我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

上闭集合

指数 上闭集合

在数学中,上部集合(向上闭合集合)是给定偏序集合 (X,≤) 的子集 Y,使得对于所有元素 x 和 y,如果 x 小于等于 y,并且 x 是 Y 的一个元素,则 y 也在 Y 中。更加形式的说 对偶概念是下部集合(向下闭合集合),它是给定偏序集合 (X,≤) 的任何子集 Y,使得对于所有元素 x 和 y,如果 x 小于等于 y,并且 y 是 Y 的一个元素,则 x 也在 Y 中。更加形式的说.

目录

  1. 13 关系: 偏序关系升链条件反链子集完全格序数交集理想 (序理论)补集极大元极小元有向集合数学

  2. 序理论

偏序关系

偏序集合(Partially ordered set,简写poset)是数学中,特别是序理论中,指配备了部分排序关系的集合。 这个理論將排序、顺序或排列这个集合的元素的直觉概念抽象化。这种排序不必然需要是全部的,就是说不必要保证此集合内的所有对象的相互可比较性。部分排序集合定义了部分排拓扑。.

查看 上闭集合和偏序关系

升链条件

数学上,偏序集P适合升链条件,若任意P的元素的升链 a1 ≤ a2 ≤ ...最终固定,就是說存在正整数n,使得对所有m > n,有am.

查看 上闭集合和升链条件

反链

在序理論中,设A是一个偏序集,B为A的一个子集,若B中任意两个元素无法相互比較(comparable),则称B是一条反链(Antichain)。为了方便,通常还规定偏序集中的所有单元素子集既是链也是反链。 用形式化语言表述就是: 设(A,\geqslant)是一个偏序集,B是A的子集,则B是A上的反链等价于.

查看 上闭集合和反链

子集

子集,為某個集合中一部分的集合,故亦稱部分集合。 若A和B为集合,且A的所有元素都是B的元素,则有:.

查看 上闭集合和子集

完全格

在数学中,完全格是在其中所有子集都有上确界(并)和下确界(交)的偏序集。完全格出现于数学和计算机科学的很多应用中。作为格的特殊实例,在序理论和泛代数中都有所研究。 完全格一定不能混淆于完全偏序(cpo),它构成严格的更加一般的一个偏序集合类别。更特殊的完全格是完全布尔代数和完全Heyting代数(locale)。.

查看 上闭集合和完全格

序数

數學上,序數是自然數的一種擴展,與基數相對,著重於次序的性質。大於有限數的序數也稱作超限序數。 超限序数是由數學家格奥尔格·康托尔于1897年引入,用來考慮無窮序列,並用來對具有序结构的無窮集進行分類。.

查看 上闭集合和序数

交集

数学上,两个集合A和B的交集是含有所有既属于A又属于B的元素,而没有其他元素的集合。.

查看 上闭集合和交集

理想 (序理论)

在数学分支序理论中,理想是偏序集合的一個特殊子集。尽管这个术语最初演化自抽象代数中环理想概念,它后来被一般化为一个不同的概念。理想对于序理论和格理论中的很多构造是非常重要的。.

查看 上闭集合和理想 (序理论)

补集

在集合论和数学的其他分支中,存在--的两种定义:--和--。.

查看 上闭集合和补集

极大元

设(A, \leq)是偏序集,B \subseteq A,y \in B,若对于所有的x \in B,y \leq x ~\implies~x.

查看 上闭集合和极大元

极小元

设(A, \leq)是偏序集,B \subseteq A,y \in B,若对于所有的x \in B,x \leq y ~\implies~x.

查看 上闭集合和极小元

有向集合

在数学中,有向集合(也叫有向预序或过滤集合),是一个具有预序关系(自反及传递之二元关系 ≤)的非空集合 A,而且每一對元素都會有個上界,亦即对于 A 中任意两个元素 a 和 b,存在着 A 中的一个元素 c(不必然不同于 a,b),使得 a ≤ c 和 b ≤ c(有向性)。 有向集合是非空全序集合的廣義化,亦即所有的全序集合都會是有向集合(偏序集合則不一定是有向的)。在拓撲學裡,有向集合被用來定義網,一種廣義化序列且統合用於數學分析中各式極限的概念。有向集合亦在抽象代數及(更一般的)範疇論中被用來產生有向極限這類的概念。.

查看 上闭集合和有向集合

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

查看 上闭集合和数学

另见

序理论