徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

蛋白質生物合成

指数 蛋白質生物合成

蛋白質生物合成是指在生物細胞內製造新的蛋白質,它是通過蛋白酶解或細胞蛋白的損耗被平衡。翻译,蛋白質的核糖體組裝,是生物合成途徑的一個重要組成部分,隨著生成的信使RNA(mRNA),轉移RNA(tRNA的)氨酰化,合作翻譯轉運,並翻譯後修飾。蛋白質的生物合成在多個步驟有嚴格的调控,和已建立錯誤檢查機制。 順反子DNA被轉錄成RNA的各種中間體。最後的版本被用作在合成多肽鏈的模板。蛋白質通常會直接從基因通過翻譯的mRNA合成。 這個名詞曾經是指蛋白質的翻譯,但現時則是指一個多重的步驟,以轉錄開始及翻譯作結。 原核生物的蛋白質生物合成雖然與真核生物的很相似,但是它们有所不同。.

50 关系: 基因組基因拼接原核生物多腺苷酸化官能团中心法則乳糖操縱子乙酸盐人工合成牛胰島素與諾貝爾獎二級結構代謝途徑信使RNA化學内质网啟動子磷酸鹽糖類細胞質细胞翻譯 (遺傳學)翻译翻译 (遗传学)翻译后修饰真核生物生物生物化学聚合物遗传密码顺反子转录轉運RNA葡萄糖脱氧核糖核酸脂類蛋白質三級結構蛋白质蛋白质折叠蛋白酶解雙硫鍵MRNARNA聚合酶核糖体核糖核酸氢键氨基酸操縱子3'端5'端帽

基因組

在生物学中,一个生物体的基因组是指包含在该生物的DNA(部分病毒是RNA)中的全部遗传信息,又稱基因體(genome)。基因组包括基因和非編碼DNA。1920年,德国汉堡大学植物学教授汉斯·温克勒(Hans Winkler)首次使用基因组这一名词。 更精确地讲,一个生物体的基因组是指一套染色体中的完整的DNA序列。例如,生物个体体细胞中的二倍体由两套染色体组成,其中一套DNA序列就是一个基因组。基因组一词可以特指整套核DNA(例如,核基因组),也可以用于包含自己DNA序列的细胞器基因组,如粒线体基因组或叶绿体基因组。当人们说一个有性生殖物种的基因组正在测序时,通常是指测定一套常染色体和两种性染色体的序列,这样来代表可能的两种性别。即使在只有一种性别的物种中,“一套基因组序列”可能也综合了来自不同个体的染色体。通常使用中,“遗传组成”一词有时在交流中即指某特定个体或物种的基因组。对相关物种全部基因组性质的研究通常被称为基因组学,该学科与遗传学不同,后者一般研究单个或一组基因的性质。.

新!!: 蛋白質生物合成和基因組 · 查看更多 »

基因拼接

#重定向 RNA剪接.

新!!: 蛋白質生物合成和基因拼接 · 查看更多 »

原核生物

原核生物(英文:prokaryote)是通常由單一原核细胞形成的生物。相对于真核细胞,原核细胞一般没有细胞内膜、没有核膜包裹的成型细胞核,细胞内无染色体,DNA链未螺旋化,並以游離的形成存在於細胞質中,细胞质内也无任何有膜的细胞器(如粒線體或葉綠體)。有些分類學者將原核生物歸於原核生物域(Prokaryota),但現行的三域系統不採此說,而是將古菌域和細菌域的生物視為原核生物,原核生物本身不作為生物分類的層級。 大部分原核生物为单细胞生物。根据《伯杰氏细菌鉴定手册》,原核生物分为四大类,“有细胞壁的革兰氏阴性真细菌”,“有细胞壁的革兰氏阳性真细菌”,“无细胞壁的真细菌”,“古细菌”。环境中常见的原核生物有细菌、放线菌、古细菌、螺旋体、衣原体、支原体、立克次氏体和蓝细菌等光合性细菌。 Prokaryota亦拼寫為"procaryotes-ß"Campbell, N. "Biology:Concepts & Connections".

新!!: 蛋白質生物合成和原核生物 · 查看更多 »

多腺苷酸化

多腺苷酸化(Polyadenylation)是指多聚腺苷酸與信使RNA(mRNA)分子的共價鏈結。在蛋白質生物合成的過程中,這是產生準備作翻譯的成熟mRNA的方式的一部份。在真核生物中,多聚腺苷酸化是一種機制,令mRNA分子於它們的3'端中斷。多聚腺苷酸尾(Poly-A Tail)保護mRNA,免受核酸外切酶攻擊,並且對轉錄終結、將mRNA從細胞核輸出及進行翻譯都十分重要。一些原核生物的mRNA都會被多聚腺苷酸化,但多聚腺苷酸尾的功能則與真核生物有所不同。 當脱氧核糖核酸(DNA)在細胞核內轉錄成核糖核酸(RNA)的過程中及完成後,多聚腺苷酸化就會出現。當轉錄停止後,mRNA鏈會由核酸外切酶及RNA聚合酶切開。切開位點的附近有著AAUAAA序列。當mRNA被切開後,會加入50-250個腺苷到切開位點的3'端上。這個反應是由多聚腺苷酸聚合酶完成的。.

新!!: 蛋白質生物合成和多腺苷酸化 · 查看更多 »

官能团

官能团(英文:Functional group),是决定有机化合物的化学性质的原子和原子团。.

新!!: 蛋白質生物合成和官能团 · 查看更多 »

中心法則

分子生物學的中心法则(The central dogma of molecular biology,又譯分子生物學的中心教條),首先由佛朗西斯·克里克於1958年Crick, F.H.C. (1958): Symp.

