我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

蛋白质结构

指数 蛋白质结构

蛋白质结构是指蛋白质分子的空间结构。作为一类重要的生物大分子,蛋白质主要由碳、氢、氧、氮、硫等化学元素组成。所有蛋白质都是由20种不同的L型α氨基酸连接形成的多聚体,在形成蛋白质后,这些氨基酸又被称为残基。蛋白质和多肽之间的界限并不是很清晰,有人基于发挥功能性作用的结构域所需的残基数认为,若残基数少于40,就称之为多肽或肽。要发挥生物学功能,蛋白质需要正确折叠为一个特定构型,主要是通过大量的非共价相互作用(如氢键,离子键,范德华力和疏水作用)来实现;此外,在一些蛋白质(特别是分泌性蛋白质)折叠中,二硫键也起到关键作用。为了从分子水平上了解蛋白质的作用机制,常常需要测定蛋白质的三维结构。由研究蛋白质结构而发展起来了结构生物学,采用了包括X射线晶体学、核磁共振等技术来解析蛋白质结构。 一定数量的残基对于发挥某一生物化学功能是必要的;40-50个残基通常是一个功能性结构域大小的下限。蛋白质大小的范围可以从这样一个下限一直到数千个残基。目前估计的蛋白质的平均长度在不同的物种中有所区别,一般约为200-380个残基,而真核生物的蛋白质平均长度比原核生物长约55%。更大的蛋白质聚合体可以通过许多蛋白质亚基形成;如由数千个肌动蛋白分子聚合形成蛋白纤维。.

目录

  1. 105 关系: 基因基因家族基因工程基因組埃德曼降解法埃格斯特朗原生质原核生物半胱氨酸单体单键双键天冬酰胺天冬氨酸官能团对映异构丙氨酸亮氨酸二級結構二面角开放阅读框架低温电子显微镜化学构象化學元素圆二色性分子伴侣分布式计算催化共价键共振 (化学)皮米磷酸化离子键精氨酸糖基化縮合反應红外光谱学结构域结构基因组学结构生物学结构模体细胞缬氨酸罗斯曼折叠羧基羰基翻译 (遗传学)翻译后修饰... 扩展索引 (55 更多) »

  2. 蛋白質結構

基因

基因一词来自希腊语,意思为“生”。是指控制生物性状的遗传信息,通常由DNA序列来承载。基因也可视作基本遗传单位,亦即一段具有功能性的DNA或RNA序列。弄清其序列本身的过程叫基因测序。基因的结构由增强子,启动子及蛋白编码序列组成:即基因产物可以是蛋白质(蛋白质编码基因)及RNA,从而控制生物个体的性状(差異)表现。在一个个体当中所有的基因总和叫基因组。在一个物种中所有等位基因的总合叫基因库。在大多数真核生物中,基因分为细胞核基因及线粒体基因,绿色植物的叶绿体也含有独立于细胞核的叶绿体基因组。人類約有一万九千至兩萬两千個基因。 在真核生物中,染色体在体细胞中是成对存在的。每条染色体上都带有一定数量的基因。一个基因在细胞有丝分裂时有两个对列的位点,称为等位基因,分别来自父与母。依所攜帶性状的表現,又可分为显性基因和隐性基因。 一般来说,同一生物体中的每个细胞體都含有相同的基因(除了已经分化的免疫细胞),但并不是每个细胞中的所有基因携带的遗传信息都会被表現出来。控制基因表达的因素分为传统的遗传学(增强子,启动子序列相关)因素及表观遗传学(DNA甲基化,组蛋白乙酰化和脱乙酰化及RNA干扰相关)因素。職司不同功能的細胞或不同的细胞类型中,活化而表現的基因也不同。在某一细胞类型当中所有被表达的基因叫转录组,所有编码蛋白质的基因叫蛋白质组。通过即时聚合酶链式反应或染色质免疫沉淀-测序可得到转录组及蛋白质组的信息。用电脑处理基因序列的学科叫生物信息学。 人类基因组计划(human genome project, HGP)是一项规模宏大,跨国跨学科的生物信息学项目。其宗旨在于测定组成人类染色体(指单倍体)的30亿个碱基对形成的核苷酸序列,从而繪製人类基因组圖譜,並且辨識其载有的基因,达到破译人类遗传信息的最终目的。该计划起始于1990年于2000年完成。.

查看 蛋白质结构和基因

基因家族

基因家族(Gene family),是来源于同一个祖先,由一个基因通过基因重复而产生两个或更多的拷贝而构成的一组基因,它们在结构和功能上具有明显的相似性,编码相似的蛋白质产物。一个这样的家族是人类血红蛋白亚基的基因,10个基因在不同染色体上的两个簇中,称为α-珠蛋白和β-珠蛋白基因座。这两个基因簇被认为是由于前体基因在大约5亿年前被复制而产生的。 同一家族基因可以紧密排列在一起,形成一个基因簇,但多数时候,它们是分散在同一染色体的不同位置,或者存在于不同的染色体上的,各自具有不同的表达调控模式。 如果基因家族的基因编码蛋白质,术语蛋白质家族通常以与基因家族类似的方式使用。.

查看 蛋白质结构和基因家族

基因工程

基因工程(genetic engineering,又称为遺傳工程、转基因、基因修饰)是一组使用生物技术直接操纵有机体基因组、用于改变细胞的遗传物质的技术。包括了同一物种和跨物种的基因转移以产生改良的或新的生物体。可以通过使用分子克隆技术分离和复制需要的遗传物质以产生DNA序列,或通过合成DNA,然后插入宿主生物体,以此将新的遗传物质插入宿主基因组中。可以使用核酸酶除去或“敲除”基因。基因靶向是使用同源重组来改变内源基因的不同技术,并且可以用于缺失基因,去除外显子,添加基因或引入点突变。 通过基因工程产生的生物体被认为是转基因生物体(GMO)。第一种转基因生物是1973年产生的细菌和1974年的转基因小鼠。利用细菌产生胰岛素在1982年商业化,转基因食品自1994年以来一直销售。作为宠物设计的第一种转基因生物GloFish于2003年12月首先在美国销售。 遗传工程技术已经应用于许多领域,包括研究、农业、工业生物技术和医学。用于洗衣洗涤剂和药物如胰岛素和人生长激素的酶现在在转基因(GM)细胞中制造,实验性转基因细胞系和转基因动物例如小鼠或斑马鱼正用于研究目的,并且转基因作物已经商业化。.

查看 蛋白质结构和基因工程

基因組

在生物学中,一个生物体的基因组是指包含在该生物的DNA(部分病毒是RNA)中的全部遗传信息,又稱基因體(genome)。基因组包括基因和非編碼DNA。1920年,德国汉堡大学植物学教授汉斯·温克勒(Hans Winkler)首次使用基因组这一名词。 更精确地讲,一个生物体的基因组是指一套染色体中的完整的DNA序列。例如,生物个体体细胞中的二倍体由两套染色体组成,其中一套DNA序列就是一个基因组。基因组一词可以特指整套核DNA(例如,核基因组),也可以用于包含自己DNA序列的细胞器基因组,如粒线体基因组或叶绿体基因组。当人们说一个有性生殖物种的基因组正在测序时,通常是指测定一套常染色体和两种性染色体的序列,这样来代表可能的两种性别。即使在只有一种性别的物种中,“一套基因组序列”可能也综合了来自不同个体的染色体。通常使用中,“遗传组成”一词有时在交流中即指某特定个体或物种的基因组。对相关物种全部基因组性质的研究通常被称为基因组学,该学科与遗传学不同,后者一般研究单个或一组基因的性质。.

查看 蛋白质结构和基因組

埃德曼降解法

Edman降解(埃德曼降解),也根据所使用试剂而被称为“PTC法”或“PTH法”,是肽链或蛋白质中N-端氨基酸序列分析方法之一。由菲尔·埃德曼(Pehr Edman)首先创立。.

查看 蛋白质结构和埃德曼降解法

埃格斯特朗

埃格斯特朗(Ångström, 简称埃,符号Å)是一个长度计量单位。它不是国际制单位,但是可与国际制单位进行换算,即1 Å.

查看 蛋白质结构和埃格斯特朗

原生质

原生质并非单一的某种或某些化合物,而是由多种化合物所组成的复杂的胶体,这种胶体具有不断自我更新能力,成为一种生命物质的体系。原生質包括細胞質與細胞核;而細胞壁則不屬於原生質。.

查看 蛋白质结构和原生质

原核生物

原核生物(英文:prokaryote)是通常由單一原核细胞形成的生物。相对于真核细胞,原核细胞一般没有细胞内膜、没有核膜包裹的成型细胞核,细胞内无染色体,DNA链未螺旋化,並以游離的形成存在於細胞質中,细胞质内也无任何有膜的细胞器(如粒線體或葉綠體)。有些分類學者將原核生物歸於原核生物域(Prokaryota),但現行的三域系統不採此說,而是將古菌域和細菌域的生物視為原核生物,原核生物本身不作為生物分類的層級。 大部分原核生物为单细胞生物。根据《伯杰氏细菌鉴定手册》,原核生物分为四大类,“有细胞壁的革兰氏阴性真细菌”,“有细胞壁的革兰氏阳性真细菌”,“无细胞壁的真细菌”,“古细菌”。环境中常见的原核生物有细菌、放线菌、古细菌、螺旋体、衣原体、支原体、立克次氏体和蓝细菌等光合性细菌。 Prokaryota亦拼寫為"procaryotes-ß"Campbell, N.

查看 蛋白质结构和原核生物

半胱氨酸

半胱氨酸(Cysteine,可簡寫為Cys或C)是20種天然氨基酸之一,是一種含硫(與甲硫氨酸一樣)的非必需氨基酸。動物體內可經由甲硫胺酸和絲氨酸合成。有缓解修复放射线对人体的损伤作用。在人体内还有范围广泛的解毒作用,是丙烯腈及芳香族酸中毒的治疗用药。 半胱氨酸有助於戒除酒癮,為腦部及肝臟作用時所需;對肝臟細胞的新生而言是必需品。.

查看 蛋白质结构和半胱氨酸

单体

在高分子化学中,单体是可与同种或他种分子通过共价键连接生成聚合物的小分子。英文的“单体”(monomer)一词来源于希腊语的“一”(mono)和“部分”(meros)。.

