我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

句子 (数理逻辑)

指数 句子 (数理逻辑)

在数理逻辑中,句子是没有自由变量的公式;在模型论中,一个句子在给定的数学结构中要么是真要么是假。 例如 不是一个句子,因为出现了自由变量y;在实数的结构中,如果y.

目录

  1. 8 关系: 原子句子实数开放句子公式 (数理逻辑)自由变量和约束变量模型论数学结构数理逻辑

  2. 命題
  3. 谓词逻辑
  4. 逻辑学小作品

原子句子

在命题演算和谓词演算中,原子公式要么是命题字母要么是跟随着n个变量的n元谓词字母。原子句子同于上述描述,除了n元谓词字母跟随着n个常量或函子(functor)之外。 例如,设P, M, T是谓词字母;设a, b, c,等是常量项;但设x, y, z是变量项;并设p是命题字母。则下列都是原子句子:.

查看 句子 (数理逻辑)和原子句子

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

查看 句子 (数理逻辑)和实数

开放句子

开放句子是「在用特定的数,替代其中的变量的时候,将使得结果的表达式被求值为真的一个句子」。 数学家没有接受这种术语,而是称之为带有自由变量的方程式或不等式等。 这种替代也叫做对句子的解。恒等式是所有数都是解的开放句子。 开放句子的例子包括:.

查看 句子 (数理逻辑)和开放句子

公式 (数理逻辑)

在数理逻辑中,公式是表达命题的形式语法对象,除了这个命题可能依赖于这个公式的自由变量的值之外。 公式精确定义依赖于涉及到的特定的形式逻辑,但有如下一个非常典型的定义(特定于一阶逻辑):公式是相对于特定语言而定义的;就是说,一组常量符号、函数符号和关系符号,这里的每个函数和关系符号都带有一个元数(arity)来指示它所接受的参数的数目。.

查看 句子 (数理逻辑)和公式 (数理逻辑)

自由变量和约束变量

在数学和其他涉及形式语言的学科中,包括数理逻辑和计算机科学,自由变量是在表达式中用于表示一个位置或一些位置的符号,某些明确的代换可以在其中发生,或某些运算(比如总和或量化)可以在其上发生。这个概念有关于占位符(它是以后会被所替换),或表示未指定符号的通配符,但更加深入和复杂。 变量 x 成为约束变量,比如 或 在任何这种命题中,是否使用 x 或其他什么字母在逻辑上不重要。但是,在复合命题的其他地方再次使用同一个字母可能导致冲突。就是说,自由变量变成了约束的,并在支持公式的格式化的进一步工作中在某种意义上退休了。.

查看 句子 (数理逻辑)和自由变量和约束变量

模型论

数学上,模型论(Model theory)是从集合论的论述角度对数学概念表现(representation)的研究,或者说是对于作为数学系统基础的“模型”的研究。粗略地说,该学科假定有一些既存的数学“对象”,然后研究:当这些对象之间的一些运算或者一些关系乃至一组公理被给定时,可以相应证明出什么,以及如何证明。 比如实数理论中一个模型论概念的例子是:我们从一个任意集合开始,作为集合元素的每个个体都是一个实数,其间有一些关系和(或)函数,例如。若我们在该语言中问"∃ y (y × y.

查看 句子 (数理逻辑)和模型论

数学结构

在数学中,一个集合上的结构,或者更一般的讲类型,是由附加在该集合上的数学对象所组成,它们使得这个集合更易操作或赋予它们特殊的意义。 常见的结构包括测度,代数结构,拓扑,度量结构(几何),序,和等价关系等等。 有时候,一个集合同时有几种结构;这使得可研究的属性更丰富。例如,序可以导出一种拓扑。又如,如果一个集合有个拓扑并是一个群,而且这两个结构满足一定关系,则该集合成为一个拓扑群。.

查看 句子 (数理逻辑)和数学结构

数理逻辑

数理逻辑是数学的一个分支,其研究对象是对证明和计算这两个直观概念进行符号化以后的形式系统。数理逻辑是数学基础的一个不可缺少的组成部分。 数理逻辑的研究范围是逻辑中可被数学模式化的部分。以前称为符号逻辑(相对于哲学逻辑),又称元数学,后者的使用现已局限于证明论的某些方面。.

查看 句子 (数理逻辑)和数理逻辑

另见

命題

谓词逻辑

逻辑学小作品