新!!: 蛋白質生物合成和中心法則 · 查看更多 »

乳糖操縱子

乳糖操縱子是一個在大腸桿菌及其他腸道菌科細菌內負責乳糖的運輸及代謝的操縱子。它包含了三個相連的結構基因,啟動子、終止子及操縱基因。乳糖操縱子受多種因素所調控,包括葡萄糖及乳糖的含量。乳糖操縱子的基因調節是首個被闡明的遺傳學調控機制,且被視作為原核生物基因調節的樣本。.

新!!: 蛋白質生物合成和乳糖操縱子 · 查看更多 »

乙酸盐

乙酸盐俗称醋酸盐,是乙酸所成的盐,含有乙酸根离子CH3COO−,即乙酸去掉羧基质子后形成的阴离子。.

新!!: 蛋白質生物合成和乙酸盐 · 查看更多 »

人工合成牛胰島素與諾貝爾獎

“人工合成牛胰島素與諾貝爾獎”,是一则經网络谣言誤導的中國历史事件。此一謠言主張「人工合成結晶牛胰島素」是理應獲得諾貝爾獎的科研成果,由於政治因素未能獲獎。 此事為当时的「中國公民無人獲得諾貝爾科學獎項」提供了陰謀論素材,內容謬誤但廣為人知。.

新!!: 蛋白質生物合成和人工合成牛胰島素與諾貝爾獎 · 查看更多 »

二級結構

蛋白質二級結構(Protein secondary structure)在生物化學及結構生物學中,是指一個生物大分子,如蛋白質及核酸(DNA或RNA),局部區段的三維通式。然而它並不描述任何特定的原子位置(在三級結構中描述)。 二級結構是由生物大分子在原子分辨率結構中所观察到的氫鍵來定義的。蛋白質的二級結構通常是以主鏈中氨基之間的氫鍵模式來定義〈与主链-侧链间以及侧链-侧链间的氢键无关〉,亦即DSSP的定義。而核酸的二級結構是以鹼基之間的氫鍵來定義。 在二级结构中,特定的氫鍵模式往往伴随着其他一些結構特徵;但如果只考虑这些结构特征而忽略氢键本身,则会导致所定義的二級結構不准确。例如,蛋白質的螺旋中的残基都分布在拉氏图(以主鏈二面角为坐标)的特定區域,因此二面角位于这一区域的残基都會被认为参与形成「螺旋」,而不論它是否真正的存在对应氫鍵。其他稍微不准确的定義多是應用曲線微分幾何的觀念,如曲率及扭量。也有一些結構生物學家以肉眼观察通过软件显示的蛋白质结构來決定其二級結構。 對生物大分子的二級結構含量可以以光譜來初步估計。對於蛋白質,最常用的方法是圓二色性(Circular dichroism), (利用長紫外線,波長范围170-250nm)。在获得的光谱吸收曲线上,α螺旋結構会在208nm及222nm两处同时出现极小值,而204nm和207nm处出现单个极小值則分別表示存在无规卷曲和β折疊結構。另一個較常用的方法是紅外光譜,它可以偵測因氫鍵所造成胺基的震盪。而光譜中,测定二級結構最準確的方法是利用核磁共振光谱所纪录的化學位移,由于仪器和样品制备上的原因,这一方法较为少用。.

新!!: 蛋白質生物合成和二級結構 · 查看更多 »

代謝途徑

代謝途徑(metabolic pathway)在生物化學中,是一連串在細胞內發生的化學反應,並由酶所催化,形成使用或儲存的代謝物,或引發另一個代謝途徑(稱為「流量控制反應」)。多種途徑都是精細的,並涉及原來物質逐步修飾成所需的化學結構的化合物。在分子生物学中常被称作代谢通路,通常是指某个或某几个基因表达所涉及的全部酶或信号分子。在某一特定时间点的细胞内所有表达的基因的集合称为基因表达谱通常用RNA-seq来测定。 細胞內不同代謝途徑組成了代謝網絡。底物是否進入代謝途徑,要視乎細胞的需要,即合成代謝物及分解代謝物濃度的獨特組合(流量控制反應的動力)。代謝途徑包括主要的代學反應(一般都是需要酶的)令生物保持牠的內環境穩態。.

新!!: 蛋白質生物合成和代謝途徑 · 查看更多 »

信使RNA

#重定向 信使核糖核酸.

新!!: 蛋白質生物合成和信使RNA · 查看更多 »

化學

化學是一門研究物質的性質、組成、結構、以及变化规律的基礎自然科學。化學研究的對象涉及物質之間的相互關係,或物質和能量之間的關聯。傳統的化學常常都是關於兩種物質接觸、變化,即化學反應,又或者是一種物質變成另一種物質的過程。這些變化有時會需要使用電磁波,當中電磁波負責激發化學作用。不過有時化學都不一定要關於物質之間的反應。光譜學研究物質與光之間的關係,而這些關係並不涉及化學反應。准确的说,化学的研究范围是包括分子、离子、原子、原子团在内的核-电子体系。 「化學」一詞,若單從字面解釋就是「變化的學問」之意。化学主要研究的是化学物质互相作用的科学。化學如同物理皆為自然科學之基礎科學。很多人稱化學為「中心科學」,因為化學為部分科學學門的核心,連接物理概念及其他科學,如材料科學、纳米技术、生物化學等。 研究化學的學者稱為化學家。在化學家的概念中一切物質都是由原子或比原子更細小的物質組成,如電子、中子和質子。但化学反应都是以原子或原子团为最小结构进行的。若干原子通过某种方式结合起来可构成更复杂的结构,例如分子、離子或者晶體。 當代的化學已發展出許多不同的學門,通常每一位化學家只專精於其中一、兩門。在中學課程中的化學,化學家稱為普通化學(Allgemeine Chemie,General Chemistry,Chimie Générale)。普通化學是化學的導論。普通化學課程提供初學者入門簡單的概念,相較於專業學門領域而言,並不甚深入和精確,但普通化學提供化學家直觀、圖像化的思維方式。即使是專業化學家,仍用這些簡單概念來解釋和思考一些複雜的知識。.

