徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

全称量化

指数 全称量化

在谓词逻辑中,全称量化是尝试形式化某个事物(逻辑谓词)对于所有事物或所有有关的事物都为真的概念。结果的陈述是全称量化后的陈述,我们在谓词上有了全称量化。在符号逻辑中,全称量词(典型的"∀")是用来指示全称量化的符号。.

19 关系: A反例合数存在量化实质条件开放句子真值论域谓词逻辑量化 (数理逻辑)自然数集合逻辑逻辑与逻辑等价推理规则无衬线体数理逻辑普遍化

A

A/a 是拉丁字母的首字母,来源于拉丁语中有低元音和音值的希腊字母α。其可从伊特鲁里亚语和希腊语α追溯到闪含语的'âlep(用于声门塞音)。其希腊名源自闪含语,而闪含语是因希伯来语而闻名的。古英语的和音变为现代的和,前者原由a和e连写的æ表示。在其他语言(例如意大利语、西班牙语和德语)中,A的音也与拉丁语相同。 可以确定A最早源于腓尼基字母表的第一个字母Aleph"A", "Encyclopædia Britannica", Volume 1, 1962.

新!!: 全称量化和A · 查看更多 »

反例

在逻辑学中,反例是相对于某个全称命题的概念。反例在数学、哲学和自然科学中都有重要的应用。举例来说,对一个命题:所有的天鹅都是白色的。这是一个全称命题,声明对于某类事物全体(所有的天鹅),都有某个性质(是白色的)。为了说明这个命题不是真的,只需要举出一个例子,其对象属于这类事物,但不具有命题中声称的性质就可以了。这样的例子称为反例:一只不是白色的天鹅就是这个命题的反例。.

新!!: 全称量化和反例 · 查看更多 »

合数

合數(也稱為合成數)是因數除了1和其本身外具有另一因數的正整數(定義為包含1和本身的因數大於或等於3個的正整數)。依照定義,每一個大於1的整數若不是質數,就會是合數。而0與1則被認為不是質數,也不是合數。例如,整數14是一個合數,因為它可以被分解成2 × 7。 起初105个合数为:4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 129, 130, 132, 133, 134, 135, 136, 138, 140,141,142,143,144,145,146,147,148,150.

新!!: 全称量化和合数 · 查看更多 »

存在量化

在谓词逻辑中,存在量化是对一个域的至少一个成员的性质或关系的论断。使用叫做存在量词逻辑算子符号∃来指示存在量化。 它相对于声称某些事物对所有事物都为真的全称量化。.

新!!: 全称量化和存在量化 · 查看更多 »

实质条件

在命题演算,或在数学的逻辑演算中,实质条件、實質蘊涵(容易和語意蘊涵\vDash搞混,建議不要用蘊涵這兩字)或蕴涵算子是一种二元的真值泛函的逻辑运算符,它有着如下形式 这裡的A和B是陈述变量(可以被语言中任何有意义的可表示的句子所替代)。在这种形式的陈述中,第一项这裡的A,叫做前件;第二项这裡的B,叫做后件。 这个算子使用右箭头“→”(有时用符号“⇒”或“⊃”)来符号化,符合“如果A為真,那么B亦為真”被写为如下:.

新!!: 全称量化和实质条件 · 查看更多 »

开放句子

开放句子是「在用特定的数,替代其中的变量的时候,将使得结果的表达式被求值为真的一个句子」。 数学家没有接受这种术语,而是称之为带有自由变量的方程式或不等式等。 这种替代也叫做对句子的解。恒等式是所有数都是解的开放句子。 开放句子的例子包括:.

新!!: 全称量化和开放句子 · 查看更多 »

真值

在逻辑中,真值(truth value),又稱逻辑值(logical value),是指示一个陈述在什么程度上是真的。在計算機編程上多稱做布林值、布爾值。 在经典逻辑中,唯一可能的真值是真和假。但在其他逻辑中其他真值也是可能的:模糊逻辑和其他形式的多值逻辑使用比简单的真和假更多的真值。 在代数上说,集合形成了简单的布尔代数。可以把其他布尔代数用作多值逻辑中的真值集合,但直觉主义逻辑把布尔代数推广为海廷代数。 在topos理论中,topos的主客对象分类器接管了真值集合的位置。.

新!!: 全称量化和真值 · 查看更多 »

论域

在形式科學裡,論域(或稱做論述全集),是指在某些系統化的論述裡的一些令人感興趣的變數之上,由其中的實體所組成的集合。論域通常被視為預備知識,所以不需要每一次都指出相關變數的範圍來。 例如,在一階邏輯的解釋中,論域是指由量詞能指涉到的個體所組成的集合。在一個解釋裡,論域可以是實數的集合;在另一個解釋裡,則可能是自然數的集合。若沒有指定任何論域,則如∀x (x2 ≠ 2) 之類命題的真偽是不確定的。若論域是實數的集合,此命題即是假的,因為有x.

