目录
20 关系: 原子句子,句子 (数理逻辑),开放句子,形式语言,命题,符号,组合子逻辑,真值,表示式,计算机科学,语义学,语法,闭包 (计算机科学),闭包 (数学),量化,通配符,逻辑运算符,递归函数,数学,数理逻辑。
- 數學表示法
- 计算机编程
- 谓词逻辑
- 邏輯符號
原子句子
在命题演算和谓词演算中,原子公式要么是命题字母要么是跟随着n个变量的n元谓词字母。原子句子同于上述描述,除了n元谓词字母跟随着n个常量或函子(functor)之外。 例如,设P, M, T是谓词字母;设a, b, c,等是常量项;但设x, y, z是变量项;并设p是命题字母。则下列都是原子句子:.
句子 (数理逻辑)
在数理逻辑中,句子是没有自由变量的公式;在模型论中,一个句子在给定的数学结构中要么是真要么是假。 例如 不是一个句子,因为出现了自由变量y;在实数的结构中,如果y.
开放句子
开放句子是「在用特定的数,替代其中的变量的时候,将使得结果的表达式被求值为真的一个句子」。 数学家没有接受这种术语,而是称之为带有自由变量的方程式或不等式等。 这种替代也叫做对句子的解。恒等式是所有数都是解的开放句子。 开放句子的例子包括:.
形式语言
在数学、逻辑和计算机科学中,形式语言(Formal language)是用精确的数学或机器可处理的公式定义的语言。 如语言学中语言一样,形式语言一般有两个方面: 语法和语义。专门研究语言的语法的数学和计算机科学分支叫做形式语言理论,它只研究语言的语法而不致力于它的语义。在形式语言理论中,形式语言是一个字母表上的某些有限长字符串的集合。一个形式语言可以包含无限多个字符串。.
命题
在现代哲学、逻辑学、语言学中,命题是指一个判断(陳述)的语义(實際表達的概念),這個概念是可以被定義並觀察的現象。命题不是指判断(陳述)本身。当相異判断(陳述)具有相同语义的时候,他们表达相同的命题。例如,雪是白的(汉语)和 Snow is white(英语)是相異的判断(陳述),但它们表达的命题是相同的。在同一种语言中,两个相異判断(陳述)也可能表达相同命题。例如,刚才的命题也可以说成冰的小结晶是白的,不過,之所以是相同命题,取決於冰的小结晶可視為雪的有效定義。 通常,命題是指閉判斷,以區別於開判斷,或謂詞。在這種情況下,命題不是真的就是假的。哲學學派邏輯實證主義支援這一命題的概念。 一些哲學家,諸如約翰•希爾勒,認為其他形式的語言或行為也判定命題。是非疑問句是對命題真值的詢問。道路交通標誌不通過語言和文字也表達了命題。使用陳述句也可能給出一個命題而不判定它,例如,在當老師請學生對某個引用發表意見的時候,這個引用就是一個命題(即它有語義)而這個老師並沒有判定它。在上一段中,只給出了命題雪是白的,但沒有判定它。.
查看 自由变量和约束变量和命题
符号
在一种认知体系中,符号是指代一定意义的意象,可以是图形图像、文字组合,也可以是声音信号、建筑造型,甚至可以是一种思想文化、一个时事人物。例如“.
查看 自由变量和约束变量和符号
组合子逻辑
组合子逻辑是Moses Schönfinkel和哈斯凱爾·加里介入的一种符号系统,用来消除数理逻辑中对变量的需要。它最近在计算机科学中被用做计算的理论模型和设计函数式编程语言的基础。它所基于的组合子是只使用函数应用或早先定义的组合子来定义从它们的参数得出的结果的高阶函数。.
真值
在逻辑中,真值(truth value),又稱逻辑值(logical value),是指示一个陈述在什么程度上是真的。在計算機編程上多稱做布林值、布爾值。 在经典逻辑中,唯一可能的真值是真和假。但在其他逻辑中其他真值也是可能的:模糊逻辑和其他形式的多值逻辑使用比简单的真和假更多的真值。 在代数上说,集合形成了简单的布尔代数。可以把其他布尔代数用作多值逻辑中的真值集合,但直觉主义逻辑把布尔代数推广为海廷代数。 在topos理论中,topos的主客对象分类器接管了真值集合的位置。.
查看 自由变量和约束变量和真值
表示式
表示式亦称表達式、運算式或數學表達式,在數學領域中是一些符號依據上下文的規則,有限而定義良好的組合。數學符號可用於標定數字(常量)、變量、操作、函數、括號、標點符號和分組,幫助確定操作順序以及有其它考量的邏輯語法。.