新!!: 蛋白質生物合成和化學 · 查看更多 »

内质网

内质网(Endoplasmic reticulum, ER)是在真核生物细胞中由膜围成的隧道系统,为细胞中的重要细胞器。实际上内质网是膜被摺疊成一個扁囊或細管狀構造,可分為粗糙內質網(Rough Endoplasmic Reticulum, rER)和光滑內質網(Smooth Endoplasmic Reticulum, sER)两种。 内质网联系了细胞核、细胞质和细胞膜这几大细胞構造。它內與細胞核(核膜外膜)相連,外與細胞膜相接,使之成为透過膜连接的一個整体。内质网负责物质从细胞核到细胞质、细胞膜以及细胞外的转运过程。因為細胞內質網膜與細胞核外膜是相連的,因此內質網空腔與核周腔(perinuclear space)是共通,且細胞可以靠內質網的膜來快速調節細胞核的大小。粗糙内质网上附着有大量核糖体,合成膜蛋白和分泌蛋白。光面内质网上无核糖体,为细胞内外醣类和脂类的合成和转运场所。 这一结构由Keith R. Porter、阿尔伯特·克劳德和Ernest F. Fullam在1945年时首先发现。.

新!!: 蛋白質生物合成和内质网 · 查看更多 »

啟動子

啟動子(promoter)在遺傳學中是指一段能使基因進行轉錄的脱氧核糖核酸(DNA)序列。啟動子可以被RNA聚合酶辨認,並开始轉錄。在核糖核酸(RNA)合成中,啟動子可以和决定转录的开始的转录因子产生相互作用,控制基因表达(转录)的起始时间和表达的程度,包含核心启动子区域和调控区域,就像“开关”,决定基因的活动,繼而控制細胞开始生產哪一種蛋白質。 启动子本身并无编译功能,但它拥有对基因轉譯胺基酸的指挥作用,就像一面旗帜,其核心部分是非编码区上游的RNA聚合酶结合位点,指挥聚合酶的合成,这种酶指导RNA的复制合成。因此该段位的启动子发生突变(变异),将对基因的表达有着毁灭性作用。 完全的啟動子稱為規範序列。.

新!!: 蛋白質生物合成和啟動子 · 查看更多 »

磷酸鹽

磷酸鹽(phosphate,符号:),是磷酸的鹽,在無機化學、生物化學及生物地質化學上是很重要的物質。.

新!!: 蛋白質生物合成和磷酸鹽 · 查看更多 »

糖類

#重定向 糖类.

新!!: 蛋白質生物合成和糖類 · 查看更多 »

細胞質

細胞質是一種使細胞充滿的凝膠狀物質。細胞質包含有胞質溶膠及除細胞核外的細胞器。原生質是由水、鹽、有機分子及各種催化反應的酶所組成。細胞質在細胞內有著重要的角色,就是用作「分子液」,使各種細胞器能在其中懸浮及透過脂肪膜聚集一起。它在細胞膜內包圍著細胞核及細胞器。.

新!!: 蛋白質生物合成和細胞質 · 查看更多 »

细胞

细胞(Cell)是生物体结构和功能的基本单位。它是除了病毒之外所有具有完整生命力的生物的最小单位,也经常被称为生命的积木(病毒仅由DNA/RNA组成,并由蛋白质和脂肪包裹其外)。 in Chapter 21 of fourth edition, edited by Bruce Alberts (2002) published by Garland Science.

新!!: 蛋白質生物合成和细胞 · 查看更多 »

翻譯 (遺傳學)

#重定向 翻譯 (生物學).

新!!: 蛋白質生物合成和翻譯 (遺傳學) · 查看更多 »

翻译

翻译,是指在准确通顺的基础上,把一种语言信息转变成另一种语言信息的活动。 这个过程从逻辑上可以分为两个阶段:首先,必须从源语言中译码含义,然后把信息重新编码成目标语言。所有的这两步都要求对语言语义学的知识以及对语言使用者文化的了解。除了要保留原有的意思外,一个好的翻译,对于目标语言的使用者来说,應該要能像是以母語使用者说或写得那般流畅,並要符合譯入语的习惯(除非是在特殊情况下,演说者并不打算像一个本语言使用者那样说话,例如在戏剧中)。 翻譯分为口譯、筆譯和手語。口譯又稱為「傳譯」,顧名思義,是指譯員以口語的方式,將譯入語轉換為譯出語。由於語言必定早於文字出現,因此口譯的出現也必定早於筆譯。.

新!!: 蛋白質生物合成和翻译 · 查看更多 »

翻译 (遗传学)

#重定向 翻譯 (生物學).