新!!: 全称量化和论域 · 查看更多 »

谓词逻辑

在数理逻辑中,谓词逻辑(Predicate logic)是符号形式系统的通用术语,比如一阶逻辑,二阶逻辑,多类逻辑或无穷逻辑等等。.

新!!: 全称量化和谓词逻辑 · 查看更多 »

量化 (数理逻辑)

在语言和逻辑中,量化是指定一个谓词的有效性的广度的构造,就是说指定谓词在一定范围的事物上成立的程度。产生量化的语言元素叫做量词。结果的句子是量化的句子,我们称我们已经量化了这个谓词。量化在自然语言和形式语言中都使用。在自然语言中,量词的例子有“所有”、“某些”;“很多”、“少量”、“大量”也是量词。在形式语言中,量化是从旧公式产生新公式的公式构造子(constructor)。语言的语义指定了如何把这个构造子解释为一个有效性的广度。量化是变量约束操作的实例。 在谓词逻辑的两类基本量化是全称量化和存在量化。这些概念被更详细的叙述于在单独文章中;下面我们讨论适用于二者的特征。其他种类的量化包括唯一量化。.

新!!: 全称量化和量化 (数理逻辑) · 查看更多 »

自然数

数学中,自然数指用于计数(如「桌子上有三个苹果」)和定序(如「国内第三大城市」)的数字。用于计数时称之为基数,用于定序时称之为序数。 自然数的定义不一,可以指正整数 (1, 2, 3, 4, \ldots),亦可以指非负整数 (0, 1, 2, 3, 4, \ldots)。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 标准中所采用的定义。 数学家一般以\mathbb代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。.

新!!: 全称量化和自然数 · 查看更多 »

集合

集合可以指:.

新!!: 全称量化和集合 · 查看更多 »

逻辑

邏輯(λογική;Logik;logique;logic;意大利语、西班牙语、葡萄牙语: logica),又稱理則、論理、推理、推論,是对有效推論的哲學研究。邏輯被使用在大部份的智能活動中,但主要在哲學、心理、学习、推论统计学、脑科学、數學、語義學、 法律和電腦科學等領域內被視為一門學科。邏輯討論邏輯論證會呈現的一般形式,哪種形式是有效的,以及其中的謬論。 邏輯通常可分為三個部份:歸納推理、溯因推理和演繹推理。 在哲學裡,邏輯被應用在大多數的主要領域之中:形上學/宇宙論、本體論、知識論及倫理學。 在數學裡,邏輯是指形式逻辑和数理邏輯,形式逻辑是研究某個形式語言的有效推論。主要是演繹推理。 在辯證法中也會學習到邏輯。数理邏輯是研究抽象邏輯关系和数学基本的问题。 在心理、脑科学、語義學、 法律裡,是研究人类思想推理的处理。 在学习、推论统计学裡,是研究最大可能的结论。主要是歸納推理、溯因推理。 在電腦科學裡, 是研究各种方法的性质,可能性,和实现在机器上。主要是歸納推理、溯因推理,也有在歸納推理的研究。 从古文明开始(如古印度、中國和古希臘)都有對邏輯進行研究。在西方,亞里斯多德將邏輯建立成一門正式的學科,並在哲學中給予它一個基本的位置。.

新!!: 全称量化和逻辑 · 查看更多 »

逻辑与

在逻辑和数学中,逻辑合取或逻辑与或且是一个二元逻辑運算符。如果其两个变量的真值都为“真”,其结果为“真”,否则其结果为“假”。.

新!!: 全称量化和逻辑与 · 查看更多 »

逻辑等价

在逻辑中,陈述p和q是逻辑等价的,如果它们有相同的逻辑内容。 p和q是语法等价的,如果每个都可以证明自另一个。p和q是语义等价的,如果它们在所有模型中有相同的真值。 逻辑等价经常混淆于实质等价。前者是在元语言中的一个陈述,断言关于目标语言中的陈述p和q的某个事情。而p和q的实质等价(常写为"p ↔ q")自身是在目标语言中另一个陈述。但它们是有联系的,p和q是语法等价的,当且仅当p ↔ q是一个定理,而p和q是语义等价的,当且仅当p ↔ q是重言式。 逻辑等价有时表示为p ≡ q或p ⇔ q。但是,后者记号也用于实质等价。.

新!!: 全称量化和逻辑等价 · 查看更多 »