计算机科学
计算机科学用于解决信息与计算的理论基础,以及实现和应用它们的实用技术。 计算机科学(computer science,有时缩写为CS)是系统性研究信息与计算的理论基础以及它们在计算机系统中如何与应用的实用技术的学科。 它通常被形容为对那些创造、描述以及转换信息的算法处理的系统研究。计算机科学包含很多分支领域;有些强调特定结果的计算,比如计算机图形学;而有些是探討计算问题的性质,比如计算复杂性理论;还有一些领域專注于怎样实现计算,比如程式語言理論是研究描述计算的方法,而程式设计是应用特定的程式語言解决特定的计算问题,人机交互则是專注于怎样使计算机和计算变得有用、好用,以及随时随地为人所用。 有时公众会误以为计算机科学就是解决计算机问题的事业(比如信息技术),或者只是与使用计算机的经验有关,如玩游戏、上网或者文字处理。其实计算机科学所关注的,不仅仅是去理解实现类似游戏、浏览器这些软件的程序的性质,更要通过现有的知识创造新的程序或者改进已有的程序。 尽管计算机科学(computer science)的名字里包含计算机这几个字,但实际上计算机科学相当数量的领域都不涉及计算机本身的研究。因此,一些新的名字被提议出来。某些重点大学的院系倾向于术语计算科学(computing science),以精确强调两者之间的不同。丹麦科学家Peter Naur建议使用术语"datalogy",以反映这一事实,即科学学科是围绕着数据和数据处理,而不一定要涉及计算机。第一个使用这个术语的科学机构是哥本哈根大学Datalogy学院,该学院成立于1969年,Peter Naur便是第一任教授。这个术语主要被用于北欧国家。同时,在计算技术发展初期,《ACM通讯》建议了一些针对计算领域从业人员的术语:turingineer,turologist,flow-charts-man,applied meta-mathematician及applied epistemologist。 三个月后在同样的期刊上,comptologist被提出,第二年又变成了hypologist。 术语computics也曾经被提议过。在欧洲大陆,起源于信息(information)和数学或者自动(automatic)的名字比起源于计算机或者计算(computation)更常见,如informatique(法语),Informatik(德语),informatika(斯拉夫语族)。 著名计算机科学家Edsger Dijkstra曾经指出:“计算机科学并不只是关于计算机,就像天文学并不只是关于望远镜一样。”("Computer science is no more about computers than astronomy is about telescopes.")设计、部署计算机和计算机系统通常被认为是非计算机科学学科的领域。例如,研究计算机硬件被看作是计算机工程的一部分,而对于商业计算机系统的研究和部署被称为信息技术或者信息系统。然而,现如今也越来越多地融合了各类计算机相关学科的思想。计算机科学研究也经常与其它学科交叉,比如心理学,认知科学,语言学,数学,物理学,统计学和经济学。 计算机科学被认为比其它科学学科与数学的联系更加密切,一些观察者说计算就是一门数学科学。 早期计算机科学受数学研究成果的影响很大,如Kurt Gödel和Alan Turing,这两个领域在某些学科,例如数理逻辑、范畴论、域理论和代数,也不断有有益的思想交流。.
语义学
语义学(Semantics,La sémantique),也作「语意学」,是一个涉及到语言学、逻辑学、计算机科学、自然语言处理、认知科学、心理学等诸多领域的一个术语。虽然各个学科之间对语义学的研究有一定的共同性,但是具体的研究方法和内容大相径庭。语义学的研究对象是自然语言的意义,这里的自然语言可以是词汇,句子,篇章等等不同级别的语言单位。但是各个领域里对语言的意义的研究目的不同:.
语法
语言学中语法(Grammar)是指任意自然语言中控制子句、词组以及单词等结构的规则,这一概念也被用来指对于这些规则进行研究的学科,例如词法学、语法学或音韵学等,并和其他学科如语音学、语义学或语用学互相补充。在很多文献中,语言学家通常不用“语法”来指正寫法。.
查看 自由变量和约束变量和语法
闭包 (计算机科学)
在计算机科学中,闭包(Closure),又稱词法闭包(Lexical Closure)或函數閉包(function closures),是引用了自由变量的函数。这个被引用的自由变量将和这个函数一同存在,即使已经离开了创造它的环境也不例外。所以,有另一种说法认为闭包是由函数和与其相关的引用环境组合而成的实体。闭包在运行时可以有多个实例,不同的引用环境和相同的函数组合可以产生不同的实例。 闭包的概念出现于60年代,最早实现闭包的程序语言是Scheme。之后,闭包被广泛使用于函数式编程语言如ML语言和LISP。很多命令式程序语言也开始支持闭包。 在一些语言中,在函数中可以(嵌套)定义另一个函数时,如果内部的函数引用了外部的函数的变量,则可能产生闭包。运行时,一旦外部的 函数被执行,一个闭包就形成了,闭包中包含了内部函数的代码,以及所需外部函数中的变量的引用。其中所引用的变量称作上值(upvalue)。 闭包一词经常和匿名函数混淆。这可能是因为两者经常同时使用,但是它们是不同的概念。.