新!!: 蛋白質生物合成和翻译 (遗传学) · 查看更多 »

翻译后修饰

翻译后修饰(英語:Post-translational modification,縮寫PTM;又稱後轉譯修飾)是指蛋白質在翻译後的化學修飾。對於大部份的蛋白質來說,這是蛋白質生物合成的較後步驟。PTM是細胞信號傳導中的重要組成部分。 蛋白質,或是多肽,是多條或一條胺基酸的鏈。當合成蛋白質時,20種不同的胺基酸會合併成為蛋白質。胺基酸的翻译後修飾會附在蛋白質其他的生物化學官能團(如醋酸鹽、磷酸鹽、不同的脂類及碳水化合物)、改變胺基酸的化學性質,或是造成結構的改變(如建立雙硫鍵),來擴闊蛋白質的功能。 再者,酶可以從蛋白質的N末端移除胺基酸,或從中間將肽鏈剪開。舉例來說,胰島素是肽的激素,它會在建立雙硫鍵後被剪開兩次,並在鏈的中間移走多肽前體,而形成的蛋白質包含了兩條以雙硫鍵連接的多肽鏈。 其他修飾,就像磷酸化,是控制蛋白質活動機制的一部份。蛋白質活動可以是令酶活性化或鈍化。.

新!!: 蛋白質生物合成和翻译后修饰 · 查看更多 »

真核生物

真核生物(学名:Eukaryota)是其细胞具有细胞核的单细胞生物和多细胞生物的总称,它包括所有动物、植物、真菌和其他具有由膜包裹着的复杂亚细胞结构的生物。 真核生物与原核生物的根本性区别是前者的细胞内含有细胞核,因此以真核来命名这一类细胞。许多真核细胞中还含有其它细胞器,如粒線體、叶绿体、高尔基体等。 由于具有细胞核,因此真核细胞的细胞分裂过程与没有细胞核的原核生物也大不相同。 真核生物在进化上是单源性的,都属于三域系统中的真核生物域,另外两个域为同属于原核生物的细菌和古菌。但由于真核生物与古菌在一些生化性质和基因相关性上具有一定相似性,因此有时也将这两者共同归于新壁總域演化支。 科學家相信,從基因證據來看,真核生物是細菌與古菌的基因融合體,它是某種古菌與細菌共生,異種結合的產物。.

新!!: 蛋白質生物合成和真核生物 · 查看更多 »

生物

生物(拉丁语,德语: Organismus, ,又称有機體)是指稱類生命的个体。在生物学和生态学中, 地球上约有870萬種物種(±130萬),其中650萬種物種在陆地上,220万种生活在水中。 生物最重要和基本的特徵在生物會進行新陳代謝及遺傳兩點,前者說明所有生物一定會具備合成代谢以及分解代谢(兩個是完全相反的兩個生理反應過程),並且可以將遺傳物質複製,透過自我分裂生殖(無性生殖)或有性生殖,交由下一代繁殖下去以避免滅絕,这是類生命现象的基础。 生命的起源和生命各个分支之间的关系一直存在争议,古早的生命分類已經過時,近代古典生物學的分類又受到分子生物學的挑戰。一般而言,我們將生物分為兩大類:原核生物和真核生物。原核生物分为兩大域:细菌(Bacteria)和古菌(Archaea),这两个域相互之间的关系并不比他们和真核生物的关系更为接近。在演化史的研究上,原核生物和真核生物之间一直缺乏联系。類似麻煩的還有病毒與內共生細菌等的分類,隨著現代生物化學的研究逐漸深入,出現了有如物理學中存在量子現象一般,在特定微觀世界下許多傳統認知出現錯誤,導致以往常理被顛覆的情況。 真核生物的特徵是有細胞核以及其他膜狀細胞器(例如動物和植物體內的粒線體粒線體也可以說是植物動物體的發電廠因為他可以製造很多的能量,以及植物及藻類中的葉綠素),一種假說是叶绿体和线粒体是由内共生细菌(endosymbiotic bacteria)演化而来T.Cavalier-Smith (1987) The origin of eukaryote and archaebacterial cells, Annals of the New York Academy of Sciences 503, 17–54 。多细胞生物(又稱至於生物實在30班一年且出來則指包含多于一个细胞的生物,在地質學上直到五億年前才出現大爆發。.

新!!: 蛋白質生物合成和生物 · 查看更多 »

生物化学

生物化学(biochemistry,也作 biological chemistry),顾名思义是研究生物体中的化学进程的一门学科,常常被简称为生化。它主要用于研究细胞内各组分,如蛋白质、糖类、脂类、核酸等生物大分子的结构和功能。而对于化学生物学来说,则着重于利用化学合成中的方法来解答生物化学所发现的相关问题。 虽然存在着大量不同的生物分子,但实际上有很多大的复合物分子(称为“聚合物”)是由相似的亚基(称为“单体”)结合在一起形成的。每一类生物聚合物分子都有自己的一套亚基类型。例如,蛋白质是由20种氨基酸所组成,而脱氧核糖核酸(DNA)由4种核苷酸构成。生物化学研究集中于重要生物分子的化学性质,特别着重于酶促反应的化学机理。 在生物化学研究中,对细胞代谢和内分泌系统的研究进行得相当深入。生物化学的其他研究领域包括遗传密码(DNA和RNA)、 蛋白质生物合成、跨膜运输(membrane transport)以及细胞信号转导。.

新!!: 蛋白質生物合成和生物化学 · 查看更多 »

聚合物

有機聚合物(Polymer)是指具有非常大的分子量的化合物,分子間由結構單位(structural unit)、或單體由共價鍵連接在一起 。 這個聚合物(polymer)是出自於希臘字:polys代表的是多,而meros 代表的是小單位(part),所以很多小單位連結在一起的這種特別的分子,我們稱之為聚合物。可以參考塑膠、DNA和高分子。.

新!!: 蛋白質生物合成和聚合物 · 查看更多 »

遗传密码

遺傳密碼(英文:Genetic code)是一組規則,將DNA或mRNA序列以三個核苷酸為一組的密碼子轉譯為蛋白質的胺基酸序列,以用於蛋白質合成。幾乎所有的生物都使用同樣的遺傳密碼,稱為標準遺傳密碼;即使是非細胞結構的病毒,它們也是使用標準遺傳密碼。但是也有少數生物使用一些稍微不同的遺傳密碼。朊毒體以蛋白質為遺傳密碼。 密码子简并性是遗传密码的突出特征。 舒建军的遗传密码对称表 提供了可能的密码子-胺基酸关系的新视角, 并解释了密码子简并性遗传密码背后的隐含含义/逻辑。.

