目录
41 关系: 域理论,偏序关系,单元素集合,单调函数,反对称关系,完全偏序,对称关系,属,上闭集合,序理论,交集,交换环,代数几何,传递关系,开集,当且仅当,分离公理,函子,理想 (环论),等价关系,素理想,物种,非空集合,预序关系,预序范畴,计算机科学,豪斯多夫空间,范畴论,闭包,闭集,自反关系,連續函數 (拓撲學),T1空间,极小元,指称语义,有向集合,最小上界,数学,拓扑学,拓扑不可区分性,拓扑空间。
- 序理论
域理论
域理论是研究通常叫做域(domain)的特定种类偏序集合的数学分支。因此域理论可以被看作是序理论的分支。这个领域主要应用于计算机科学中,特别是针对函数式编程语言,用它来指定指称语义。域理论以非常一般化的方式形式化了逼近和收敛的直觉概念,并与拓扑学有密切联系。在计算机科学中指称语义的一个可作为替代的方式是度量空间。.
查看 特殊化预序和域理论
偏序关系
偏序集合(Partially ordered set,简写poset)是数学中,特别是序理论中,指配备了部分排序关系的集合。 这个理論將排序、顺序或排列这个集合的元素的直觉概念抽象化。这种排序不必然需要是全部的,就是说不必要保证此集合内的所有对象的相互可比较性。部分排序集合定义了部分排拓扑。.
查看 特殊化预序和偏序关系
单元素集合
数学上,单元素集合是由唯一一个元素组成的集合。例如,集合 是个单元素集合。注意,集合诸如 也是单元素集合,唯一的元素是一个集合(这个集合可能本身不是单元素集合)。 一个集合是单元素集合,当且仅当它的势为1。在自然数的集合论定义中,数字 1 就是定义为单元素集合 。 在公理集合论中,单元素集合的存在性是空集公理和对集公理的结果:前者产生了空集 ,后者应用于对集 和 ,产生了单元素集合 。 若 A 是任意集合,S 是单元素集合,则存在唯一一个从 A 到 S的函数,该函数将所有 A 中的元素映射到 S 的单元素。 在范畴论中,单元素集合上构建的结构通常作为终对象或零对象:.
查看 特殊化预序和单元素集合
单调函数
在数学中在有序集合之间的函数是单调(monotone)的,如果它们保持给定的次序。这些函数最先出现在微积分中后来推广到序理论中更加抽象结构中。尽管概念一般是一致的,两个学科已经发展出稍微不同的术语。在微积分中,我们经常说函数是单调递增和单调递减的,在序理论中偏好术语单调、反单调或序保持、序反转。.
查看 特殊化预序和单调函数
反对称关系
数学上,若对所有的 a 和 b 属于 X,下述語句保持有效,則集合 X 上的二元关系 R 是反对称的:「若 a 关系到 b 且 b 关系到 a,则 a.
查看 特殊化预序和反对称关系
完全偏序
在数学中,有向完全偏序和完全偏序是两种特殊的偏序集合,分别简写为 dcpo 和 cpo。它们特征化自特定的完备性性质。dcpos 和 cpos 是序理论的概念,主要应用于理论计算机科学和指称语义。.
查看 特殊化预序和完全偏序
对称关系
数学上,若對所有的 a 和 b 屬於 X,下述語句保持有效,則集合 X 上的二元关系 R 是对称的:「若 a 关系到 b,则 b 关系到 a。」 数学上表示为: 例如:“和……结婚”是对称关系;“小于”不是对称关系。 注意,对称关系不是反对称关系(aRb 且 bRa 得到 b.
查看 特殊化预序和对称关系
属
属(genus,genus)是生物分类法中的一级,位于科和种之间。属名由拉丁词或希腊词或拉丁化的其他文字构成,首字母必須大寫。.
查看 特殊化预序和属
上闭集合
在数学中,上部集合(向上闭合集合)是给定偏序集合 (X,≤) 的子集 Y,使得对于所有元素 x 和 y,如果 x 小于等于 y,并且 x 是 Y 的一个元素,则 y 也在 Y 中。更加形式的说 对偶概念是下部集合(向下闭合集合),它是给定偏序集合 (X,≤) 的任何子集 Y,使得对于所有元素 x 和 y,如果 x 小于等于 y,并且 y 是 Y 的一个元素,则 x 也在 Y 中。更加形式的说.
查看 特殊化预序和上闭集合
序理论
序理论是研究捕获数学排序的直觉概念的各种二元关系的数学分支。.
查看 特殊化预序和序理论
交集
数学上,两个集合A和B的交集是含有所有既属于A又属于B的元素,而没有其他元素的集合。.
查看 特殊化预序和交集
交换环
在抽象代数之分支环论中,一个交换环(commutative ring)是乘法运算满足交换律的环。对交换环的研究称为交换代数学。 某些特定的交换环在下列类包含链中:.