查看 蛋白质结构和单体

单键

#重定向單鍵.

查看 蛋白质结构和单键

双键

#重定向雙鍵.

查看 蛋白质结构和双键

天冬酰胺

天冬酰胺(Asparagine,簡稱为Asn或N;而Asx或B代表天冬酰胺或天冬氨酸)。它是20種最常見的胺基酸之一,但不是必需氨基酸,合成的密码子是AAU和AAC,可用於製作代糖。 加热到足够高的温度时,天冬酰胺可与还原糖或羰基在食物中反应,生成丙烯酰胺,后者常在薯条、薯片、烤面包等烘烤食品中出现。.

查看 蛋白质结构和天冬酰胺

天冬氨酸

天冬氨酸(aspartic acid,可簡寫為Asp或D)是一种α-氨基酸,其化學式為HOOCCH2CH(NH2)COOH。天冬氨酸的L-異構物是20种蛋白胺基酸之一,即蛋白質的构造单位。它的密碼子是GAU和GAC。它与谷氨酸同為酸性氨基酸。天冬氨酸普遍存在于生物合成作用中。.

查看 蛋白质结构和天冬氨酸

官能团

官能团(英文:Functional group),是决定有机化合物的化学性质的原子和原子团。.

查看 蛋白质结构和官能团

对映异构

對映異構體(Enantiomer),又稱對掌異構物、光學異構物、鏡像異構物或对映异构体或旋光异构体,不能與彼此立體異構體鏡像完全重疊。 互為鏡像(mirror images)的分子。不对称碳原子和四種不同的原子或原子基團連結,不對稱碳為手性中心。當有n個手性中心時,則最多有2的n次方立體異構物。 來源於希臘文,具有左手對右手那樣鏡像關係的一對物質。無論怎樣擺佈都不能使這些鏡像成為同一物。有對稱平面的物質不能是對映體,因為它和它的鏡像是等同的。乳酸那樣的分子對映體,除了與其他不對稱分子的化學反應以及與偏振光作用外,具有完全相同的化學物質。對映體在結晶學中很重要,因為許多晶體是由單個分子的右手型和左手型交替排列的。對晶體的完整描述,就是要說明這些型體彼此間是如何混合的。兩種光學活性的酒石酸,即所謂d-酒石酸和l-酒石酸就是一對對映體的實例。.

查看 蛋白质结构和对映异构

丙氨酸

丙氨酸是一種氨基酸,原文為alanine,常簡寫為ala,在氨基酸序列中可簡寫為A。於1879年首度被分離出來。 鳥類和哺乳類可經由食物中的糖分解所得的丙酮酸合成得到丙氨酸,因此對這些動物來說,丙氨酸為非必需氨基酸。但人體必需的氨基酸之一.

查看 蛋白质结构和丙氨酸

亮氨酸

亮氨酸(英文:Leucine,简写为 Leu 或 L)是二十种基本氨基酸的其中一种,和异亮氨酸互为同分异构体。在营养学上,亮氨酸是人体的必需氨基酸。 亮氨酸是在蛋白质内最常出现的氨基酸,而且对于婴儿与孩童时期的正常发育和成年人身体内的氮平衡都很重要。据推测,亮氨酸可能在以平衡蛋白质的生化和分解的方法来维持肌肉上占了很重要的角色。 亮氨酸的主要食物来源有:全穀、牛奶、乳制品、蛋、猪肉、牛肉、鸡肉、豆类、叶菜。.

查看 蛋白质结构和亮氨酸

二級結構

蛋白質二級結構(Protein secondary structure)在生物化學及結構生物學中,是指一個生物大分子,如蛋白質及核酸(DNA或RNA),局部區段的三維通式。然而它並不描述任何特定的原子位置(在三級結構中描述)。 二級結構是由生物大分子在原子分辨率結構中所观察到的氫鍵來定義的。蛋白質的二級結構通常是以主鏈中氨基之間的氫鍵模式來定義〈与主链-侧链间以及侧链-侧链间的氢键无关〉,亦即DSSP的定義。而核酸的二級結構是以鹼基之間的氫鍵來定義。 在二级结构中,特定的氫鍵模式往往伴随着其他一些結構特徵;但如果只考虑这些结构特征而忽略氢键本身,则会导致所定義的二級結構不准确。例如,蛋白質的螺旋中的残基都分布在拉氏图(以主鏈二面角为坐标)的特定區域,因此二面角位于这一区域的残基都會被认为参与形成「螺旋」,而不論它是否真正的存在对应氫鍵。其他稍微不准确的定義多是應用曲線微分幾何的觀念,如曲率及扭量。也有一些結構生物學家以肉眼观察通过软件显示的蛋白质结构來決定其二級結構。 對生物大分子的二級結構含量可以以光譜來初步估計。對於蛋白質,最常用的方法是圓二色性(Circular dichroism), (利用長紫外線,波長范围170-250nm)。在获得的光谱吸收曲线上,α螺旋結構会在208nm及222nm两处同时出现极小值,而204nm和207nm处出现单个极小值則分別表示存在无规卷曲和β折疊結構。另一個較常用的方法是紅外光譜,它可以偵測因氫鍵所造成胺基的震盪。而光譜中,测定二級結構最準確的方法是利用核磁共振光谱所纪录的化學位移,由于仪器和样品制备上的原因,这一方法较为少用。.

查看 蛋白质结构和二級結構

二面角

二面角指两个半平面所夹的空间部分,而两个半平面所交的直线称为二面角的棱。.

查看 蛋白质结构和二面角

开放阅读框架

#重定向 開放閱讀框.

查看 蛋白质结构和开放阅读框架

低温电子显微镜

低温电子显微镜技術(Cryo-electron microscopy,缩写:cryo-EM)或电子低温显微镜技术,是透射电子显微镜(TEM)的其中样品在低温(通常是液氮温度)下进行研究的一种技术。低温电子显微镜在结构生物学方面越来越受欢迎。 低温电子显微镜的实用性来源于它允许观察未以任何方式被染色或固定的标本,在它们的自然环境中被显示。这与X射线晶体学相反,需要使样品结晶,这样做可能是困难的,并将其置于非生理环境中,这偶尔会导致功能上无关的构象变化。 低温电子显微镜图片的分辨率稳步提高,并且在2014年分辨率在一些结构中达到了接近原子级的分辨率,包括病毒,核糖体,线粒体,离子通道,和酶复合物,小至170kDa的一些结构的分辨率达到4.5Å。2017年,雅克·杜博歇、約阿希姆·弗蘭克及理查德·亨德森因其在低温电子显微镜技术的發展而獲頒諾貝爾化學獎。.

查看 蛋白质结构和低温电子显微镜

化学构象

#重定向 構相異構.

查看 蛋白质结构和化学构象

化學元素

化學元素指自然界中一百多种基本的金属和非金属物质,同一種化學元素是由相同的原子組成,也就是其原子中的每一核子具有同样数量的質子,用一般的化学方法不能使之分解,并且能构成一切物质。一些常見元素的例子有氫、氮和碳。 原子序數大於82的元素(即鉛之後的元素)沒有穩定的同位素,會進行放射衰變。另外,第43和第61種元素(即锝和鉕)沒有穩定的同位素,會進行衰變。可是,即使是原子序數大於94,沒有穩定原子核的元素,有些仍可能存在在自然界中,如鈾、釷、钚等天然放射性核素。 所有化學物質都包含元素,即任何物質都包含元素,隨著人工的核反應,會發現更多的新元素。 1923年,国际原子量委员会作出决定:化学元素是根据原子核电荷的多少对原子进行分类的一种方法,把核电荷数相同的一类原子称为一种元素。 2012年,總共有118種元素被發現,其中地球上有94種。.

查看 蛋白质结构和化學元素

圆二色性

圓二色性(Circular dichroism, 缩写:CD)是涉及圆偏振光的二色性,即左旋光的和右旋光的差分吸收。左旋圆(LHC)的和右旋圆(RHC)的偏振光表示一个光子的两种可能的自旋角动量状态,因此圆形二色性也被称为自旋角动量的二色性 。这种现象在19世纪上半叶被让-巴蒂斯特·毕奥(Jean-Baptiste Biot),奥古斯丁·菲涅耳(Augustin Fresnel)和(Aime Cotton)发现。它在光学活性手性分子的吸收带中被显示。CD光谱学在许多不同领域中具有广泛的应用。最值得注意的是,使用UVCD来研究蛋白质的二级结构。UV/可见光CD被用于研究电荷转移跃迁。近红外CD被用于通过探测过渡金属的d→d跃迁来研究分子的几何和电子结构。,其使用来自红外能量区的光,被用于小有机分子的结构研究,并且最近被用于研究蛋白质和DNA。.

查看 蛋白质结构和圆二色性

分子伴侣

分子伴侣(英文:Chaperone,又见称为:molecular chaperone,中文又可译为侣伴蛋白。英文单词原意是指,即负责监管、教育年轻未婚少女的行为的老年婦女。)是一类协助细胞内分子组装和协助蛋白质折叠的蛋白质。注意,分子伴侣与伴侣素(英文:Chaperonin)的区别。后者只是分子伴侣中的一种,前者還包括热休克蛋白Hsp60和Hsp10两个家族。另外,使用ATP协助蛋白质折叠只是一部分分子伴侣的功能,分子伴侣如Asf1者,能在细胞分裂过程中提升DNA解螺旋酶的活性并且将母链的组蛋白传递到子链。.

查看 蛋白质结构和分子伴侣

分布式计算

在計算機科學中,分布式计算(Distributed computing),又譯為--。這個研究領域,主要研究分散式系統(Distributed system)如何進行計算。分散式系統是一組電腦,透過網路相互连接傳遞訊息與通訊後并协调它们的行为而形成的系統。组件之间彼此进行交互以实现一个共同的目标。把需要进行大量计算的工程数据分割成小块,由多台计算机分别计算,再上传运算结果後,將結果统一合并得出数据结论的科学。分布式系统的例子来自有所不同的面向服务的架构,大型多人線上遊戲,对等网络应用。 目前常见的分布式计算项目通常使用世界各地上千万志愿者计算机的闲置计算能力,通过互联网进行数据传输(志愿计算)。如分析计算蛋白质的内部结构和相关药物的Folding@home项目,該项目結構庞大,需要惊人的计算量,由一台电脑计算是不可能完成的。虽然现在有了计算能力超强的超级計算機,但這些設備造價高昂,而一些科研机构的经费却又十分有限,藉助分佈式計算可以花費較小的成本來達到目標。.