新!!: 蛋白質生物合成和遗传密码 · 查看更多 »

顺反子

顺反子,也做作用子,是基因的一个旧名称,它于1955年由美国分子生物学家本兹尔提出的,他称基因内部的功能互补群为顺反子。顺反子通过顺反试验确定,如两个位点可以互补,则两个位点不属于一个顺反子;如两个位点不可以互补,则两个位点属于一个顺反子。 它是遗传物质的最小单位。一个完整的顺反子是传递遗传信息的前提,即多肽链的氨基酸顺序的正确编排。 顺反子和基因关系与基因的定义有关。 有一种对基因的定义认为,基因与顺反子为同一物,是一个最小的遗传功能单位。 但是另一种定义则认为,顺反子是比基因更小的功能单位,一个基因包含几个遗传的功能单位,即顺反子。.

新!!: 蛋白質生物合成和顺反子 · 查看更多 »

转录

转录()是遗传信息由DNA转换到RNA的过程。作为蛋白质生物合成的第一步,转录是mRNA以及非編碼RNA(tRNA、rRNA等)的合成步骤。 转录中,一段基因会被读取、複製为mRNA;就是说一特定的DNA片段作为模板,以DNA依赖的核糖核酸聚合酶(RNA聚合酶或RNA合成酶)作为催化剂而合成前mRNA的过程。 转录尚有未清楚的部分,例如是否需要DNA解旋酶,一般来说是需要的,但某些地区称RNA聚合酶可代替其行使识别DNA上的有关碱基以开始转录的功能。 mRNA转录时,DNA分子双链打开,在RNA聚合酶的作用下,游离的4种核糖核苷酸按照碱基互补配对原则结合到DNA单链上,并在RNA聚合酶的作用下形成单链mRNA分子。至此,转录完成。 转录通常是多起点多向复制。 转录时所转录的仅为DNA上有遗传效应的片段(DNA),不包括内含子。 转录按以下一般步骤进行:.

新!!: 蛋白質生物合成和转录 · 查看更多 »

轉運RNA

#重定向 转运核糖核酸.

新!!: 蛋白質生物合成和轉運RNA · 查看更多 »

葡萄糖

葡萄糖(法语、德语、英語:glucose;又称血糖、玉米葡糖、玉蜀黍糖)是自然界分布最广、且最为重要的一種单糖。 因為擁有6個碳原子,被歸為己糖或六碳糖。葡萄糖是一种多羟基醛,分子式為C6H12O6。其水溶液旋光向右,故亦称“右旋糖”。葡萄糖在生物学领域具有重要地位,是活細胞的能量來源和新陳代謝的中间产物。植物可通过行光合作用產生葡萄糖。.

新!!: 蛋白質生物合成和葡萄糖 · 查看更多 »

肽(peptide,來自希臘文的“消化”),即胜肽,又稱縮氨酸,是天然存在的小生物分子,介於胺基酸和蛋白質之間的物質。 由於胺基酸的分子最小,蛋白質最大,而它們則是氨基酸單體組成的短鏈,由肽(酰胺)鍵連接。當一個氨基酸的羧基基團與另一個氨基酸的氨基反應時,形成該共價化學鍵。肽由氨基酸組成的短鏈是精準的蛋白質片段,其分子只有纳米般大小,腸胃、血管及肌膚皆極容易吸收。二胜肽(簡稱二肽),就是由二個胺基酸組成的蛋白質片段,兩個或以上的胺基酸脫水縮合形成若干個肽鍵從而組成一個肽,多個肽進行多級折叠就組成一個蛋白質分子。蛋白質有時也稱為“多肽”。.

新!!: 蛋白質生物合成和肽 · 查看更多 »

脱氧核糖核酸

--氧核醣核酸(deoxyribonucleic acid,縮寫:DNA)又稱--氧核醣核酸,是一種生物大分子,可組成遺傳指令,引導生物發育與生命機能運作。主要功能是資訊儲存,可比喻為「藍圖」或「配方」。其中包含的指令,是建構細胞內其他的化合物,如蛋白質與核醣核酸所需。帶有蛋白質編碼的DNA片段稱為基因。其他的DNA序列,有些直接以本身構造發揮作用,有些則參與調控遺傳訊息的表現。 DNA是一種長鏈聚合物,組成單位稱為核苷酸,而糖類與磷酸藉由酯鍵相連,組成其長鏈骨架。每個糖單位都與四種鹼基裡的其中一種相接,這些鹼基沿著DNA長鏈所排列而成的序列,可組成遺傳密碼,是蛋白質氨基酸序列合成的依據。讀取密碼的過程稱為轉錄,是根據DNA序列複製出一段稱為RNA的核酸分子。多數RNA帶有合成蛋白質的訊息,另有一些本身就擁有特殊功能,例如核糖體RNA、小核RNA與小干擾RNA。 在細胞內,DNA能組織成染色體結構,整組染色體則統稱為基因組。染色體在細胞分裂之前會先行複製,此過程稱為DNA複製。對真核生物,如動物、植物及真菌而言,染色體是存放於細胞核內;對於原核生物而言,如細菌,則是存放在細胞質中的拟核裡。染色體上的染色質蛋白,如組織蛋白,能夠將DNA組織並壓縮,以幫助DNA與其他蛋白質進行交互作用,進而調節基因的轉錄。.