查看 特殊化预序和交换环
代数几何
代数几何是数学的一个分支。 经典代数几何研究多项式方程的零点,而现代代数几何将抽象代数,尤其是交换代数,同几何学的语言和问题结合起来。 代数几何的基本研究对象为代数簇。代数簇是由空间坐标的若干代数方程的零点集。常见的例子有平面代数曲线,比如直线、圆、椭圆、抛物线、双曲线、三次曲线(非奇异情形称作椭圆曲线)、四次曲线(如双纽线,以及卵形线)、以及一般n次曲线。代数几何的基本问题涉及对代数簇的分类,比如考虑在双有理等价意义下的分类,即双有理几何,以及模空间问题,等等。 代数几何在现代数学占中心地位,与多复变函数论、微分几何、拓扑学和数论等不同领域均有交叉。始于对代数方程组的研究,代数几何延续解方程未竟之事;与其求出方程实在的解,代数几何尝试理解方程组的解的几何性质。代数几何的概念和技巧都催生了某些最深奥的数学的分支。 进入20世纪,代数几何的研究又衍生出几个分支:.
查看 特殊化预序和代数几何
传递关系
在逻辑学和数学中,傳遞關係(Transitive relation)、即,若对所有的a,b,c属于X,下述語句保持有效,則集合X上的二元关系R是传递的:「若a关系到b且b关系到c,则 a关系到c。.
查看 特殊化预序和传递关系
开集
開集是指不包含任何自己邊界點的集合。或者說,開集包含的任意一點的充分小的鄰域都包含在其自身中。 例如,实数线上的由不等式2规定的集合称为开区间,是开集。这时候的边界为实数轴上的点2和5,如由不等式2\leq x \leq 5,或者2规定的区间由于包含其边界,因此不能称之为开集。 开集的概念一般与拓扑概念是紧密联系着的,通常先公理化开集,然后通过其定义边界的概念。(详细请参照拓扑空间).
查看 特殊化预序和开集
当且仅当
当且仅当(If and only if)(中国大陆又称作当且--仅当,臺灣又称作若且--唯若),在--邏輯中,逻辑算符反互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XNOR或ENOR或\Leftrightarrow。与一般的邏輯或非NOR不同,當兩兩數值相同為是,而數值不同時為否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在,并且仅仅在这些条件成立的时候”之意,在英语中的对应标记为iff。“A当且仅当B”其他等价的说法有“当且仅当A則B”;“A是B的充分必要条件(充要條件)”。 一般而言,當我們看到“A当且仅当B”,我們可以知道“如果A成立時,則B一定成立;如果B成立時,則A也一定成立”;“如果A不成立時,則B一定不成立;如果B不成立時,則A也一定不成立”。.
查看 特殊化预序和当且仅当
分离公理
在拓扑学及相关的数学领域裡,通常对于所讨论的拓扑空间加有各种各样的限制条件,分离公理即是指之中的某些限制條件。这些分离公理有时候被叫做吉洪诺夫分离公理,得名于安德烈·尼古拉耶维奇·吉洪諾夫。部分分離公理以字母T開頭,是由德文单词“Trennung”而來,意義是分离。 分離公理之所以稱為公理,是因為以前定義拓撲空間時,有些人會將其也做為公理來定義,而得出較現在意思狹義的拓撲空間。但在拓撲空間的公理化完成後,那些都成了「各種」的拓撲空間。然而,「分離公理」這一詞就這樣固定了下來。.
查看 特殊化预序和分离公理
函子
在範疇論中,函子是範疇間的一類映射。函子也可以解釋為小範疇範疇內的態射。 函子首先現身於代數拓撲學,其中拓撲空間的連續映射給出相應的代數对象(如基本群、同調群或上同調群)的代數同態。在當代數學中,函子被用來描述各種範疇間的關係。「函子」(英文:Functor)一詞借自哲學家魯道夫·卡爾納普的用語。卡爾納普使用「函子」這一詞和函數之間的相關來類比謂詞和性質之間的相關。對卡爾納普而言,不同於當代範疇論的用法,函子是個語言學的詞彙。對範疇論者來說,函子則是個特別類型的函數。.
查看 特殊化预序和函子
理想 (环论)
想(Ideal)是一个抽象代数中的概念。.
等价关系
等價關係(equivalence relation)即设R是某個集合A上的一个二元关系。若R满足以下條件:.
查看 特殊化预序和等价关系
素理想
在数学中,素理想是环的一个子集,与整数环中的素数共享许多重要的性质。.