查看 蛋白质结构和分布式计算

催化

催化是利用催化剂改变化学反应速度的一种工艺。许多化学工业要利用催化作用来获得需要的反应速度。催化也是一种化工单元过程,催化剂本身在反应中不会被消耗,但催化剂会改变反应速度,一催化劑亦可能參與複數的催化反應。正催化劑可加速反應;負催化劑或抑制劑則會與反應物反應進而降低化學反應。可提高催化劑活性的物質稱為促進劑;降低催化劑活性者則稱為催化毒。 相較於未催化的反應,同溫度的催化反應擁有較低的活化能。催化劑可以藉由結合反應物達到極化的效果,如酸催化劑之於羰基化合物的合成;催化劑也可產生非自然的反應中間物,如以四氧化鋨催化烯烴的雙羥基化中產生的鋨酸鹽酯;催化劑亦可造成反應物的裂解,如製氫時產生的單原子氫。 很多物质都可以做催化剂,在无机物反应中,通常利用酸、碱、金属或金属化合物作为催化剂,在有机物反应中多用有性的蛋白质分子——酶作为催化剂,生物体内许多化学反应都依赖酶來进行的。 催化反应可以发生在单相和多相中,也可以发生在复相中:.

查看 蛋白质结构和催化

共价键

共价键(Covalent Bond),是化学键的一种。两个或多个非金屬原子共同使用它们的外层电子(砷化鎵為例外),在理想情况下达到电子饱和的状态,由此组成比较稳定和坚固的化学结构叫做共价键。与离子键不同的是进入共价键的原子向外不显示电荷,因为它们并没有获得或损失电子。共价键的强度比氢键要强,比离子键小。 同一種元素的原子或不同元素的原子都可以通過共​​價鍵結合,一般共價鍵結合的產物是分子,在少數情況下也可以形成晶體。 吉爾伯特·路易斯于1916年最先提出共价键。 在简单的原子轨道模型中进入共价键的原子互相提供单一的电子形成电子对,这些电子对围绕进入共价键的原子而属它们共有。 在量子力学中,最早的共价键形成的解释是由电子的复合而构成完整的轨道来解释的。第一个量子力学的共价键模型是1927年提出的,当时人们还只能计算最简单的共价键:氢气分子的共价键。今天的计算表明,当原子相互之间的距离非常近时,它们的电子轨道会互相之间相互作用而形成整个分子共用的电子轨道。.

查看 蛋白质结构和共价键

共振 (化学)

共振论是化学中表示分子结构的一种方法,是价键理论的重要组成部分。该方法认为,对于结构无法用一个经典结构式来表达的分子、离子或自由基,可以通过若干经典结构式的共振来表达其结构。共振中的结构并不存在,真实粒子也并非这些共振结构的混合物或是平衡体系,只是价键理论中无法用单一结构式来准确表达物质结构,必须要借助共振的思想。.

查看 蛋白质结构和共振 (化学)

皮米

米(符號 pm,picometre、)是长度单位,1皮米相当于1米的一兆(即一萬億)分之一, 即10-12米。有时在原子物理学中称为微微米(micromicron).

查看 蛋白质结构和皮米

硫是一种化学元素,在元素周期表中它的化学符号是S,原子序数是16。硫是一种非常常见的无味无臭的非金属,纯的硫是黄色的晶体,又稱做硫黄、硫磺。硫有许多不同的化合价,常見的有-2, 0, +4, +6等。在自然界中常以硫化物或硫酸盐的形式出现,尤其在火山地区纯的硫也在自然界出现。硫单质难溶于水,微溶于乙醇,易溶于二硫化碳。对所有的生物来说,硫都是一种重要的必不可少的元素,它是多种氨基酸的组成部分,尤其是大多数蛋白质的组成部分。它主要被用在肥料中,也廣泛地被用在火药、潤滑劑、殺蟲劑和抗真菌剂中。.

查看 蛋白质结构和硫

碳(Carbon,拉丁文意為煤炭)是一種化學元素,符號為C,原子序数為6,位於元素週期表中的IV A族,屬於非金屬。每個碳原子有四顆能夠進行鍵合的電子,因此其化合價通常為4。自然產生的碳由三種同位素組成:12C和13C為穩定同位素,而14C則具放射性,其半衰期約為5,730年。碳是少數幾個自遠古就被發現的元素之一(見化學元素發現年表)。 碳的同素異形體有數種,最常見的包括:石墨、鑽石及無定形碳。這些同素異形體之間的物理性質,包括外表、硬度、電導率等等,都具有極大的差異。在正常條件下,鑽石、碳納米管和石墨烯的熱導率是已知材質中最高的。 所有碳的同素異形體在一般條件下都呈固态,其中石墨的熱力學穩定性最高。它們不易受化學侵蝕,甚至連氧都要在高溫下才可與其反應。碳在無機化合物中最常見的氧化態為+4,並在一氧化碳及過渡金屬羰基配合物中呈+2態。無機碳主要來自石灰石、白雲石和二氧化碳,但也大量出現在煤、泥炭、石油和甲烷水合物等有機礦藏中。碳是所有元素中化合物种类最多的,目前有近一千萬種已記錄的純有機化合物,但這只是理論上可以存在的化合物中的冰山一角。 碳的豐度在地球地殼中排列第15(见地球的地殼元素豐度列表),並在全宇宙中排列第4(见化學元素豐度),名列氫、氦和氧之下。由於碳元素極為充沛,再加上它在地球環境下所能產生的聚合物種類極為繁多,因此碳是地球上所有生物的化學根本。.

查看 蛋白质结构和碳

磷酸化

磷酸化(英語:Phosphorylation)或稱磷酸化作用,是指在蛋白質或其他類型分子上,加入一個磷酸(PO32-)基團,也可定義成「將一個磷酸基團導入一個有機分子」。此作用在生物化學中佔有重要地位。 蛋白質磷酸化可發生在許多種類的氨基酸(蛋白質的主要單位)上,其中以絲氨酸為多,接著是蘇氨酸。而酪氨酸則相對較少磷酸化的發生,不過由於經過磷酸化之後的酪氨酸較容易利用抗體來純化,因此酪氨酸的磷酸化作用位置也較廣為了解。 除了蛋白質以外,部分核苷酸,如三磷酸腺苷(ATP)或三磷酸鳥苷(GTP)的形成,也是經由二磷酸腺苷和二磷酸鳥苷的磷酸化而來,此過程稱為氧化磷酸化。另外在許多醣類的生化反應中(如糖解作用),也有一些步驟存在氧化磷酸化作用。.

查看 蛋白质结构和磷酸化

离子键

离子键又被称为盐键,是化学键的一种,通过两个或多个原子或化学基团失去或获得电子而成为离子后形成。带相反电荷的原子或基团之间存在静电吸引力,两个带相反电荷的原子或基团靠近时,周围水分子被释放为自由水中,带负电和带正电的原子或基团之间产生的静电吸引力以形成离子键。 此类化学键往往在金属与非金属间形成。失去电子的往往是金属元素的原子,而获得电子的往往是非金属元素的原子。带有相反电荷的离子因电磁力而相互吸引,从而形成化学键。离子键较氢键强,其强度与共价键接近。 仅当总体的能级下降的时候,反应才会发生(由化学键联接的原子较自由原子有着较低的能级)。下降越多,形成的键越强。 现实中,原子间并不形成“纯”离子键。所有的键都或多或少带有共价键的成分。成键原子之间电平均程度越高,离子键成分越低。.

查看 蛋白质结构和离子键

精氨酸

精氨酸(Arginine)是一種α-胺基酸,亦是20種普遍的自然胺基酸之一。在分子遺傳學上,信使核糖核酸的結構,CGU,CGC,CGA,CGG,AGA和AGG。是在蛋白質合成時核苷酸鹼基或遺傳密碼子代碼為精氨酸的三元組。在哺乳動物生活中,精氨酸被分類為半必要或條件性必要的胺基酸(非必需胺基酸),身體能自行產生,但在壓力或疾病的時候,可能需要更多。也視乎生物的發育階段及健康狀況而定。早產兒體內不能合成精氨酸,使得補充他們營養中的精氨酸變得非常重要。於1886年精氨酸是首先由瑞士化學家恩斯特·舒爾茨從扁豆苗萃取物中分離出來。.

查看 蛋白质结构和精氨酸

糖基化

#重定向 醣基化.

查看 蛋白质结构和糖基化

縮合反應

縮合反應(condensation reaction)是化學反應的一種,當中兩個分子透過官能團的變化結合成一個新的分子,過程中有細小的分子失去。如所失去的小分子為水,這個過程則稱作脫水反應。其他常見的小分子包括氯化氫、甲醇或乙酸等。 當兩個獨立的分子反應,這縮合反應屬於分子間的。一個簡單的例子就如兩個氨基酸透過形成肽鍵而結合成二肽,並透過不斷重複這一步驟形成多肽及蛋白質。與脫水反應相反的反應就是水解反應,當中水分子以氫氧離子及氫離子的形式與反應物反應,並使目標反應物分解。 如結合的過程中均由同一分子的原子或官能團參與,這縮合反應就屬於分子內的,而這類反應常導致環的生成。其中一個例子為狄克曼缩合反应,當中一個二酯分子的兩個酯官能團互相反應,透過失去一個醇分子而生成β-酮酯。.

查看 蛋白质结构和縮合反應

红外光谱学

红外光谱学是光谱学中研究电磁光谱红外部分的分支。它包括了许多技术,到目前为止最常用的是吸收光谱学。同所有的分光镜技术一样,它可以被用来鉴别一种化合物和研究样品的成分。红外光谱学相关表见于文献,方便查找。.

