我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

分划

指数 分划

分划是数学中对于全序集的操作。对于给定的全序集A及其中某个元素x而言,将A分拆为两个非空集合,使得两者其一中所有元素(按照顺序)均在x之前、另一中所有元素均在x之后。 常见的是对于全体有理数的操作,即A.

目录

  1. 7 关系: 实数域的序微积分学教程全序关系無理數非空集合高等教育出版社有理数

  2. 實數
  3. 序理论
  4. 有理數

实数域的序

利用有理数的分划的概念,可以定义无理数,建立无理数的比较规则,并在此基础上得到实数域的序的有关性质。 假设无理数\alpha由分划A|A'所确定,无理数\beta由分划B|B'所确定,则.

查看 分划和实数域的序

微积分学教程

《微积分学教程》(俄語:Курс дифференциального и интегрального исчисления),是苏联数学家菲赫金哥尔茨(Григорий Михайлович Фихтенгольц) 为数学分析课程撰写的一本教程。 全书共三卷,目前最新版本是第八版。.

查看 分划和微积分学教程

全序关系

全序关系即集合X上的反对称的、传递的和完全的二元关系(一般称其为\leq)。 若X满足全序关系,则下列陈述对于X中的所有a,b和c成立:.

查看 分划和全序关系

無理數

無理數是指除有理数以外的实数,當中的「理」字来自于拉丁语的rationalis,意思是「理解」,实际是拉丁文对于logos「说明」的翻译,是指无法用两个整数的比来说明一个无理数。 非有理數之實數,不能寫作兩整數之比。若將它寫成小數形式,小數點之後的數字有無限多個,並且不會循環,即无限不循环小数。常見的無理數有大部分的平方根、π和e(其中後兩者同時為超越數)等。無理數的另一特徵是無限的連分數表達式。 傳說中,无理数最早由畢達哥拉斯學派弟子希伯斯发现。他以幾何方法證明\sqrt無法用整数及分數表示。而畢達哥拉斯深信任意数均可用整数及分数表示,不相信無理數的存在。後來希伯斯触犯学派章程,将无理数透露给外人,因而被扔进海中处死,其罪名竟然等同于“渎神”。另見第一次數學危機。 無理數可以通過有理數的分划的概念進行定義。.

查看 分划和無理數

非空集合

在集合論裏,非空集合是至少含有一个元素的集合。與之相對的是空集。 非空集合的元素个数不为零,而空集不含任何元素。 en:Non-empty set F.

查看 分划和非空集合

高等教育出版社

等教育出版社,簡稱高教社,是一家直属于中华人民共和国教育部的专业教育出版机构,成立于1954年5月,主要出版高等教育、职业教育、成人及社会教育等教育类、专业类、科技类出版物。.

查看 分划和高等教育出版社

有理数

数学上,可以表达为两个整数比的数(a/b, b≠0)被定义为有理数,例如3/8,0.75(可被表达为3/4)。整数和分数统称为有理数。与有理数对应的是无理数,如\sqrt无法用整数比表示。 有理数与分數的区别,分數是一种表示比值的记法,如 分數\sqrt/2 是无理数。 所有有理数的集合表示为Q,Q+,或\mathbb。定义如下: 有理数的小数部分有限或为循环。不是有理數的實數遂稱為無理數。.

查看 分划和有理数

另见

實數

序理论

有理數

亦称为 戴德金分割。