闭包 (数学)
数学中,若对某个集合的成员进行一種运算,生成的仍然是这个集合的成员,则该集合被称为在這个运算下闭合。 例如,实数在减法下闭合,但自然数不行:自然数 3 和 7 的减法 3 − 7 的结果不是自然数。 类似的,一个集合被称为在某些运算的搜集下闭合,如果它在每个运算之下都闭合。 一个集合在某个运算或某些运算的搜集下闭合被称为满足闭包性质。闭包性质经常作为公理,通常叫做闭包公理。现代集合论通常这样定义:运算为在集合间的映射。所以向一个结构增加闭包性質作为公理是多余的,尽管它对于子集是否闭合的问题仍有意义。 当一个集合 S 在某个运算下不闭合的时候,我们通常可以找到包含 S 的最小的闭合集合。这个最小闭合集合被称为 S 的(关于这个运算的)闭包。例如,若把自然数集看作实数集的子集,它在减法下的闭包就是整数集。一个重要的例子是拓扑闭包。闭包的概念推广为伽罗瓦连接,进一步为。 注意集合 S 必须是闭合集合的子集,這樣才能定义闭包算子。在前面的例子中,实数在减法下闭合是重要的,减法不总是在自然数的定义域中有定义的。 闭包这个词的两种用法不应混淆。前者用来提及闭合的性质,而后者提及包含不闭合集合的最小闭合集合。简要的说,一个集合的闭包满足闭包性质。.
量化
量化可以指:.
查看 自由变量和约束变量和量化
通配符
通配符有以下意思:.
逻辑运算符
在形式逻辑中,逻辑运算符或逻辑联结词把语句连接成更复杂的复杂语句。例如,假设有两个逻辑命题,分别是“正在下雨”和“我在屋里”,我们可以将它们组成复杂命题“正在下雨,并且我在屋里”或“没有正在下雨”或“如果正在下雨,那么我在屋里”。一个将两个语句组成的新的语句或命题叫做复合语句或复合命题。.
递归函数
在数理逻辑和计算机科学中,递归函数或μ-递归函数是一类从自然数到自然数的函数。直觉上递归函数是"可计算的"。事实上在可计算性理论中已经证明了它确实是图灵机的可计算函数。递归函数与原始递归函数相关,而且递归函数的归纳定义(见下)建立在原始递归函数之上。但不是所有递归函数都是原始递归函数——其中最著名的是阿克曼函数。 其他等价的函数类是λ-递归函数和马尔可夫算法可计算的函数。 所有递归函数的集合叫做R。.
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
查看 自由变量和约束变量和数学
数理逻辑
数理逻辑是数学的一个分支,其研究对象是对证明和计算这两个直观概念进行符号化以后的形式系统。数理逻辑是数学基础的一个不可缺少的组成部分。 数理逻辑的研究范围是逻辑中可被数学模式化的部分。以前称为符号逻辑(相对于哲学逻辑),又称元数学,后者的使用现已局限于证明论的某些方面。.
另见
數學表示法
- 中缀表示法
- 乘法
- 倒角十二面體
- 克罗内克δ函数
- 克里斯托费尔符号
- 加法
- 取整函数
- 多元组
- 多重指标
- 大O符号
- 大数 (数学)
- 奇普
- 小数
- 康威多面體表示法
- 康威鏈式箭號表示法
- 抽象指标记号
- 括号
- 指标集
- 数学公式
- 数学字母数字符号
- 数学符号表
- 數學符號
- 斯坦豪斯-莫澤表示法
- 施莱夫利符号
- 歧義
- 求和符号
- 波兰表示法
- 潘洛斯圖形符號
- 爱因斯坦求和约定
- 狄拉克符号
- 用於數學、科學和工程的希臘字母
- 省略号
- 科学记数法
- 算子
- 精算符號
- 自由变量和约束变量
- 艾佛森括号
- 计数符号
- 记数系统
- 进位制
- 逆波兰表示法
- 逻辑符号表
- 運算數
- 集合建構式符號
- 音樂記譜法
- 高德納箭號表示法
计算机编程
- Codecademy
- ODBC
- TidalCycles
- 全国计算机等级考试
- 副作用 (计算机科学)
- 可变参数模板
- 單行小程式
- 尤達條件式
- 恶意软件
- 条件运算符
- 污点检验
- 流程图
- 特性切换
- 程序设计
- 系統程式設計
- 系统时间
- 編譯程式定向
- 编程语言列表
- 自由变量和约束变量
- 节目专用信息
- 虛設代碼
- 计算机程序
- 軟體組建
- 黑客
谓词逻辑
- 一元谓词演算
- 一阶逻辑
- 全称实例化
- 分体论 (逻辑学)
- 原子公式
- 原子句子
- 句子 (数理逻辑)
- 子句 (逻辑)
- 存在概括
- 普遍化
- 概念文字
- 自由变量和约束变量
- 论域
- 谓词变量
- 量化 (数理逻辑)
- 饮者悖论
- 高阶逻辑
邏輯符號
亦称为 约束变量。