查看 蛋白质结构和红外光谱学

结构域

蛋白质结构域(protein domain)是蛋白质中的一类结构单元,是构成蛋白质(三级)结构的基本单元。 有些球形蛋白的一条肽链,或以共价键相连的两条或多条肽链在空间结构上可以区分为若干个球状的子结构,其中的每一个球状子结构就被称为一个结构域。 同一个蛋白的各个结构域之间是以肽链相互链接的,而链接两个蛋白质结构域的绝大多数都是单股肽链,只有在极个别的情况下会有少数的双股肽链联系不同的结构域。在X射线晶体学衍射实验绘制的电子密度图中,可以清楚地看到有些球状蛋白地的部存在一些裂隙,这些裂隙就是各个结构域之间的链接部分,蛋白质结构域之间的链接虽然是松散的,但他们仍然属于同一条肽链,靠肽链链接这一点和蛋白质的各个亚基之间依靠非键相互作用维系结构有着本质的区别。 蛋白质结构域在空间上具有临近相关性:即在蛋白质一级结构上相互临近的氨基酸残基,在蛋白质结构域的三维空间结构上也相互临近,在蛋白质一级结构上相互远离的氨基酸残基,在蛋白质结构域的空间结构上也相互远离,甚至分别属于不同的蛋白质结构域。 蛋白质结构域与蛋白质完成生理功能有着密切的关系,有时几个结构域共同完成一项生理功能,有时一个结构域就可以独立完成一项生理功能,但是一个结构不完整的蛋白质结构域是不可能产生生理功能的。因此蛋白质结构域是蛋白质生理功能的结构基础,但必须指出的是,虽然蛋白质结构域与蛋白质的功能关系密切,但是蛋白质结构域和功能域的概念并不相同。.

查看 蛋白质结构和结构域

结构基因组学

結構基因組學是一門用结构生物学方法研究整个生物体、整个细胞或整个基因组中所有的蛋白質和相关蛋白質复合物的三维結構的学科。主要利用實驗方式(X射線晶體学、核磁共振波谱法和电子显微学)来测定蛋白质结构,同时结合同源建模(homology modelling)这一計算方式来推测蛋白质结构。和傳統結構生物學不同的是,利用結構基因組學所測定的蛋白質結構通常是功能未知的蛋白質。這令科學家創立了結構生物信息學,利用三維結構信息來预测蛋白質功能。結構基因組學重視快速、高通量(high throughput)的蛋白質結構測定,而同步辐射装置是实现这一目标的重要实验装置之一。.

查看 蛋白质结构和结构基因组学

结构生物学

结构生物学是一门以分子生物学生物化学和生物物理学的分支,关心的生物大分子(如蛋白质分子和核酸分子)的分子三维结构(Tertiary structure)(包括构架和形态),它们是如何获得它们的结构,并研究改变它们的结构与影响其功能的关系的学科。由于结构生物学能够解释生物大分子的构象和相互作用的方式,而所有的生命活动都是通过各种生物大分子的相互作用来实现;因此,对于生物学家们来说,这是一个非常有吸引力的领域。.

查看 蛋白质结构和结构生物学

结构模体

结构模体(structural motif,亦称为结构基序)是链状生物分子(如蛋白质或核酸)中的一种超二级结构,也存在于其它分子之中。结构模体使得我们无法预测蛋白的生物学功能:存在于蛋白质与酶中的模体可能功能迥异。 因为一级结构和三级结构之间的关系并不简单直接,两个生物聚合物可以共享同一个模体又缺乏明显的一级结构的相似性。换言之,一个结构模体不必要具有与一个相关。另外,的存在并不一定意味着一个独特的结构。例如,在大多数DNA模体中,假设该序列的DNA不从正常的“双螺旋”结构偏离。.

查看 蛋白质结构和结构模体

细胞

细胞(Cell)是生物体结构和功能的基本单位。它是除了病毒之外所有具有完整生命力的生物的最小单位,也经常被称为生命的积木(病毒仅由DNA/RNA组成,并由蛋白质和脂肪包裹其外)。 in Chapter 21 of fourth edition, edited by Bruce Alberts (2002) published by Garland Science.

查看 蛋白质结构和细胞

缬氨酸

纈氨酸(Valine)是二十種蛋白胺基酸中的其中一種。其英文名稱Valine的命名是源自於纈草(Valerian),而中文名稱也因此稱為纈氨酸。 从營養學的觀點來看,纈氨酸是一種必需胺基酸。它的密码子是GUU、GUA、GUC和GUG。它是一种非极性氨基酸,因此纈氨酸是疏水性的。 纈氨酸是完全地電中性,當其側鏈也是中性,而且由其氨基和羧基所產生的電荷剛好平衡,這種分子稱為兩性離子。 在鐮刀型紅血球疾病裡,血紅蛋白內的纈氨酸替代了親水性胺基酸-穀氨酸(Glutamate):因為纈氨酸是疏水性的,血紅蛋白因此而無法正確折疊。 含有豐富的纈氨酸的食物來源有:白乾酪、魚、禽類、牛、花生、芝麻籽和濱豆。.

查看 蛋白质结构和缬氨酸

罗斯曼折叠

罗斯曼折叠(Rossmann fold)是一种蛋白质结构基序,常见于核苷酸结合蛋白质,特别是辅因子NAD结合蛋白。该结构由两个重复的部分组成,每个部分包括6个平行的β折叠与两对α螺旋形成β-α-β-α-β的拓扑结构。因為每一個罗斯曼折叠可以和一個核苷酸结合,像NAD等二核苷酸的結合域包括二個成對的罗斯曼折叠,分別和辅因子的一個核苷酸部份結合。單一的罗斯曼折叠可以和單核苷酸結合,例如輔因子FMN。 该结构以迈克尔·罗斯曼命名,因其第一个发现这种多见于核苷酸结合蛋白(比如一些脱氢酶)的折叠结构。 在1989年,魏茨曼科学研究学院的Israel Hanukoglu发现一些酶的NADP结合位点与和NAD结合的基序在序列一致性上有所不同,这一发现可以被用来重建辅酶特异性的酶。.

查看 蛋白质结构和罗斯曼折叠

羧基

基(化學式–COOH)是羧酸所具有的官能团。一般而言,羧基上的氢有较大的电离倾向,从而使羧酸在水溶液中显酸性。羧酸根负离子所具有共轭结构可以看作是氢易电离的潜在动力。.

查看 蛋白质结构和羧基

羰基

基(carbonyl group)在有机化学中,是一个形如 C.

查看 蛋白质结构和羰基

翻译 (遗传学)

#重定向 翻譯 (生物學).

查看 蛋白质结构和翻译 (遗传学)

翻译后修饰

翻译后修饰(英語:Post-translational modification,縮寫PTM;又稱後轉譯修飾)是指蛋白質在翻译後的化學修飾。對於大部份的蛋白質來說,這是蛋白質生物合成的較後步驟。PTM是細胞信號傳導中的重要組成部分。 蛋白質,或是多肽,是多條或一條胺基酸的鏈。當合成蛋白質時,20種不同的胺基酸會合併成為蛋白質。胺基酸的翻译後修飾會附在蛋白質其他的生物化學官能團(如醋酸鹽、磷酸鹽、不同的脂類及碳水化合物)、改變胺基酸的化學性質,或是造成結構的改變(如建立雙硫鍵),來擴闊蛋白質的功能。 再者,酶可以從蛋白質的N末端移除胺基酸,或從中間將肽鏈剪開。舉例來說,胰島素是肽的激素,它會在建立雙硫鍵後被剪開兩次,並在鏈的中間移走多肽前體,而形成的蛋白質包含了兩條以雙硫鍵連接的多肽鏈。 其他修飾,就像磷酸化,是控制蛋白質活動機制的一部份。蛋白質活動可以是令酶活性化或鈍化。.

查看 蛋白质结构和翻译后修饰

真核生物

真核生物(学名:Eukaryota)是其细胞具有细胞核的单细胞生物和多细胞生物的总称,它包括所有动物、植物、真菌和其他具有由膜包裹着的复杂亚细胞结构的生物。 真核生物与原核生物的根本性区别是前者的细胞内含有细胞核,因此以真核来命名这一类细胞。许多真核细胞中还含有其它细胞器,如粒線體、叶绿体、高尔基体等。 由于具有细胞核,因此真核细胞的细胞分裂过程与没有细胞核的原核生物也大不相同。 真核生物在进化上是单源性的,都属于三域系统中的真核生物域,另外两个域为同属于原核生物的细菌和古菌。但由于真核生物与古菌在一些生化性质和基因相关性上具有一定相似性,因此有时也将这两者共同归于新壁總域演化支。 科學家相信,從基因證據來看,真核生物是細菌與古菌的基因融合體,它是某種古菌與細菌共生,異種結合的產物。.

查看 蛋白质结构和真核生物

絲氨酸

絲氨酸(serine)是一種非必需氨基酸,富含於鸡蛋、鱼、大豆,人体亦可從甘氨酸中合成丝氨酸。 絲氨酸在醫藥上有著廣泛用途。絲氨酸可促進脂肪和脂肪酸的新陳代謝,有助於維持免疫系統。.

查看 蛋白质结构和絲氨酸

組氨酸

组氨酸(Histidine,, C6H9N3O2)簡寫為His或H,α氨基酸結合咪唑官能團。是存在于蛋白质之中最普遍的23种氨基酸之一。初以為只針對嬰幼兒是必需的,較長期的研究表明,它也是成年人必不可少的必需氨基酸。等电点为7.59,是碱性氨基酸,生理条件下带正电荷。他的合成密碼子為 CAU 及 CAC。组氨酸在1896年由德国醫師艾布瑞契·科塞尔(Albrecht Kossel)首次分离出来。.

查看 蛋白质结构和組氨酸

疏水性

在化學裡,疏水性指的是一個分子与水互相排斥的物理性質。这种分子称为疏水物。 疏水性分子偏向於非極性,並因此較會溶解在中性和非極性溶液(如有机溶剂)。疏水性分子在水裡通常會聚成一團,而水在疏水性溶液的表面時則會形成一個很大的接觸角而成水滴状。 舉例來說,疏水性分子包含有烷烴、油、脂肪和多數含有油脂的物質。 疏水性通常也可以稱為親脂性,但這兩個詞並不全然是同義的。即使大多數的疏水物通常也是親脂性的,但還是有例外,如矽橡膠和碳氟化合物(Fluorocarbon)。.

