分布式计算和蛋白质结构
快捷方式: 差异,相似,杰卡德相似系数,参考。
分布式计算和蛋白质结构之间的区别
分布式计算 vs. 蛋白质结构
在計算機科學中,分布式计算(Distributed computing),又譯為--。這個研究領域,主要研究分散式系統(Distributed system)如何進行計算。分散式系統是一組電腦,透過網路相互连接傳遞訊息與通訊後并协调它们的行为而形成的系統。组件之间彼此进行交互以实现一个共同的目标。把需要进行大量计算的工程数据分割成小块,由多台计算机分别计算,再上传运算结果後,將結果统一合并得出数据结论的科学。分布式系统的例子来自有所不同的面向服务的架构,大型多人線上遊戲,对等网络应用。 目前常见的分布式计算项目通常使用世界各地上千万志愿者计算机的闲置计算能力,通过互联网进行数据传输(志愿计算)。如分析计算蛋白质的内部结构和相关药物的Folding@home项目,該项目結構庞大,需要惊人的计算量,由一台电脑计算是不可能完成的。虽然现在有了计算能力超强的超级計算機,但這些設備造價高昂,而一些科研机构的经费却又十分有限,藉助分佈式計算可以花費較小的成本來達到目標。. 蛋白质结构是指蛋白质分子的空间结构。作为一类重要的生物大分子,蛋白质主要由碳、氢、氧、氮、硫等化学元素组成。所有蛋白质都是由20种不同的L型α氨基酸连接形成的多聚体,在形成蛋白质后,这些氨基酸又被称为残基。蛋白质和多肽之间的界限并不是很清晰,有人基于发挥功能性作用的结构域所需的残基数认为,若残基数少于40,就称之为多肽或肽。要发挥生物学功能,蛋白质需要正确折叠为一个特定构型,主要是通过大量的非共价相互作用(如氢键,离子键,范德华力和疏水作用)来实现;此外,在一些蛋白质(特别是分泌性蛋白质)折叠中,二硫键也起到关键作用。为了从分子水平上了解蛋白质的作用机制,常常需要测定蛋白质的三维结构。由研究蛋白质结构而发展起来了结构生物学,采用了包括X射线晶体学、核磁共振等技术来解析蛋白质结构。 一定数量的残基对于发挥某一生物化学功能是必要的;40-50个残基通常是一个功能性结构域大小的下限。蛋白质大小的范围可以从这样一个下限一直到数千个残基。目前估计的蛋白质的平均长度在不同的物种中有所区别,一般约为200-380个残基,而真核生物的蛋白质平均长度比原核生物长约55%。更大的蛋白质聚合体可以通过许多蛋白质亚基形成;如由数千个肌动蛋白分子聚合形成蛋白纤维。.
之间分布式计算和蛋白质结构相似
分布式计算和蛋白质结构有1共同点(的联盟百科): 蛋白质。
蛋白质(protein,旧称“朊”)是大型生物分子,或高分子,它由一个或多个由氨基酸残基组成的长链条组成。氨基酸分子呈线性排列,相邻氨基酸残基的羧基和氨基通过肽键连接在一起。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种“标准”氨基酸,在蛋白质中,某些氨基酸残基还可以被改變原子的排序而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,发挥某一特定功能。 与其他生物大分子(如多糖和核酸)一样,蛋白质是地球上生物体中的必要组成成分,参与了细胞生命活动的每一个进程。酶是最常见的一类蛋白质,它们催化生物化学反应,尤其对于生物体的代谢至关重要。除了酶之外,还有许多结构性或机械性蛋白质,如肌肉中的肌动蛋白和肌球蛋白,以及细胞骨架中的微管蛋白(参与形成细胞内的支撑网络以维持细胞外形)。另外一些蛋白质则参与细胞信号传导、免疫反应、细胞黏附和细胞周期调控等。同时,蛋白质也是动物饮食中必需的营养物质,这是因为动物自身无法合成所有氨基酸,动物需要和必须从食物中获取必需氨基酸。通过消化过程将蛋白质降解为自由氨基酸,动物就可以将它们用于自身的代谢。.
分布式计算和蛋白质 · 蛋白质和蛋白质结构 · 查看更多 »
上面的列表回答下列问题
- 什么分布式计算和蛋白质结构的共同点。
- 什么是分布式计算和蛋白质结构之间的相似性
分布式计算和蛋白质结构之间的比较
分布式计算有48个关系,而蛋白质结构有105个。由于它们的共同之处1,杰卡德指数为0.65% = 1 / (48 + 105)。
参考
本文介绍分布式计算和蛋白质结构之间的关系。要访问该信息提取每篇文章,请访问: