衍生一个形容词(垂直)或者名词(垂线)。因此,根据圖一,直线AB通过B点与直线CD相互垂直。像图一这样,如果一条直线与另一条直线垂直,那么它们构成的两个角称为直角,或者90°角。 垂足指两条互相垂直的线相交的点。 垂直的概念对线段和射线也通用,只需看一者所在的直线是否与另一者所在的直线垂直就可以了。如图一中,线段AB和线段CD相互垂直。甚至线段AB的一端不一定要在线段CD上(即可定向伸缩),它们仍被认为是垂直的。 空间几何中,有直线与直线、直线与平面、平面与平面之间的垂直关系。垂直可以看做是欧几里得空间(或内积空间)中的正交关系在二维和三维空间中的特例。.
查看 二维空间和垂直
寬度
#重定向 长度.
查看 二维空间和寬度
平面图 (图论)
在圖論中,平面圖是可以画在平面上并且使得不同的邊可以互不交疊的圖。而如果一个图无论怎样都无法画在平面上,并使得不同的边互不交叠,那么这样的图不是平面图,或者称为非平面图。完全图K5和完全二分图K3,3是最“小”的非平面图。.
地平線
地平線指地面與天空的分隔線,此線將所有可見的方向分成二種:能與地表相交,和不能與地表相交。在很多地方,真地平線會被樹木、建築物、山脈等所掩蓋而其與天空相交造成的線稱作可見地平線。然而,如果身處海中的船上,則可以輕易看到真地平線。.
查看 二维空间和地平線
圖嵌入
圖嵌入是圖論中的一個概念。 非正式的講,圖嵌入就是一種圖在面上的繪製,該繪製使得圖的邊只在端點相交。眾所周知,任何圖都能嵌入到三維歐几里得空間,而平面圖能夠嵌入到二維歐几里得空間。.
查看 二维空间和圖嵌入
單連通
在拓撲學中,單連通是拓撲空間的一種性質。直觀地說,單連通空間中所有閉曲線都能連續地收縮至一點。此性質可以由空間的基本群刻劃。.
查看 二维空间和單連通
几何学
笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.
查看 二维空间和几何学
图 (数学)
在數學的分支图论中,图(Graph)用于表示物件與物件之間的關係,是圖論的基本研究對象。一张圖由一些小圓點(稱為頂點或結點)和連結這些圓點的直線或曲線(稱為邊)組成。西尔维斯特在1878年首次提出“图”这一名词。.
查看 二维空间和图 (数学)
图论
图论(Graph theory)是组合数学的一个分支,和其他数学分支,如群论、矩阵论、拓扑学有着密切关系。图是图论的主要研究对象。图是由若干给定的顶点及连接两顶点的边所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系。顶点用于代表事物,连接两顶点的边则用于表示两个事物间具有这种关系。 图论起源于著名的柯尼斯堡七桥问题。该问题于1736年被欧拉解决,因此普遍认为欧拉是图论的创始人。 图论的研究对象相当于一维的单纯复形。.
查看 二维空间和图论
空間
間(Raum,space,espace,espacio,spazio),,抽象化之後形成的概念。與時間二者,構成物質存在的基本範疇,是人類思考的基本概念框架之一。人類可以用直覺了解空間,但難以概念化,因此自古希臘時代開始,就成為哲學與物理學上重要的討論課題。空間存在,是運動構成的基本條件。在物理學中,以三個維度來描述空間的存在。相對論中,將時間及空間二者,合併成單一的時空概念。伽利略、莱布尼兹、艾萨克·牛顿、伊曼努尔·康德、卡爾·弗里德里希·高斯、爱因斯坦、庞加莱都研究空间的本质。.