查看 蛋白质结构和疏水性

病毒

病毒(virus,中文舊稱“濾過性病毒”)是由一个核酸分子(DNA或RNA)与蛋白质构成的非细胞形态,靠寄生生活的介於生命体及非生命體之間的有機物種,它既不是生物亦不是非生物,目前不把它歸於五界(原核生物、原生生物、真菌、植物和動物)之中。它是由一个保护性外壳包裹的一段DNA或者RNA,藉由感染的機制,这些简单的有機体可以利用宿主的细胞系统进行自我复制,但无法独立生长和复制。病毒可以感染几乎所有具有细胞结构的生命体。第一个已知的病毒是烟草花叶病毒,由马丁乌斯·贝杰林克于1899年发现并命名,迄今已有超过5000种类型的病毒得到鉴定。研究病毒的科学称为病毒学,是微生物学的一个分支。 病毒由两到三个成份组成:病毒都含有遺傳物質(RNA或DNA,只由蛋白质组成的朊毒體并不属于病毒);所有的病毒也都有由蛋白质形成的衣壳,用来包裹和保护其中的遗传物质;此外,部分病毒在到达细胞表面时能够形成脂质包膜环绕在外。病毒的形态各异,从简单的螺旋形和正二十面體形到複合型结构。病毒颗粒大约是细菌大小的百分之一。Collier pp.

查看 蛋白质结构和病毒

生物大分子

生物大分子指的是作为生物体内主要活性成分的各种分子量达到上万或更多的有机分子。常见的生物大分子包括蛋白质、核酸 (DNA、RNA等)、糖类。 这只是一個概念性定義,与生物大分子对立的是小分子物质(二氧化碳、甲烷等)和无机物质,实际上生物大分子的特点在于其表现出的各种生物活性和在生物新陈代谢中的作用。 比如:某些多肽和某些脂类物质的分子量并未达到惊人的地步,但其在生命过程中同样表现出了重要的生理活性。与一般的生物大分子并无二致。 生物大分子大多数是由简单的组成结构聚合而成的,蛋白质的组成单位是氨基酸,核酸的组成单位是核苷酸。 生物大分子都可以在生物体内由简单的结构合成,也都可以在生物体内经过分解作用被分解为简单结构,一般在合成的过程中消耗能量,分解的过程中释放能量。 蛋白质、核酸和多糖是3类主要的生物大分子,它们在分子结构和生理功能上差别很大,然而,在以下几个方面又显出共性:.

查看 蛋白质结构和生物大分子

生物化学

生物化学(biochemistry,也作 biological chemistry),顾名思义是研究生物体中的化学进程的一门学科,常常被简称为生化。它主要用于研究细胞内各组分,如蛋白质、糖类、脂类、核酸等生物大分子的结构和功能。而对于化学生物学来说,则着重于利用化学合成中的方法来解答生物化学所发现的相关问题。 虽然存在着大量不同的生物分子,但实际上有很多大的复合物分子(称为“聚合物”)是由相似的亚基(称为“单体”)结合在一起形成的。每一类生物聚合物分子都有自己的一套亚基类型。例如,蛋白质是由20种氨基酸所组成,而脱氧核糖核酸(DNA)由4种核苷酸构成。生物化学研究集中于重要生物分子的化学性质,特别着重于酶促反应的化学机理。 在生物化学研究中,对细胞代谢和内分泌系统的研究进行得相当深入。生物化学的其他研究领域包括遗传密码(DNA和RNA)、 蛋白质生物合成、跨膜运输(membrane transport)以及细胞信号转导。.

查看 蛋白质结构和生物化学

甲硫氨酸

硫氨酸(Methionine,又稱蛋胺酸),在所有後生動物中它是一種必需氨基酸。與半胱氨酸一起,甲硫氨酸是兩個含硫蛋白原氨基酸之一。對人而言是唯一的含硫必需氨基酸,有L型及D型兩種,與生物體內各種含硫化合物(如:蛋白質)的代謝密切相關。是体内活性甲基和硫的主要来源。 DL-蛋氨酸可利用化學法生產。蛋氨酸是強肝解毒劑、促進發育劑,當缺乏甲硫氨酸時,會引起食慾減退。甲硫氨酸廣泛應用於營養補充與畜產飼料,由於甲硫氨酸容易被雞吸收而轉變為雞肉蛋白,在雞飼料中添加甲硫氨酸,可少耗飼料,並使雞肉生長健全。目前甲硫氨酸主要有四類:固體甲硫氨酸、液態羥基甲硫氨酸(MHA)、液體甲硫氨酸鈉和固體羥基甲硫氨酸鈣,其中固體甲硫氨酸的市場最大。但在美國甲硫氨酸市場,液態羥基甲硫氨酸(MHA)為第一大。 甲硫胺酸在人體中由mRNA上的起始密碼子(含氮鹼基序列AUG)經核糖體轉譯後生成。.

查看 蛋白质结构和甲硫氨酸

甘氨酸

氨酸(glycine,简写为Gly或G),即胺基乙酸,是20个蛋白氨基酸中分子量最小的一个。它是白色或浅黄色晶体,易溶于水,有甜味。甘氨酸的侧键是一个氢原子。甘氨酸的α碳连接两个氢原子,故不是旋光异构体。由于甘氨酸的侧键非常小,它可以占据其它氨基酸无法占据的空间,比如作为胶原螺旋内的氨基酸。 在一些蛋白质中(比如细胞色素、肌红蛋白和血红蛋白)它随着进化的演变变化相当小,因为假如一个比较大的氨基酸取代它的话整个蛋白质的结构就会变化。 大多数蛋白质只含少量甘氨酸,膠原蛋白是一个重要的例外,它含三分之一的甘氨酸。.

查看 蛋白质结构和甘氨酸

異亮氨酸

异亮氨酸(Isoleucine、簡寫:三字母: Ile;一字母: I)是二十種基本胺基酸的其中一種,幾乎在所有蛋白質的結構裡都存在著。其化學組成和亮氨酸完全一樣,但原子连接/排列顺序不同,因此与亮氨酸有不同的性質。异亮氨酸屬於疏水性胺基酸。 异亮氨酸有兩個對掌中心,所以有四種立體異構物和兩個L-异亮氨酸的非對映體。但無論如何,自然所存在的异亮氨酸只有一種類型,即L-异亮氨酸。 營養學上,异亮氨酸是人類的必需胺基酸,人体无法合成异亮氨酸,只能通过体外摄取。异亮氨酸的豐富來源有:蛋、雞、豬肉、羊肉、豆、大豆、白乾酪、牛奶、腰果、穀物。.

查看 蛋白质结构和異亮氨酸

螺旋-轉角-螺旋

螺旋-轉角-螺旋(helix-turn-helix,简称为HTH)是一種蛋白質的結構基序(structural motif),可與DNA進行結合。此結構是由一條氨基酸短鏈將兩個α螺旋連結在一起,可見於許多專門調節基因表現的蛋白質。與DNA的結合,是經由蛋白質與鹼基之間的氫鍵及凡得瓦力來進行,結合位置是DNA的大凹槽(參見DNA條目,例外:TATA联结蛋白的该结构结合位置为小凹槽)。.

查看 蛋白质结构和螺旋-轉角-螺旋

萊納斯·鮑林

萊納斯·卡爾·鮑林(Linus Carl Pauling,),美國化学家,量子化學和結構生物學的先驱者之一。1954年因在化學鍵方面的工作取得诺贝尔化学奖,1963年因反對核彈在地面測試的行動获得1962年度的诺贝尔和平奖,成為获得不同诺贝尔奖项的兩人之一(另一人為居里夫人);也是唯一的一位每次都是独立地获得诺贝尔奖的获奖人。其後他主要的行動為支持維他命C在醫學的功用。鮑林被认为是20世纪对化学科学影响最大的人之一,他所撰写的《化学键的本质》被认为是化学史上最重要的著作之一。他以量子力學入手分析化學問題,結論卻以直觀、淺白的概念重新闡述,即便未受量子力學訓練的化學家亦可利用準確的直觀圖像研究化學問題,影響至為深遠,比如他所提出的許多概念:电负度、共振論、价键理论、混成軌域、蛋白质二級結構等概念和理论,如今已成為化学領域最基础和最广泛使用的觀念。 他晚年过度吹捧营养补充品的药用价值,并提倡使用高剂量的维生素C治疗感冒,给自己的声誉带来了负面影响。.

查看 蛋白质结构和萊納斯·鮑林

順時針方向

以順時針方向運行指依從時針移動的方向運行(如右上圖),即可視為由右上方向下,然後轉向左,再回到上。數學上,在直角坐标系以方程式x.

查看 蛋白质结构和順時針方向

類澱粉蛋白

類澱粉蛋白(amyloid)是一種不可溶的纖維性蛋白質,。在器官中不正常的堆積,會造成類澱粉沉積症()。在許多神經性疾病,如阿茲海默症、帕金森氏症中,都可以觀察到神經系統中出現大量類澱粉蛋白的累積沉澱。許多學者相信它可能導致腦部或其他器官退化或功能障礙。.

查看 蛋白质结构和類澱粉蛋白

衣壳

衣壳是病毒的蛋白质外壳,又称为壳体。衣壳是由病毒衣壳蛋白亚基所形成的寡聚体。衣壳的作用是用于包裹病毒的遗传物质(核酸)。.

查看 蛋白质结构和衣壳

親水性

親水性指分子能夠透過氫鍵和水分子形成短暫鍵結的物理性質。因為熱力學上合適,這種分子不只可以溶解在水裡,也可以溶解在其他的極性溶液內。 一個親水性分子,或說分子的親水性部份,是指其有能力極化至能形成氫鍵的部位,並使其對油或其他疏水性溶液而言,更容易溶解在水裡面。親水性和疏水性分子也可分別稱為極性和非極性分子。 肥皂擁有親水性和疏水性兩端,以使其可以溶解在水裡,也可以溶解在油裡。因此可得,肥皂可以去除掉水和油之間的界面。.

查看 蛋白质结构和親水性

谷氨醯胺

--氨酰胺(Glutamine)亦被稱作麩醯胺酸,為人體中含量最豐富的非必需胺基酸,且是唯一一種可直接通過腦血管障壁(BBB)的胺基酸。在人體中儲存於骨骼肌或血液中。當受傷或患病時,谷氨酰胺可能需要藉由攝取含Gln的食物來獲得足夠的量。生物体通过谷氨酰胺合成酶催化谷氨酸和铵盐反应生成谷氨酰胺。.

