我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

中心六邊形數

指数 中心六邊形數

中心六邊形數(Centered hexagonal number,或直接叫hex number)是以點表示,可圍繞中心一點排成正六邊形的有形數。第n個中心六邊形數為1+3n(n-1)。 中心六邊形數常見於在包裝圓柱形物件,因為那是平面上排圓形最省空間的排法,因為6是二維的吻數。 首n個中心六邊形數之和是n的立方,因此,中心六角錐數和立方數是相同的數,但顯示成不同的形狀。從另一個角度來看,中心六邊形數就是兩個立方數之差。 質中心六邊形數同時是立方質數。 中心六邊形數為1,7,19,37,61,91,127,169,217,271...(OEIS:A003215) 其中91, 8911, 873181等數不但是中心六邊形數,而且是三角形數(其後的數都十分大)。而169及32761則同時是中心六邊形數和平方數。 6.

目录

  1. 19 关系: 中心多邊形數三角形數平方数六边形立方質數立方數素数有形數11271691921727137661791

  2. 有形數

中心多邊形數

中心多邊形數是一種有形數的級數,它由中間的一點開始,以後每層就以固定的邊數包圍在其四周。層的每邊都比上一層多一點,,即是說在中心k邊形數,由第二層開始,每層都會比上一層多k點。 這些級數是.

查看 中心六邊形數和中心多邊形數

三角形數

一定数目的点或圆在等距离的排列下可以形成一个等边三角形,这样的数被称为三角形數。比如10个点可以组成一个等边三角形,因此10是一个三角形數: 一开始的18个三角形數是1、3、6、10、15、21、28、36、45、55、66、78、91、105、120、136、153、171、190、210、231、253…… 一个三角数乘以九再加一仍是一个三角数。 三角數的個位數字不可能是2、4、7、9,數字根不可能是2、4、5、7、8。 三角数的二倍的平方根取整,是这个三角数的序数。.

查看 中心六邊形數和三角形數

平方数

数学上,平方数,或称完全平方数,是指可以写成某个整数的平方的数,即其平方根为整数的数。例如,9.

查看 中心六邊形數和平方数

六边形

在幾何學中,六邊形是指有六條邊和六個頂點的多邊形,其內角和為720度。六邊形有很多種,其中對稱性最高的是正六邊形。正六邊形是一種可以使用尺規作圖的六邊形,也可以拼滿平面,因此自然界中可以找到許多正六邊形的結構,如蜂巢、玄武岩和苯的分子結構。另外,正六邊形也可以構成一些高對稱性的多面體,如截角二十面體,巴克明斯特富勒烯的分子結構就是這種形狀。 六邊形依照其類角的性質可以分成凸六邊形和非凸六邊形,其中凸六邊形代表所有內角的角度皆小於180度。非凸六邊形可以在近一步分成凹六邊形和星形六邊形,其中星形六邊形表示邊自我相交的六邊形。.

查看 中心六邊形數和六边形

立方質數

立方質數是由特殊的方程生成的質數。这种方程共有两组,都包含有變數x和y的立方项。A.J.C.坎寧安(A.

查看 中心六邊形數和立方質數

立方數

n個立方數指可以寫成n^3的數,當中n必為整數。立方數是邊長n的立方體的體積。作為算術用語的「立方」,表示任何數n的三次冪,可用³(Unicode字元179)來表示。 和平方數不同,立方數可存在負數。 立方數的數字根一定是1、8、9的其中一個。 首十二個立方數為:1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728...

查看 中心六邊形數和立方數

素数

質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.

查看 中心六邊形數和素数

有形數

有形數是可以排成有一定規律形狀的數。有形數是畢達哥拉斯學派的關注重點之一,他們認為數和形有不可分割的關係。有形數都是自然數,它們可以用小石子堆砌。有形數是將數形象化的方法。 一般地,任意一个自然数都可以表示为m个m边形数的和。.

查看 中心六邊形數和有形數

1

1(一/壹)是0与2之间的自然数,是最小的正奇數.

查看 中心六邊形數和1

127

127是126与128之间的自然数。.

查看 中心六邊形數和127

169

169是168與170之間的自然數。.

查看 中心六邊形數和169

19

19(十九)是18与20之间的自然数。.

查看 中心六邊形數和19

217

217是於216和218的一個自然數。.

查看 中心六邊形數和217

271

271是270與272之間的自然數。.

查看 中心六邊形數和271

37

37是36与38之间的自然数。.

查看 中心六邊形數和37

6

6(六)是5与7之间的自然数。.

查看 中心六邊形數和6

61

61是60与62之间的自然数。.

查看 中心六邊形數和61

7

7(七)是6与8之间的自然数。.

查看 中心六邊形數和7

91

91是90与92之间的自然数。.

查看 中心六邊形數和91

另见

有形數