查看 二维空间和空間
线性代数
线性代数是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 坐标满足线性方程的点集形成n维空间中的一个超平面。n个超平面相交于一点的条件是线性代数研究的一个重要焦点。此项研究源于包含多个未知数的线性方程组。这样的方程组可以很自然地表示为矩阵和向量的形式。 线性代数既是纯数学也是应用数学的核心。例如,放宽向量空间的公理就产生抽象代数,也就出现若干推广。泛函分析研究无穷维情形的向量空间理论。线性代数与微积分结合,使得微分方程线性系统的求解更加便利。线性代数的理论已被泛化为。 线性代数的方法还用在解析几何、工程、物理、自然科学、計算機科學、计算机动画和社会科学(尤其是经济学)中。由于线性代数是一套完善的理论,非线性数学模型通常可以被近似为线性模型。.
查看 二维空间和线性代数
绘画
繪畫在技术層面上,是一個以表面作為支撐面,再在其之上加上顏色的行為,那些表面可以是紙張、油畫布、木材、玻璃、漆器或混凝土等,加顏色的工具可以时畫筆、也可以是刀、海綿或是等。 在藝術用語的層面上,繪畫的意義亦包含利用此藝術行為再加上圖形、構圖及其他美學方法去達到表現出從事者希望表達的概念及意思这样一个目的。.
查看 二维空间和绘画
美術
美术是指让人直接在视觉上获得美感的艺术,主要指绘画和雕塑,也可以指工艺美术和建筑艺术,现代还可以指摄影和与艺术有关的设计,是各种视觉艺术的总称。.
查看 二维空间和美術
角度
#重定向 度 (角).
查看 二维空间和角度
高度
高度是以坐標系為基準,在地球表面定義向上為正,度量由下往上的距離。圖形或物體之高,指的是垂直於底面到上頂點之高度之距離。三角形有3條高,分別從3個頂點垂直到底邊。高不一定在三角形內部,鈍角三角形的高則有2條在三角形的外部。 Category:長度 Category:氣候因子.
查看 二维空间和高度
X軸
#重定向 笛卡尔坐标系.
查看 二维空间和X軸
Y軸
#重定向 笛卡尔坐标系.
查看 二维空间和Y軸
欧几里得距离
在数学中,欧几里得距离或欧几里得度量是欧几里得空间中两点间“普通”(即直线)距离。使用这个距离,欧氏空间成为度量空间。相关联的范数称为欧几里得范数。较早的文献称之为毕达哥拉斯度量。.
查看 二维空间和欧几里得距离
拓扑学
在數學裡,拓撲學(topology),或意譯為位相幾何學,是一門研究拓撲空間的學科,主要研究空間內,在連續變化(如拉伸或彎曲,但不包括撕開或黏合)下維持不變的性質。在拓撲學裡,重要的拓撲性質包括連通性與緊緻性。 拓撲學是由幾何學與集合論裡發展出來的學科,研究空間、維度與變換等概念。這些詞彙的來源可追溯至哥特佛萊德·萊布尼茲,他在17世紀提出「位置的幾何學」(geometria situs)和「位相分析」(analysis situs)的說法。莱昂哈德·歐拉的柯尼斯堡七橋問題與歐拉示性數被認為是該領域最初的定理。「拓撲學」一詞由利斯廷於19世紀提出,雖然直到20世紀初,拓撲空間的概念才開始發展起來。到了20世紀中葉,拓撲學已成為數學的一大分支。 拓撲學有許多子領域:.
查看 二维空间和拓扑学
曲面
在数学(拓扑学)中,一个曲面(surface)是一个二维流形。三维空间中的例子有三维实心物体的边界。流体的表面,例如雨滴或肥皂泡是一种理想化的曲面。关于雪花的表面,它有很多精细的结构,超越了这个简单的数学定义。关于实际的曲面的资料,请参看表面张力,表面化学,曲面能量。.
查看 二维空间和曲面
另见
二
多维几何
維度
- 一维空间
- 七维空间
- 五维空间
- 伯恩施坦問題
- 偽三維
- 克鲁尔维数
- 內射維度、投射維度與同調維度
- 八维空间
- 六维空间
- 向量空间的维数
- 四维空间
- 多时间维度
- 平面國
- 弦理論
- 維度
- 维数灾难
- 自由度
- 自由度 (物理学)
- 零維空間
- 餘維數
亦称为 二維。