查看 蛋白质结构和谷氨醯胺

谷氨酸

谷氨酸(英語:Glutamic acid)是α-氨基戊二酸是组成生物体内各种蛋白质的20種氨基酸之一。.

查看 蛋白质结构和谷氨酸

质谱法

质谱(mass spectrometry,缩写:MS)是一种电离化学物质并根据其质荷比(质量-电荷比)对其进行排序的分析技术。简单来说,质谱测量样品内的质量。 质谱法被用于许多不同领域,并被用于纯样品和复杂混合物。 质谱是离子信号作为质荷比的函数的曲线图。这些频谱被用于确定样品的元素或,颗粒和分子的质量,并阐明分子的化学结构,如肽和其他化合物。 在典型的质谱法中,可以是固体,液体或气体的样品被电离,例如用电子轰击它。 这可能导致一些样品的分子破碎成带电的碎片。 然后,这些离子根据其质荷比被分离,通常通过加速它们并使其经受电场或磁场:相同质荷比的离子将经历相同数量的偏转。离子通过能够探测带电粒子的机制被探测到,例如一个电子倍增管。 结果被显示为作为质荷比的函数的已经探测离子的相对丰度的频谱。 样品中的原子或分子可以通过将已知质量与鉴定的质量相关联或通过特征分解模式来鉴定。.

查看 蛋白质结构和质谱法

超二级结构

蛋白质超二级结构又称为蛋白质的“标准折叠单位”或“折叠花式”,是介于蛋白质二级结构与蛋白质三级结构之间的蛋白质结构层次。 蛋白质超二级结构是指由蛋白质分子中若干个相邻的二级结构元件(主要为α螺旋与β折叠)组合在一起、彼此相互作用,形成种类不多的、有规则、在空间中可於辨认的二级结构组合或二级结构串,在多种蛋白质(主要为球蛋白)中充当三级结构的构件。 蛋白质超二级结构的概念由美国物理学家及微生物学家Rossmann M.G.于1973年首次提出。.

查看 蛋白质结构和超二级结构

转录后修饰

转录后修饰(RNA修飾,或稱修飾RNA)是真核细胞中,将初级转录RNA转化为成熟RNA的加工过程。一个很好的例子就是前mRNA转化为成熟的mRNA,其中包括剪接,并发生在蛋白质生物合成之前。这一加工过程对于真核生物基因组的正确翻译至关重要,这是因为真核生物的初级转录RNA中包含既包括用于编码蛋白质的外显子又包含非编码的內含子。.

查看 蛋白质结构和转录后修饰

软件包

软件包是对于一种软件所进行打包的方式。在不同的操作系统中,软件包的类型有很大的区别。.

查看 蛋白质结构和软件包

范德华力

范德华力(Van der Waals force)在化学中指分子之间非定向的、无饱和性的、较弱的相互作用力,根据荷兰物理学家约翰内斯·范德瓦耳斯命名。范德华力是一种电性引力,但它比化学鍵或氢键弱得多,通常其能量小於5kJ/mol。范德华力的大小和分子的大小成正比。 范德华力的主要来源有三种机制:.

查看 蛋白质结构和范德华力

胺(英語:amine)是氨分子(NH3)中的氢被烃基取代后形成的一类有机化合物。氨基(-NH2、-NHR、-NR2)是胺的官能团。 如果氮原子连着羰基(C.

查看 蛋白质结构和胺

蘇氨酸

蘇氨酸(Threonine)是一種必需的氨基酸,為白色斜方晶系或結晶性粉末,微甜。因結構與蘇糖相似而得名。主要用於醫藥、化學試劑、營養強化劑,可以強化乳製品,具有恢復人體疲勞,促進生長發育的效果。L-蘇氨酸是一種飼料的原料。 Category:蛋白氨基酸 Category:生糖氨基酸 Category:生酮氨基酸 Category:必需氨基酸.

查看 蛋白质结构和蘇氨酸

赖氨酸

#重定向 離胺酸.

查看 蛋白质结构和赖氨酸

钙(Calcium)是一種化学元素。其化学符号是Ca,原子序数是20。鈣是银白色的碱土金属,具有中等程度的軟性。雖然在地殼的含量也很高,為地殼中第五豐富的元素,占地殼總質量3%,因其化學活性頗高,可以和水或酸反應放出氫氣,或是在空氣中便可氧化(形成緻密氧化層(氧化鈣)),因此在自然界多以離子狀態或化合物形式存在,而沒有单质存在。在工業的主要礦物來源如石灰岩、石膏等,在建筑(水泥原料)、肥料、制鹼、和医疗上用途佷广。.

查看 蛋白质结构和钙

钙调蛋白

钙调蛋白(Calmodulin,简称CaM),是一種能与钙离子结合的蛋白质,普遍存在真核生物细胞中。 钙调蛋白是一种多功能中介钙结合蛋白。它是第二信使Ca^2+的细胞内靶点,钙调蛋白的激活需要Ca^2+的结合。一旦与Ca^2+结合,钙调蛋白作为钙信号转导通路的一部分,通过改变激酶或磷酸酶等目标蛋白的活性而起到信号转导的作用。.

查看 蛋白质结构和钙调蛋白

肽(peptide,來自希臘文的“消化”),即胜肽,又稱縮氨酸,是天然存在的小生物分子,介於胺基酸和蛋白質之間的物質。 由於胺基酸的分子最小,蛋白質最大,而它們則是氨基酸單體組成的短鏈,由肽(酰胺)鍵連接。當一個氨基酸的羧基基團與另一個氨基酸的氨基反應時,形成該共價化學鍵。肽由氨基酸組成的短鏈是精準的蛋白質片段,其分子只有纳米般大小,腸胃、血管及肌膚皆極容易吸收。二胜肽(簡稱二肽),就是由二個胺基酸組成的蛋白質片段,兩個或以上的胺基酸脫水縮合形成若干個肽鍵從而組成一個肽,多個肽進行多級折叠就組成一個蛋白質分子。蛋白質有時也稱為“多肽”。.

查看 蛋白质结构和肽

肽键

肽鍵(Peptide bond,)是一分子胺基酸的α-羧基(-COOH)和另一分子胺基酸的α-胺基(-NH2)脱水缩合形成的酰胺键,即-CO-NH-,為連結兩單體胺基酸之共價鍵,氨基酸借肽键联结成多肽链。由於共振而無法自由旋轉,具部分雙鍵特性。.

查看 蛋白质结构和肽键

肌动蛋白

肌动蛋白(actin)是一类分子量大约在42,000的球状蛋白质。除了线虫类精子细胞,在所有的真核细胞当中均发现有该蛋白质,浓度约在100μM以上。肌动蛋白是生物体中微丝的两个单体亚基之一,而微丝则是细胞骨架三大组成结构之一,肌动蛋白还构成了肌细胞中具有收缩功能的组织。所以,肌动蛋白对于细胞活动起到很大的作用,比如肌肉的收缩,细胞的转移、分裂和原质的流动,动物胞囊和器官的运动,细胞间信息的传递,以及细胞的形状和连结的建立和维持等等。 有许多疾病是由调控肌动蛋白基因表达活性的蛋白及其相关蛋白的等位基因突变引起的。肌动蛋白基因表达也是一些病原微生物感染过程中的关键因素。一些肌动蛋白调孔蛋白的突变会导致,包括心脏大小与功能的变化以及耳聋等。细胞骨架的组装也与细胞内细菌与病毒的致病性有关,特别是在逃避免疫系统作用有关的过程中。.

查看 蛋白质结构和肌动蛋白

键长

鍵长是两个成键原子A和B的平衡核间距离。它是了解分子结构的基本构型参数,也是了解化学键强弱和性质的参数。对于由相同的A和B两个原子组成的化学键:键长值小,键强;键的数目多,键长值小。在实际的分子中,由于受共轭效应、空间阻碍效应和相邻基团电负性的影响,同一种化学键键长还有一定差异。由大量的键长值可以推引出成键原子的原子半径;反之,利用原子半径的加和值可得这种化学键的典型键长。若再考虑两个原子电负性差异的大小予以适当校正,和实际测定制会符合得很好。各种分子中键长的数值,大量地已通过晶体的X射线衍射法予以测定;为数较少的简单的气态分子和X-H键长已通过光谱法和中子衍射法测出。.

查看 蛋白质结构和键长

脯氨酸

脯氨酸(Proline,縮寫為Pro 或P )是一個α-氨基酸,20個DNA編碼的其中之一。其對應密碼子為CCU,CCC,CCA和CCG。 脯氨酸不是一種必需氨基酸,人體可以自行合成。在20個蛋白質形成氨基酸中,其最特別之處在於胺氮被綁定到並非一個而是兩個烷基基團,因此使它具有仲氨,L型較常具有S立體化學。.

查看 蛋白质结构和脯氨酸

膜蛋白

#重定向 膜蛋白质.

查看 蛋白质结构和膜蛋白

酪氨酸

酪氨酸(Tyrosine, 縮寫為 Tyr or Y) 或 4 - 羥基苯丙氨酸, 是細胞用來合成蛋白質的22種胺基酸之一,在細胞中可用於合成蛋白質,其密碼子為UAC和UAU,屬於含有極性側基,人體可自行合成的非必需胺基酸。單詞“酪氨酸”是來自希臘語 tyros,意思奶酪。19世紀初被德國的化學家尤斯图斯·冯·李比希首先在起司的酪蛋白中發現, ,當用作於官能基或側基時則稱做酪氨酰。.

查看 蛋白质结构和酪氨酸

色氨酸

色氨酸(Tryptophan, 縮寫Trp或W)是22個標準氨基酸之一,人體不能合成的必需氨基酸,因此它須從食物中汲取。它的標準遺傳密碼的密碼子編碼為UGG,只有L-立體異構體色氨酸有構造或酶活蛋白質的作用,R-立體異構體則偶爾在自然產生的肽中發現。色氨酸的明顯結構式特徵是,它含有吲哚官能團。它是血清素(亦称“5-羟色胺”)的前體,血清素是重要的神經递质。.