新!!: 蛋白質生物合成和脱氧核糖核酸 · 查看更多 »

脂類

脂類(英語:Lipid),又稱脂質,这是一类不溶于水而易溶于脂肪溶剂(醇、醚、氯仿、苯)等非极性有机溶剂,由脂肪酸与醇作用脱水缩合生成的酯及其衍生物统称为脂类,其中包括脂肪、蠟、类固醇、脂溶性維生素(如維生素A,D,E和K)、、、磷脂等。它的主要生理功能包括儲存能量、構成細胞膜以及膜的訊息傳導等。如今,脂类已经被用于美容和食品工业,以及纳米技术。 脂質可以廣義定義為疏水性或雙親性小分子;某些脂質因為其雙親性的特質(兼具親水性與疏水性),能在水溶液環境中形成囊泡、脂質體或膜等構造。生物體內的脂質完全或部分源自兩種截然不同的生物次單元:酮酸基與異戊二烯。由此,脂質可以概分為八類:脂肪酸、甘油酯、甘油磷脂、鞘脂(神經脂質)、、聚酮类(由酮乙基次單元聚合而成)、固醇脂类,以及孕烯醇酮脂类(由異戊二烯次單元縮合聚合而成)。 脂類常被視為是脂肪的同義詞,但脂肪只是一種稱為三酸甘油脂的脂類。脂類也包括脂肪酸及其衍生物,包括單酸甘油酯、二酸甘油酯、磷脂等,也包括其他含有固醇的代謝產物,像是膽固醇。雖然人類和其他動物有許多不同的代謝方式,可以切斷脂肪鏈及合成脂質,不過仍有一些必需脂質無法自行合成,需要在食物中攝取。 有生物以前脂質的化學反應,以及原始生命體的形成,現已認為是生命起源模型中的關鍵。.

新!!: 蛋白質生物合成和脂類 · 查看更多 »

酶(Enzyme( ))是一类大分子生物催化劑。酶能加快化學反應的速度(即具有催化作用)。由酶催化的反應中,反應物稱爲底物,生成的物質稱爲產物。幾乎所有細胞內的代謝過程都離不開酶。酶能大大加快這些過程中各化學反應進行的速率,使代謝產生的物質和能量能滿足生物體的需求。細胞中酶的類型對可在該細胞中發生的代謝途徑的類型起決定作用。對酶進行研究的學科稱爲「酶學」(enzymology)。 目前已知酶可以催化超過5000種生化反應。大部分酶是蛋白質,有少部分酶是具有催化活性的RNA分子,这些酶被称为核酶。酶的特異性是由其獨特的三級結構決定的。 和所有的催化劑一樣,酶通過降低反應活化能加快化學反應的速率。一些酶可以將底物轉化爲產物的速率提高數百萬倍。一個比較極端的例子是。該酶可以使在無催化劑條件下需要進行數百萬年的化學反應在幾毫秒內完成。從化學原理上講,酶和其它所有催化劑一樣,反應不會使其物質量發生變化。酶亦不能改變化學平衡,這一點和其它催化劑也是一樣的。酶和其它催化劑的不同之處在於,它們的專一性要強得多。一些分子可以影響酶的活性。如酶抑制劑能降低酶的活性,酶激活劑能提高酶的活性。許多藥物及毒物是酶的抑制劑。當超出適宜的溫度和pH值後,酶的活性會顯著下降。 酶在工业和人们的日常生活中的应用也非常广泛。例如,药厂用特定的合成酶来合成抗生素;洗衣粉中添加酶能加速附着在衣物上的蛋白质、淀粉或脂肪漬的分解;嫩肉粉中加入木瓜蛋白酶能將蛋白質分解爲稍小的分子,使肉的口感更嫩滑。.

新!!: 蛋白質生物合成和酶 · 查看更多 »

蛋白質三級結構

蛋白質三級結構(Protein tertiary structure)是在生物化學裡指蛋白質整體几何形狀,亦稱為其摺疊。蛋白質分子是一連串的胺基酸一條線地接結,基本上假定其會有一可作用其生物功能的三維結構。對蛋白質三級結構的研究稱為結構生物學。蛋白质的三级结构是由它的原子坐标定义的。这些坐标可参照或一个蛋白质结构域或整个三级结构。Branden C. and Tooze J. "Introduction to Protein Structure" Garland Publishing, New York.

新!!: 蛋白質生物合成和蛋白質三級結構 · 查看更多 »

蛋白质

蛋白质(protein,旧称“朊”)是大型生物分子,或高分子,它由一个或多个由氨基酸残基组成的长链条组成。氨基酸分子呈线性排列,相邻氨基酸残基的羧基和氨基通过肽键连接在一起。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种“标准”氨基酸,在蛋白质中,某些氨基酸残基还可以被改變原子的排序而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,发挥某一特定功能。 与其他生物大分子(如多糖和核酸)一样,蛋白质是地球上生物体中的必要组成成分,参与了细胞生命活动的每一个进程。酶是最常见的一类蛋白质,它们催化生物化学反应,尤其对于生物体的代谢至关重要。除了酶之外,还有许多结构性或机械性蛋白质,如肌肉中的肌动蛋白和肌球蛋白,以及细胞骨架中的微管蛋白(参与形成细胞内的支撑网络以维持细胞外形)。另外一些蛋白质则参与细胞信号传导、免疫反应、细胞黏附和细胞周期调控等。同时,蛋白质也是动物饮食中必需的营养物质,这是因为动物自身无法合成所有氨基酸,动物需要和必须从食物中获取必需氨基酸。通过消化过程将蛋白质降解为自由氨基酸,动物就可以将它们用于自身的代谢。.