推理规则

在逻辑中,特别是数理逻辑中,推理规则(推论规则)是构造有效推论的方案。这些方案建立在一组叫做前提的公式和叫做结论的断言之间的语法关系。这些语法关系用于推理过程中,新的真的断言从其他已知的断言得出。规则也适用于非形式逻辑和逻辑论证,但是形式化更加困难和有争议。 按照规定,推理规则的应用纯粹是语法过程。尽管如此它必须是有效的,或者更精确地说保持有效性。为了使保持有效性的要求有意义,某种形式的语义与推理规则有关和推理规则自身的断言是必需的。对于在推理规则和和语义之间相互关系的讨论请参见命题逻辑。 命题逻辑中推理规则的显著例子是肯定前件和否定后件规则。对于一阶谓词逻辑,推理规则需要处理逻辑量词。对这种论证的更详细的描述请参见有效性。在一阶谓词逻辑中把所有推理规则作为一个单一规则来统一处理请参见一阶归结。 注意有很多不同的形式逻辑系统,每个都带有合式公式、推理规则和语义的自己的集合。参见时间逻辑、模态逻辑或直觉逻辑的实例。量子逻辑也是一种不同寻常形式的逻辑。参见证明论。在谓词演算中,需要一个补充的推理规则。它叫做普遍化。 在形式逻辑的设置(和很多有关领域)中,推理规则通常用如下形式给出:  前提#1  前提#2  ...  前提#n   结论 这个表达式声称,在某个逻辑推导期间已经获得了给定前提,同样可以认可特定结论。用来描述前提和结论二者的的精确的形式语言依赖于推导的实际上下文。在一个简单的情况下,你可以使用逻辑公式,比如  A→B  A     B 它是命题逻辑的肯定前件规则。推理规则通常通过使用全称变量而公式化为规则模式。在上面的规则(模式)中,A和B可以被实例化为论域(有时约定为某种受限制的子集比如命题)的任何元素,来形成推理规则的无限集合。 证明系统形成自一组规则,它们可以被链接在一起形成证明或推导。任何推导都只有一个最终结论,它是要证明或推导的陈述。如果在推导中留下了未满足的前提,则推导就是假言陈述:"如果前提成立,那么结论成立"。.

新!!: 全称量化和推理规则 · 查看更多 »

无衬线体

無襯線體(sans-serif)指沒有襯線的字體,與襯線字體相反,完全抛弃装饰衬线,只剩下主干,造型简明有力,更具现代感,起源也很晚。适用于标题、广告,瞬间的识别性高。这类字体在漢字等東亞字體中称“黑体”(或“方體”),与有衬线的“白体”相对。这类字体旧称“grotesque”(德语作grotesk)或“哥特体”,在日文中还有ゴシック体(Goshikku-tai,即“哥特体”)的称呼。.

新!!: 全称量化和无衬线体 · 查看更多 »

数理逻辑

数理逻辑是数学的一个分支,其研究对象是对证明和计算这两个直观概念进行符号化以后的形式系统。数理逻辑是数学基础的一个不可缺少的组成部分。 数理逻辑的研究范围是逻辑中可被数学模式化的部分。以前称为符号逻辑(相对于哲学逻辑),又称元数学,后者的使用现已局限于证明论的某些方面。.

新!!: 全称量化和数理逻辑 · 查看更多 »

普遍化

普遍化是谓词演算的一个推理规则,它声称: "普遍化"可以缩写为GEN,而推理规则可以被总结为相继式 但是这引起了一个重要的限制:不能应用演绎定理(DT)于它而推导出 这个公式是错的,因为 x 在前提中是一个无约束的实例,在结论中是一个约束的出现,所以如果这个公式是正确的,则它的 x 的自由实例可以被任何常量(域的元素)所替代: 但这是不正确的。比如,如果 P(x) 意味着 "x 是素数" 而域是自然数集合,则 明显不是真的,因为从它和 "7 是素数",可以通过肯定前件推出 "所有自然数都是素数",这是个矛盾,所以反证法得出这个公式是错的。 这个限制适用于证明:如果 GEN 在一个证明中应用于一个公式,从而约束了它的自由变量 x,则 DT 不能应用于这个证明中把这个公式移动到十字转门的右侧。 注意 P(x) 符号化带有自由变量 x 的开放陈述,它的真实视 x 而定,但是 \vdash P(x) 符号化(对于 x 的所有值)有效的一个陈述,即使它的变量 x 是自由的。GEN 应用于这种有效陈述,约束自由变量并生成 \vdash \forall x P(x) 。 所以公式 \vdash \forall x P(x) 只是陈述已经被 \vdash P(x) 蕴涵的事情的更明确的方式。 在谓词演算中还有一个公理,它声称 它通过演绎定理的逆定理可变换成 这意味着从 \vdash \forall x P(x) 可以推导 \vdash P(x) 。把 GEN 和这个公理放在一起,你可以推出 它的意义不同于 它是错误的原因是 P(x) 可以是任何偶然的(contingent)、无效的、开放公式。为了从根本上防止这种错误的公式,在谓词逻辑中这个限制被增加到 DT 上。 十字转门符号 \vdash 不是合式公式的一部分:严格的说它既不属于命题演算也不属于谓词演算,而可以被认为是一个"元符号"。所以,最终 \vdash \forall x P(x) 实际上意义不多于 \vdash P(x) ,因为 \vdash 符号实际上不是公式 P(x) 的一部分;比喻来说,它只是用来"抓住"这个公式的一个"把手"。.

新!!: 全称量化和普遍化 · 查看更多 »

重定向到这里:

全称量词全稱量化詞

传出传入
嘿!我们在Facebook上吧! »