目录
基数 (数学)
在日常交流中,基數或量數是對應量詞的數,例如「一顆蘋果」中的「一」。與序數相對,序數是對應排列的數,例如「第一名」中的「一」及「二年級」中的「二」。 在數學上,基數或势,即集合中包含的元素的「个数」(參見势的比较),是日常交流中基數的概念在數學上的精確化(並使之不再受限於有限情形)。有限集合的基數,其意義與日常用語中的「基數」相同,例如\的基數是3。無限集合的基數,其意義在於比較兩個集的大小,例如整數集和有理數集的基數相同;整數集的基數比實數集的小。.
查看 全序关系和基数 (数学)
偏序关系
偏序集合(Partially ordered set,简写poset)是数学中,特别是序理论中,指配备了部分排序关系的集合。 这个理論將排序、顺序或排列这个集合的元素的直觉概念抽象化。这种排序不必然需要是全部的,就是说不必要保证此集合内的所有对象的相互可比较性。部分排序集合定义了部分排拓扑。.
查看 全序关系和偏序关系
反对称关系
数学上,若对所有的 a 和 b 属于 X,下述語句保持有效,則集合 X 上的二元关系 R 是反对称的:「若 a 关系到 b 且 b 关系到 a,则 a.
查看 全序关系和反对称关系
多元组
多元組泛指有限個元素所組成的序列。在數學上及計算機科學上分別有其特殊的意義。 数学上,n元组或多元组是对象个数有限的序列。元组由三部分组成:边界符、分隔符和元素。通常采用的边界符是小括号“(\)”,分隔符是逗号。 多元组被数学家用来描述包含特定部件的数学对象。例如,有向图被定义成一个二元组(V, E),这里V是节点的集合,E是V × V的子集,表示边。 在類型論中,多元組與重類別相關。.
查看 全序关系和多元组
字典序
(a2, b2,..., n2) 的有序多元组形式,那么两者即可排序——从前往后:.
查看 全序关系和字典序
上界和下界
設(A,\leq)為一個偏序集,若存在y\in A,能滿足\forall x\in B\subseteq A都有x\leq y,則y稱作集合B的上界,若存在z\in A,能滿足\forall x\in B\subseteq A都有x\geq z,則z稱作B的下界。 例如在實變數中,若存在一個實數b,能滿足\forall x\in S\subseteq R都有 x\leq b,則b即為集合S的上界,若存在一個實數c,能滿足\forall x\in S\subseteq R都有 x\geq c,則c即為集合S的下界。.
查看 全序关系和上界和下界
三分法
在数学中,三分律(或公理)是对任何(实)数 x 和 y 下列关系中精确的一个成立的最一般的陈述: 如果应用于基数,三分律等价于选择公理。 在有序整环或有序域的定义中,有着 y.
查看 全序关系和三分法
序数
數學上,序數是自然數的一種擴展,與基數相對,著重於次序的性質。大於有限數的序數也稱作超限序數。 超限序数是由數學家格奥尔格·康托尔于1897年引入,用來考慮無窮序列,並用來對具有序结构的無窮集進行分類。.
查看 全序关系和序数
二元关系
数学上,二元关系(Binary relation,或简称关系)用於讨论两种物件的连系。诸如算术中的「大於」及「等於」、几何学中的「相似」或集合论中的「为……之元素」、「为……之子集」。.
查看 全序关系和二元关系
传递关系
在逻辑学和数学中,傳遞關係(Transitive relation)、即,若对所有的a,b,c属于X,下述語句保持有效,則集合X上的二元关系R是传递的:「若a关系到b且b关系到c,则 a关系到c。.
查看 全序关系和传递关系
稠密集
在拓扑学及数学的其它相关领域,给定拓扑空间X及其子集A,如果对于X中任一点x,x的任一邻域同A的交集不为空,则A称为在X中稠密。直观上,如果X中的任一点x可以被A中的点很好的逼近,则称A在X中稠密。 等价地说,A在X中稠密当且仅当X中唯一包含A的闭集是X自己。或者说,A的闭包是X,又或者A的补集的内部是空集。.