新!!: 蛋白質生物合成和蛋白质 · 查看更多 »

蛋白质折叠

蛋白质折叠(Protein folding)是蛋白质获得其功能性结构和构象的过程。通过这一物理过程,蛋白质从无规则卷曲折叠成特定的功能性三维结构。在从mRNA序列翻译成线性的氨基酸链时,蛋白质都是以去折叠多肽或无规则卷曲的形式存在。 蛋白質的基本單位為胺基酸,而蛋白質的一級結構指的就是其胺基酸序列,蛋白質會由所含胺基酸残基的親水性、疏水性、帶正電、帶負電……等等特性通过残基间的相互作用而摺疊成一立體的三级結構。 根据克里斯琴·B·安芬森(1972年的諾貝爾化學獎得主)的研究,蛋白質可由加熱或置於某些化學環境而变性,三级结构解体;而當環境回復到原本的狀態時,蛋白質可於不到一秒的時間折疊至原先的立體結構,不論試驗幾次,蛋白質都僅此一種立體結構,於是Anfinsen提出一個結論:蛋白质分子的一级结构决定其立體结构。 安芬森的研究结果非常重要,因為蛋白質的功能取決於其立體結構,而目前根据已知某基因序列可翻译获得对应蛋白质的胺基酸序列,既蛋白質的一級結構;如果從蛋白質的一級結構就能知道立體結構,那麼即可直接從基因推测其编码蛋白质所對應的生物学功能。虽然蛋白質可在短時間中從一級結構摺疊至立體結構,研究者卻無法在短時間中從胺基酸序列計算出蛋白质結構,甚至无法得到准确的三维结构。因此,研究蛋白质折叠的过程,可以说是破译“第二遗传密码”——折叠密码(folding code)的过程。 目前蛋白质的再折叠依然遵从先使用胍或脲变性,然后逐渐降低胍或者脲的浓度,也就是逐渐降低对蛋白质天然“回缩”能力的干扰。使其自然回到天然的最低能量状态。只是这个过程无法很好的控制肽链与肽链之间和肽链内部形成错误折叠的干扰。.

新!!: 蛋白質生物合成和蛋白质折叠 · 查看更多 »

蛋白酶解

蛋白酶解或蛋白水解(Proteolysis)是指蛋白质降解为较小的多肽或氨基酸的过程。通常情况下,被水解的都是肽键,且在蛋白酶的作用下进行,因此常用蛋白酶解。但也可能发生分子内消化,以及不依赖酶的途径,如酸和热的作用而产生的降解。 蛋白酶解在有机体中有多种用途,比如消化酶降解食物中的蛋白,为机体提供氨基酸;完成翻译的多肽链也需要水解加工才能产生有活性的蛋白质;某些生理和细胞过程的调控也是通过蛋白质的酶解进行;还有蛋白酶解可以防止不必要的或不正常的蛋白质在细胞中的积累。.

新!!: 蛋白質生物合成和蛋白酶解 · 查看更多 »

雙硫鍵

雙硫鍵在化學上是一條從結合硫醇而衍生的單共價鍵。它又稱為二硫鍵或雙硫橋,大部分用於生物化學的範疇。其正式名稱應為過硫化物,但卻甚少使用。與過氧化物(R-O-O-R)相似,它的整體連結是R-S-S-R。雙硫鍵一般都是從巯基的氧化形成: 三個硫原子按序列連結有時被稱為三硫鍵,但其實只是兩個雙硫鍵。雙硫鍵在橡膠的硫化有著重要的地位。.

新!!: 蛋白質生物合成和雙硫鍵 · 查看更多 »

MRNA

#重定向 信使核糖核酸.

新!!: 蛋白質生物合成和MRNA · 查看更多 »

RNA聚合酶

RNA聚合酶(RNA polymerase、RNAP、RNApol、DNA-dependent RNA polymerase,EC2.7.7.6)或稱核糖核酸聚合酶,是一種負責從DNA或RNA模板製造RNA的酶。RNA聚合酶是通過稱為轉錄的過程來建立RNA鏈,以完成這個工程。在科學上,RNA聚合酶是一個在RNA轉錄本3'端聚合核糖核甘酸的核苷轉移酶。RNA聚合酶是一種非常重要的酶,且可在所有生物、細胞及多種病毒中可見。 RNA聚合酶是於1960年分別由山姆·懷斯及霍維茲同時發現。但在此之前,於1959年,諾貝爾獎頒發給了塞韋羅·奧喬亞,因為他的發現當時認為是RNA聚合酶,但其實是核糖核酸酶。.

新!!: 蛋白質生物合成和RNA聚合酶 · 查看更多 »

核糖体

核糖体,旧称“核糖核蛋白体”或“核蛋白体”,是细胞中的一种细胞器因为在某些场合“细胞器”一词也会被用于专指具有磷脂双分子层膜结构的亚细胞结构,而核糖体虽然已是一种公认的细胞器,却是没有被膜包裹、完全裸露的大分子,所以核糖体有时会被严格地定义为“无膜细胞器”(non-membranous organelles)。,由一大一小两个-zh-tw:次單元;zh-cn:亚基-结合形成,主要成分是相互缠绕的RNA(称为“核糖体RNA”,ribosomal RNA,简称“rRNA”)和蛋白质(称为“核糖体蛋白质”,ribosomal protein,简称“RP”)。核糖体是细胞内蛋白质合成的场所,能读取信使RNA核苷酸序列所包含的遗传信息,并使之转化为蛋白质中氨基酸的序列信息以合成蛋白质。在原核生物及真核生物(地球上的两种具有细胞结构的主要生命形式,前者可细分为古菌、真细菌两类)的细胞中都有核糖体存在。一般而言,原核细胞只有一种核糖体,而真核细胞具有两种核糖体(线粒体和叶绿体中的核糖体与细胞质核糖体不相同)。 核糖体在细胞中负责完成“中心法则”裡由RNA到蛋白质这一过程,此过程在生物学中被称为“翻译”。在进行翻译前,核糖体小次單元会先与从细胞核中转录得到的信使RNA(messenger RNA,简称“mRNA”)结合,再结合核糖体大次單元构成完整的核糖体之后,便可以利用细胞质基质中的转运RNA(transfer RNA,简称“tRNA”)运送的氨基酸分子合成多肽。当核糖体完成对一条mRNA单链的翻译后,大小--会再次分离。 英语中的“核糖体”(ribosome)一词是由“核糖核酸”(“ribo”)和希腊语词根“soma”(意为“体”)组合而成的。.