查看 蛋白质结构和色氨酸

苯丙氨酸

苯丙氨酸(Phenylalanine,簡稱Phe或F),是二十種常見胺基酸的一種,化學式為:C6H5CH2CH(NH2)COOH,在室溫下為粉末狀固體。它是一種必需胺基酸,人體無法自行合成,必須從飲食中攝取。因為分子一端的苯環具有疏水性,所以苯丙胺酸被分類為非極性分子。 L-苯丙胺酸(LPA)為一種電中性胺基酸,它的合成密碼子为"UUU"和"UUC"。苯丙氨酸作為酪氨酸,單胺類信號傳導分子的多巴胺,去甲腎上腺素,和腎上腺素,以及皮膚色素的黑色素的前體。苯丙氨酸是在哺乳動物的乳汁中天然發現。它用於食品和飲料產品的製造,並作為以其著名的止痛和抗抑鬱作用的營養補充劑出售。它是一種神經調節劑苯乙胺的直接前體,一種常用的膳食補充劑。 一般由植物生成苯丙胺酸,如下圖:.

查看 蛋白质结构和苯丙氨酸

蛋白質生物合成

蛋白質生物合成是指在生物細胞內製造新的蛋白質,它是通過蛋白酶解或細胞蛋白的損耗被平衡。翻译,蛋白質的核糖體組裝,是生物合成途徑的一個重要組成部分,隨著生成的信使RNA(mRNA),轉移RNA(tRNA的)氨酰化,合作翻譯轉運,並翻譯後修飾。蛋白質的生物合成在多個步驟有嚴格的调控,和已建立錯誤檢查機制。 順反子DNA被轉錄成RNA的各種中間體。最後的版本被用作在合成多肽鏈的模板。蛋白質通常會直接從基因通過翻譯的mRNA合成。 這個名詞曾經是指蛋白質的翻譯,但現時則是指一個多重的步驟,以轉錄開始及翻譯作結。 原核生物的蛋白質生物合成雖然與真核生物的很相似,但是它们有所不同。.

查看 蛋白质结构和蛋白質生物合成

蛋白質資料庫

蛋白質資料庫(Protein Data Bank,简称PDB)是一個專門收錄蛋白質及核酸的三維結構資料的数据庫。由Worldwide Protein Data Bank监管。PDB可以经由网络免费访问,是结构生物学研究中的重要资源。为了确保PDB资料的完备与权威,各个主要的科学杂志、基金组织会要求科学家将自己的研究成果提交给PDB。在PDB的基础上,还发展出来若干依据不同原则对PDB结构数据进行分类的数据库,例如GO将PDB中的数据按基因进行了分类。這些資料和數據一般是世界各地的结构生物学家經由X射線晶體學或NMR光譜學實驗所得,並釋放到公有領域供公众免費使用。.

查看 蛋白质结构和蛋白質資料庫

蛋白质

蛋白质(protein,旧称“朊”)是大型生物分子,或高分子,它由一个或多个由氨基酸残基组成的长链条组成。氨基酸分子呈线性排列,相邻氨基酸残基的羧基和氨基通过肽键连接在一起。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种“标准”氨基酸,在蛋白质中,某些氨基酸残基还可以被改變原子的排序而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,发挥某一特定功能。 与其他生物大分子(如多糖和核酸)一样,蛋白质是地球上生物体中的必要组成成分,参与了细胞生命活动的每一个进程。酶是最常见的一类蛋白质,它们催化生物化学反应,尤其对于生物体的代谢至关重要。除了酶之外,还有许多结构性或机械性蛋白质,如肌肉中的肌动蛋白和肌球蛋白,以及细胞骨架中的微管蛋白(参与形成细胞内的支撑网络以维持细胞外形)。另外一些蛋白质则参与细胞信号传导、免疫反应、细胞黏附和细胞周期调控等。同时,蛋白质也是动物饮食中必需的营养物质,这是因为动物自身无法合成所有氨基酸,动物需要和必须从食物中获取必需氨基酸。通过消化过程将蛋白质降解为自由氨基酸,动物就可以将它们用于自身的代谢。.

查看 蛋白质结构和蛋白质

蛋白质亚基

蛋白质亚基(英语:Protein subunit)、蛋白亚基或亚基蛋白在结构生物学中是指参与组成蛋白质复合物(寡聚体或多聚体)的单个蛋白质分子。一个蛋白质亚基就是一条多肽链,而一条多肽链是由一組基因所编码,这就意味着每个亚基都由一組基因编码。.

查看 蛋白质结构和蛋白质亚基

蛋白质四级结构

蛋白质四级结构(Protein quaternary structure)是生物化学中用于描述多亚基蛋白质复合物中各个折叠蛋白质亚基的排列组合。.

查看 蛋白质结构和蛋白质四级结构

蛋白质折叠

蛋白质折叠(Protein folding)是蛋白质获得其功能性结构和构象的过程。通过这一物理过程,蛋白质从无规则卷曲折叠成特定的功能性三维结构。在从mRNA序列翻译成线性的氨基酸链时,蛋白质都是以去折叠多肽或无规则卷曲的形式存在。 蛋白質的基本單位為胺基酸,而蛋白質的一級結構指的就是其胺基酸序列,蛋白質會由所含胺基酸残基的親水性、疏水性、帶正電、帶負電……等等特性通过残基间的相互作用而摺疊成一立體的三级結構。 根据克里斯琴·B·安芬森(1972年的諾貝爾化學獎得主)的研究,蛋白質可由加熱或置於某些化學環境而变性,三级结构解体;而當環境回復到原本的狀態時,蛋白質可於不到一秒的時間折疊至原先的立體結構,不論試驗幾次,蛋白質都僅此一種立體結構,於是Anfinsen提出一個結論:蛋白质分子的一级结构决定其立體结构。 安芬森的研究结果非常重要,因為蛋白質的功能取決於其立體結構,而目前根据已知某基因序列可翻译获得对应蛋白质的胺基酸序列,既蛋白質的一級結構;如果從蛋白質的一級結構就能知道立體結構,那麼即可直接從基因推测其编码蛋白质所對應的生物学功能。虽然蛋白質可在短時間中從一級結構摺疊至立體結構,研究者卻無法在短時間中從胺基酸序列計算出蛋白质結構,甚至无法得到准确的三维结构。因此,研究蛋白质折叠的过程,可以说是破译“第二遗传密码”——折叠密码(folding code)的过程。 目前蛋白质的再折叠依然遵从先使用胍或脲变性,然后逐渐降低胍或者脲的浓度,也就是逐渐降低对蛋白质天然“回缩”能力的干扰。使其自然回到天然的最低能量状态。只是这个过程无法很好的控制肽链与肽链之间和肽链内部形成错误折叠的干扰。.

查看 蛋白质结构和蛋白质折叠

PyMOL

PyMOL是一个开放源码,由使用者贊助的分子三维结构显示软件。由Warren Lyford DeLano编写,並且由DeLano Scientific LLC將它商業化。DeLano Scientific LLC是一個私人的軟體公司,它致力於創造讓普遍的科學與教育社群都能取得的好用軟體工具。 PyMOL适用于创作高品質的小分子或是生物大分子(特别是蛋白質)的三维结构圖像。軟體的作者宣称,在所有正式发表的科學文獻中的蛋白質結構圖像中,有四分之一是使用PyMOL來製作。 PyMOL是少數可以用在結構生物学领域的开放源代码視覺化工具。 軟體以Py+MOL命名:“Py”表示它是由一种计算机语言Python所衍生出來的,“MOL”表示它是用于显示分子(英文为molecule)结构的软件。.

查看 蛋白质结构和PyMOL

Rosetta@home

Rosetta@home 是一个基于伯克利开放式网络计算平台(BOINC)的分布式计算项目,由华盛顿大学开发和维护,用于蛋白质结构预测、蛋白质-蛋白质对接和新的的研究。截至2015年2月12日,全球共有5万多台计算机是这一项目的活跃志愿者,平均每秒浮點運算次數达87万亿(87.688 teraFLOPS)。Rosetta@Home还开发了一款电子游戏Foldit,目的是通过众包途径来实现上述研究目标。尽管这个项目很大程度上侧重于进行提高蛋白质组学方法的精确性和稳固性的基础研究,它也进行一些关于艾滋病、疟疾、癌症、阿兹海默病以及其他疾病的病理学的应用研究。 与其他BOINC项目一样,Rosetta@home使用志愿者的计算机中空闲的进程资源来执行单独的单元计算。计算结果会被发送到项目的中央服务器,经验证後存入数据库中。这个项目是跨平台的,支持多种不同的软件和硬件环境。用户可通过Rosetta@home的屏幕保护程序观看正在自己计算机上进行的蛋白质结构预测的情况。 除了疾病相关研究,Rosetta@home网络还是结构生物信息学中新方法的一个测试框架。这些新方法经Rosetta@home庞大且多样的用户群体使用後,若运行效果稳定,将会被用于其他基于Rosetta的应用程序,例如RosettaDock和(HPF)。新方法测试中的两个重要项目是(CASP)和(CAPRI)。这两项测试实验分别用于评估蛋白质结构预测和蛋白质-蛋白质对接预测的最前沿技术。Rosetta@home稳居最重要的对接预测器之一,并且是现有最好的蛋白质三级结构预测器之一。.

查看 蛋白质结构和Rosetta@home

X射线晶体学

X射線晶體學是一門利用X射線來研究晶體中原子排列的學科。更準確地說,利用電子對X射線的散射作用,X射線晶體學可以獲得晶體中電子密度的分佈情況,再從中分析獲得关于原子位置和化学键的資訊,即晶體結構。 由于包括盐类、金属、矿物、半导体在内的许多物质都可以形成晶体,X射线晶体学已经是许多学科的基本技术。在前十年这项技术主要被用于测量原子大小、化学键的类型和键长,以及其他的许多物质,尤其是矿物和合金。X射线晶体学也揭示了许多生物分子的结构和功能,例如维生素、药物、蛋白质以及脱氧核糖核酸(DNA)。X射线晶体学如今仍然是从原子尺度研究物质结构的主要方法。.