查看 全序关系和稠密集
自反关系
自反关系是在逻辑学和数学中一种特殊的二元关系,这样的二元关系被称为自反的,也被称为具有自反性。自反關係的一個例子是關於實數集合的“等於”關係,因為每個實數都等於它自己。自反關係被認為擁有自反性或被認為具備自反性。对称性、传递性以及自反性是定義等價關係的三個屬性。.
查看 全序关系和自反关系
自然数
数学中,自然数指用于计数(如「桌子上有三个苹果」)和定序(如「国内第三大城市」)的数字。用于计数时称之为基数,用于定序时称之为序数。 自然数的定义不一,可以指正整数 (1, 2, 3, 4, \ldots),亦可以指非负整数 (0, 1, 2, 3, 4, \ldots)。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 标准中所采用的定义。 数学家一般以\mathbb代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。.
查看 全序关系和自然数
良序关系
在数学中,集合S上的良序关系(或良序)需要满足:1.是在S上的全序关系2.
查看 全序关系和良序关系
集合 (数学)
集合(Set,或簡稱集)是基本的数学概念,它是集合论的研究对象,指具有某种特定性质的事物的总体,(在最原始的集合論─樸素集合論─中的定義,集合就是“一堆東西”。)集合裡的事物(“东西”),叫作元素。若然 x 是集合 A 的元素,記作 x ∈ A。 集合是现代数学中一个重要的基本概念,而集合论的基本理论是在十九世纪末被创立的。这里对被数学家们称为“直观的”或“朴素的”集合论进行一个简短而基本的介绍,另外可參见朴素集合论;關於对集合作公理化的理論,可见公理化集合论。.
查看 全序关系和集合 (数学)
有理数
数学上,可以表达为两个整数比的数(a/b, b≠0)被定义为有理数,例如3/8,0.75(可被表达为3/4)。整数和分数统称为有理数。与有理数对应的是无理数,如\sqrt无法用整数比表示。 有理数与分數的区别,分數是一种表示比值的记法,如 分數\sqrt/2 是无理数。 所有有理数的集合表示为Q,Q+,或\mathbb。定义如下: 有理数的小数部分有限或为循环。不是有理數的實數遂稱為無理數。.
查看 全序关系和有理数
整数
整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.
查看 全序关系和整数
另见
序理论
- 三分律
- 上界和下界
- 上闭集合
- 伽罗瓦连接
- 佐恩引理
- 偏序关系
- 克纳斯特-塔斯基定理
- 克莱尼不动点定理
- 全序关系
- 共尾
- 共尾性
- 區間
- 升链条件
- 单调函数
- 原子 (序理论)
- 反链
- 哈斯圖
- 字典序
- 完全偏序
- 完全布尔代数
- 完全海廷代数
- 嵌入 (数学)
- 布尔素理想定理
- 序同构
- 序嵌入
- 序拓撲
- 序理论
- 戴德金分割
- 斯科特域
- 斯科特连续性
- 最小不动点
- 有向集合
- 有序交換群
- 有序对
- 有界集合
- 极限保持函数
- 滤子 (数学)
- 特殊化预序
- 理想 (序理论)
- 紧致元素
- 良序关系
- 超滤子
- 逆序对
- 闭包算子
- 预序关系
- 默比乌斯反演公式
集合论
- ZFC系統無法確定的命題列表
- 传递集合
- 全序关系
- 全集
- 共尾性
- 可定义数
- 基数指派
- 外延
- 外延性
- 對角論證法
- 层化
- 并集
- 幾乎
- 序數算術
- 康托尔定理
- 支撑集
- 数学结构
- 有限交集性质
- 朴素集合论
- 树 (集合论)
- 等价类
- 类 (数学)
- 继承可数集合
- 继承有限集合
- 连续统
- 连续统的势
- 配对函数
- 闭包 (数学)
- 集合 (数学)
- 集合建構式符號
- 集合论
亦称为 全序,全序集,链 (数学)。