新!!: 蛋白質生物合成和核糖体 · 查看更多 »

核糖核酸

核糖核酸(Ribonucleic acid),簡稱RNA,是一類由核糖核苷酸通過3',5'-磷酸二酯鍵聚合而成的線性大分子。自然界中的RNA通常是單鏈的,且RNA中最基本的四種鹼基爲A(腺嘌呤)、U(尿嘧啶)、G(鳥嘌呤)、C(胞嘧啶)通過轉錄後修飾,RNA可能會帶上(Ψ)這樣的稀有鹼基,相對的,與RNA同爲核酸的DNA通常是雙鏈分子,且含有的含氮鹼基爲A(腺嘌呤)、T(胸腺嘧啶)、G(鳥嘌呤)、C(胞嘧啶)四種。 RNA有着多種多樣的功能,可在遺傳編碼、翻譯、調控、基因表達等過程中發揮作用。按RNA的功能,可將RNA分爲多種類型。比如,在細胞生物中,mRNA(信使RNA)爲遺傳信息的傳遞者,它能夠指導蛋白質的合成。因爲mRNA有編碼蛋白質的能力,它又被稱爲編碼RNA。而其他沒有編碼蛋白質能力的RNA則被稱爲非編碼RNA(ncRNA)。它們或通過催化生化反應,或通過調控或參與基因表達過程發揮相應的生物學功能。比如,tRNA(轉運RNA)在翻譯過程中起轉運RNA的作用,rRNA(核糖體RNA)於翻譯過程中起催化肽鏈形成的作用,(小RNA)起到調控基因表達的作用。此外,RNA病毒甚至以RNA作爲它們的遺傳物質。 RNA通常由DNA通過轉錄生成。RNA在細胞中廣泛分佈,真核生物的細胞核、細胞質、粒線體中都有RNA。.

新!!: 蛋白質生物合成和核糖核酸 · 查看更多 »

氢键

氫鍵是分子間作用力的一種,是一种永久偶极之间的作用力,氢键发生在已经以共价键与其它原子键结合的氢原子与另一个原子之间(X-H…Y),通常发生氢键作用的氢原子两边的原子(X、Y)都是电负性较强的原子。氢键既可以是分子间氢键,也可以是分子内的。其键能最大约为200kJ/mol,一般为5-30kJ/mol,比一般的共价键、离子键和金属键键能要小,但强于静电引力。 氢键对于生物高分子具有尤其重要的意义,它是蛋白质和核酸的二、三和四级结构得以稳定的部分原因。.

新!!: 蛋白質生物合成和氢键 · 查看更多 »

氨基酸

胺基酸是生物學上重要的有機化合物,它是由胺基(-NH2)和羧基(-COOH)的官能團組成的,以及一個側鏈连到每一個胺基酸。胺基酸是構成蛋白質的基本單位。賦予蛋白質特定的分子結構形態,使他的分子具有生化活性。蛋白質是生物体內重要的活性分子,包括催化新陳代謝的酶(又称“酵素”)。 不同的胺基酸脱水缩合形成肽(蛋白質的原始片段),是蛋白質生成的前.

新!!: 蛋白質生物合成和氨基酸 · 查看更多 »

操縱子

操縱組(operon,又稱操縱子或操縱元)是一組關鍵的核苷酸序列,包括了一個操縱基因(operator),及一個或以上的結構基因被用作生產信使RNA(mRNA)的基元,受一個單一的啟動子控制之下。首个被發現操縱子是乳糖操縱子,由方斯華·賈克柏及賈克·莫諾於1961年發現。 操縱子是與調節子及刺激子有關:操縱子包含了一組受操縱基因調節的基因,調節子包含了一組受單一調節蛋白質的基因,而刺激子則包含一組受單一細胞調節的基因。 最初,操纵子被认为仅存在于原核生物中,但自从1990年代初发现真核生物中的第一个操纵子以来,已经出现了更多的证据表明它们比以前假设的更常见。通常,原核操纵子的表达导致产生多顺反子mRNA,而真核操纵子导致单顺反子mRNA。 操纵子也存在于病毒如噬菌体。例如,有两个操纵子。.

新!!: 蛋白質生物合成和操縱子 · 查看更多 »

3'端

#重定向 方向性 (分子生物学)#3'端.

新!!: 蛋白質生物合成和3'端 · 查看更多 »

5'端帽

5'端帽(five prime cap)是在真核生物中信使RNA(mRNA)的5'端经修改後形成的的雙核苷酸端点。5'加帽的過程對建立成熟的mRNA作翻譯非常重要。加帽確保了mRNA在蛋白質生物合成中進行轉譯的穩定性,並在細胞核中是高度調控的過程。.

新!!: 蛋白質生物合成和5'端帽 · 查看更多 »

重定向到这里:

生物合成蛋白質蛋白质生物合成

传出传入
嘿!我们在Facebook上吧! »