查看 蛋白质结构和X射线晶体学

核磁共振

核磁共振(NMR,Nuclear Magnetic Resonance)是基於原子尺度的量子磁物理性質。具有奇數質子或中子的核子,具有內在的性質:核自旋,自旋角動量。核自旋產生磁矩。NMR觀測原子的方法,是將樣品置於外加強大的磁場下,現代的儀器通常採用低溫超導磁鐵。核自旋本身的磁場,在外加磁場下重新排列,大多數核自旋會處於低能態。我們額外施加電磁場來干涉低能態的核自旋轉向高能態,再回到平衡態便會釋放出射頻,這就是NMR訊號。利用這樣的過程,可以進行分子科學的研究,如分子結構、動態等。.

查看 蛋白质结构和核磁共振

核糖体

核糖体,旧称“核糖核蛋白体”或“核蛋白体”,是细胞中的一种细胞器因为在某些场合“细胞器”一词也会被用于专指具有磷脂双分子层膜结构的亚细胞结构,而核糖体虽然已是一种公认的细胞器,却是没有被膜包裹、完全裸露的大分子,所以核糖体有时会被严格地定义为“无膜细胞器”(non-membranous organelles)。,由一大一小两个-zh-tw:次單元;zh-cn:亚基-结合形成,主要成分是相互缠绕的RNA(称为“核糖体RNA”,ribosomal RNA,简称“rRNA”)和蛋白质(称为“核糖体蛋白质”,ribosomal protein,简称“RP”)。核糖体是细胞内蛋白质合成的场所,能读取信使RNA核苷酸序列所包含的遗传信息,并使之转化为蛋白质中氨基酸的序列信息以合成蛋白质。在原核生物及真核生物(地球上的两种具有细胞结构的主要生命形式,前者可细分为古菌、真细菌两类)的细胞中都有核糖体存在。一般而言,原核细胞只有一种核糖体,而真核细胞具有两种核糖体(线粒体和叶绿体中的核糖体与细胞质核糖体不相同)。 核糖体在细胞中负责完成“中心法则”裡由RNA到蛋白质这一过程,此过程在生物学中被称为“翻译”。在进行翻译前,核糖体小次單元会先与从细胞核中转录得到的信使RNA(messenger RNA,简称“mRNA”)结合,再结合核糖体大次單元构成完整的核糖体之后,便可以利用细胞质基质中的转运RNA(transfer RNA,简称“tRNA”)运送的氨基酸分子合成多肽。当核糖体完成对一条mRNA单链的翻译后,大小--会再次分离。 英语中的“核糖体”(ribosome)一词是由“核糖核酸”(“ribo”)和希腊语词根“soma”(意为“体”)组合而成的。.

查看 蛋白质结构和核糖体

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

查看 蛋白质结构和氢

氢键

氫鍵是分子間作用力的一種,是一种永久偶极之间的作用力,氢键发生在已经以共价键与其它原子键结合的氢原子与另一个原子之间(X-H…Y),通常发生氢键作用的氢原子两边的原子(X、Y)都是电负性较强的原子。氢键既可以是分子间氢键,也可以是分子内的。其键能最大约为200kJ/mol,一般为5-30kJ/mol,比一般的共价键、离子键和金属键键能要小,但强于静电引力。 氢键对于生物高分子具有尤其重要的意义,它是蛋白质和核酸的二、三和四级结构得以稳定的部分原因。.

查看 蛋白质结构和氢键

氧(IUPAC名:Oxygen)是一種化學元素,符號為O,原子序為8,在元素週期表中屬於氧族。氧屬於非金屬,是具有高反應性的氧化劑,能夠與大部分元素以及其他化合物形成氧化物。氧在宇宙中的總質量在所有元素中位列第三,僅居氫和氦之下。Emsley 2001, p.297在標準溫度和壓力下,兩個氧原子会自然鍵合,形成無色無味的氧氣,即雙原子氧()。氧氣是地球大氣層的主要成分之一,在體積上佔20.8%。地球地殼中近一半的質量都是由氧和氧化物所組成。 氧是細胞呼吸作用中重要的元素。在生物體中,主要有機分子,如蛋白質、核酸、碳水化合物和脂肪等,還有組成動物外殼、牙齒和骨骼的無機化合物,都含有氧原子。生物體絕大部分的質量都由含氧原子的水組成。光合作用利用陽光的能量把水和二氧化碳轉化為氧氣。氧氣的化學反應性強,容易與其他元素結合,所以大氣層中的氧氣成分只能通過生物的光合作用持續補充。臭氧()是氧元素的另一種同素異構體,能夠較好地吸收中紫外線輻射。位於高海拔的臭氧層有助阻擋紫外線,從而保護生物圈。不過,在地表上的臭氧屬於污染物,為霧霾的副產品之一。在低地球軌道高度的單原子氧足以對航天器造成腐蝕。 卡爾·威廉·舍勒於1773年或之前在烏普薩拉最早發現氧元素。約瑟夫·普利斯特里亦於1774年在威爾特郡獨立發現氧,因為其成果的發表日期較舍勒早,所以一般被譽為氧的發現者。1777年,安東萬-羅倫·德·拉瓦節進行了一系列有關氧的實驗,推翻了當時用於解釋燃燒和腐蝕的燃素說。他也提出了氧的現用IUPAC名稱「oxygen」,源自希臘語中的「ὀξύς」(oxys,尖銳,指酸)和「-γενής」(-genes,產生者)。這是因為命名之時,人們曾以為所有酸都必須含有氧。許多化學詞彙都在清末傳入中國,其中原法文元素名「oxygène」被譯為「養」,後譯為「氱」,最終演變為今天的中文名「氧」。 氧的應用包括暖氣、內燃機、鋼鐵、塑料和布料的生產、金屬氣焊和氣割、火箭推進劑、及航空器、潛艇、載人航天器和潛水所用的生命保障系統。.

查看 蛋白质结构和氧

氨基酸

胺基酸是生物學上重要的有機化合物,它是由胺基(-NH2)和羧基(-COOH)的官能團組成的,以及一個側鏈连到每一個胺基酸。胺基酸是構成蛋白質的基本單位。賦予蛋白質特定的分子結構形態,使他的分子具有生化活性。蛋白質是生物体內重要的活性分子,包括催化新陳代謝的酶(又称“酵素”)。 不同的胺基酸脱水缩合形成肽(蛋白質的原始片段),是蛋白質生成的前.

查看 蛋白质结构和氨基酸

氮是一种化学元素,其化学符号为N;原子序数是7。在自然界中氮单质最普遍的形态是氮气,这是一种在标准状况下无色无味无臭的雙原子气体分子,由于化学性质稳定而不容易发生化學反应。氮气是地球大气中含量最多的气体,佔總體積的78.09%。1772年在苏格兰爱丁堡,由丹尼尔·卢瑟福分離空氣後发现。氮属于氮族元素中的一种。 氮是宇宙中常見的元素,在銀河系及太陽系的豐度排第七名。其生成的原因推測是由於超新星中碳和氫產生的核融合。由於氮元素及其和氫、氧形成的常见化合物都极易揮發,因此在內太陽系中的類地行星中氮元素較不常見。不過和地球一样,其他行星及其卫星的大氣層中,气态的氮及其化合物很常见。 很多工业上很重要的化合物(比如氨、硝酸、用作推进剂或炸药的有机硝酸盐以及氰化物)都含有氮原子。氮原子之间具有非常牢固的化学键,无论是在工业中或是在生物体內,将转化为有用的含氮化合物都是很不容易的。相应的,当含氮化合物燃烧,爆炸或分解时会产生氮气,并通常可以释放大量有用的能量。合成产生的氨和硝酸盐是关键的工业化肥料,而硝酸盐肥料是引起水系统富营养化的关键污染物。 含氮化合物除了作为肥料和能量储存的功用之外还有其他多种用途。氮是克維拉纤维和氰基丙烯酸酯强力胶水等多种材料的组成部分。在各种药学药品的大类中(包括抗生素)都含有氮元素。许多药物都是天然含氮信号分子的类似物或前体药物。比如,有机硝酸盐硝酸甘油和硝普钠在体内代谢产生一氧化氮以控制血压。植物中的生物鹼(经常是防卫性化合物)根据定义是含有氮的,许多知名的含氮药物(比如咖啡因和吗啡)是生物碱或是合成的天然产物类似物,像许多植物生物碱一样用作于动物体内的神经传导物质的接收器上(例如合成苯丙胺)。 氮主要存在于所有的有机体的氨基酸(以及蛋白质)和核酸(DNA和RNA)之中。人类身体中的3%的重量都是氮元素构成的,其含量仅次于氧元素、碳元素和氢元素。氮循环是指氮元素从空气进入生物圈和有机化合物中然后再返回大气的转移过程。.

查看 蛋白质结构和氮

手性

手性,又稱對掌性(英语:chirality、iː)一词源于希腊语词干“手”χειρ(chir),在多种学科中表示一种重要的对称特点。 如果某物体与其镜像不同,则其被称为“手性的(英语:chiral)”,且其镜像是不能与原物体重合的,就如同左手和右手互为镜像而无法叠合。手性物体与其镜像被称为对映体(enantiomorph,希腊语意为“相对/相反形式”);在有关分子概念的引用中也被称为对映异构体。可与其镜像叠合的物体被称为非手性的(achiral),有时也称为双向的(amphichiral)。.

查看 蛋白质结构和手性

拉氏图

拉氏图(又名 Ramachandran 图,图, α-碳与酰胺平面交角图,英名 Ramachandran plot, Ramachandran diagram, 或 plot),起初是于1963年被 G. N. Ramachandran,C.

查看 蛋白质结构和拉氏图

另见

蛋白質結構

亦称为 蛋白質結構測定方法。

真核生物絲氨酸組氨酸疏水性病毒生物大分子生物化学甲硫氨酸甘氨酸異亮氨酸螺旋-轉角-螺旋萊納斯·鮑林順時針方向類澱粉蛋白衣壳親水性谷氨醯胺谷氨酸质谱法超二级结构转录后修饰软件包范德华力蘇氨酸赖氨酸钙调蛋白肽键肌动蛋白键长脯氨酸膜蛋白酪氨酸色氨酸苯丙氨酸蛋白質生物合成蛋白質資料庫蛋白质蛋白质亚基蛋白质四级结构蛋白质折叠PyMOLRosetta@homeX射线晶体学核磁共振核糖体氢键氨基酸手性拉氏图