查看 特殊化预序和素理想
物种
种(Species)或稱物种,生物分类的基本单位,位于生物分类法中最後一级,在属之下。較為籠統的概念,是指一群或多或少与其它这样的群体形态相同,並能够交配繁殖出具生殖能力後代的相关生物群体。以演化生物學家恩斯特·麥爾的定义来说,物种是:「能够(或可能)相互配育的自然种群的类群,这些类群与其它这样的类群在生殖上相互隔离着。」昆虫学家陈世骧(1978)对物种所下定义为:「物种是繁殖单元,由又连续又间断的居群所组成;物种是进化单元,是生物系统线上的基本环节,是分类的基本单元。」。 在分类学中,一个物种被赋予一个拉丁化的雙名法名称。该名称使用斜体印刷,手写时则加上底線;属名首字母大写,屬名之後紧跟一个唯一的形容词,這個詞稱為種小名或種加詞,其首字母不可大寫。只有完整的双名制名称才称为「种名」,而非仅仅是双名制名称的第二个部分。例如人的种名叫Homo sapiens(智人),而不是sapiens。 物种也是演化和生物多样性的基本单元。.
查看 特殊化预序和物种
非空集合
在集合論裏,非空集合是至少含有一个元素的集合。與之相對的是空集。 非空集合的元素个数不为零,而空集不含任何元素。 en:Non-empty set F.
查看 特殊化预序和非空集合
预序关系
序关系(简称预序,又称先序,preorder)、在数学中,是一类接近于偏序关系的二元关系,但仅满足自反性和传递性而不满足反对称性。偏序的大多数理论均可扩展到预序。.
查看 特殊化预序和预序关系
预序范畴
在数学领域,预序范畴(记为Ord)指以全体预序集为对象、其上的全体单调函数为态射的范畴。由于任意单调函数的复合还是单调函数,故其满足构成范畴的前提条件。 Ord的单态射为单射单调函数。 Ord的始对象是空集(空集为预序集),终对象为任意单元素预序集。Ord无零对象。 Ord上的积为笛卡儿积和其上的积序所构成的预序集。 存在从Ord到Set上的遗忘函子。把预序集映射为该集合,把单调函数映射为函数。该遗忘函子为一忠实函子,故Ord为具体范畴。 U.
查看 特殊化预序和预序范畴
计算机科学
计算机科学用于解决信息与计算的理论基础,以及实现和应用它们的实用技术。 计算机科学(computer science,有时缩写为CS)是系统性研究信息与计算的理论基础以及它们在计算机系统中如何与应用的实用技术的学科。 它通常被形容为对那些创造、描述以及转换信息的算法处理的系统研究。计算机科学包含很多分支领域;有些强调特定结果的计算,比如计算机图形学;而有些是探討计算问题的性质,比如计算复杂性理论;还有一些领域專注于怎样实现计算,比如程式語言理論是研究描述计算的方法,而程式设计是应用特定的程式語言解决特定的计算问题,人机交互则是專注于怎样使计算机和计算变得有用、好用,以及随时随地为人所用。 有时公众会误以为计算机科学就是解决计算机问题的事业(比如信息技术),或者只是与使用计算机的经验有关,如玩游戏、上网或者文字处理。其实计算机科学所关注的,不仅仅是去理解实现类似游戏、浏览器这些软件的程序的性质,更要通过现有的知识创造新的程序或者改进已有的程序。 尽管计算机科学(computer science)的名字里包含计算机这几个字,但实际上计算机科学相当数量的领域都不涉及计算机本身的研究。因此,一些新的名字被提议出来。某些重点大学的院系倾向于术语计算科学(computing science),以精确强调两者之间的不同。丹麦科学家Peter Naur建议使用术语"datalogy",以反映这一事实,即科学学科是围绕着数据和数据处理,而不一定要涉及计算机。第一个使用这个术语的科学机构是哥本哈根大学Datalogy学院,该学院成立于1969年,Peter Naur便是第一任教授。这个术语主要被用于北欧国家。同时,在计算技术发展初期,《ACM通讯》建议了一些针对计算领域从业人员的术语:turingineer,turologist,flow-charts-man,applied meta-mathematician及applied epistemologist。 三个月后在同样的期刊上,comptologist被提出,第二年又变成了hypologist。 术语computics也曾经被提议过。在欧洲大陆,起源于信息(information)和数学或者自动(automatic)的名字比起源于计算机或者计算(computation)更常见,如informatique(法语),Informatik(德语),informatika(斯拉夫语族)。 著名计算机科学家Edsger Dijkstra曾经指出:“计算机科学并不只是关于计算机,就像天文学并不只是关于望远镜一样。”("Computer science is no more about computers than astronomy is about telescopes.")设计、部署计算机和计算机系统通常被认为是非计算机科学学科的领域。例如,研究计算机硬件被看作是计算机工程的一部分,而对于商业计算机系统的研究和部署被称为信息技术或者信息系统。然而,现如今也越来越多地融合了各类计算机相关学科的思想。计算机科学研究也经常与其它学科交叉,比如心理学,认知科学,语言学,数学,物理学,统计学和经济学。 计算机科学被认为比其它科学学科与数学的联系更加密切,一些观察者说计算就是一门数学科学。 早期计算机科学受数学研究成果的影响很大,如Kurt Gödel和Alan Turing,这两个领域在某些学科,例如数理逻辑、范畴论、域理论和代数,也不断有有益的思想交流。.
查看 特殊化预序和计算机科学
豪斯多夫空间
在拓扑学和相关的数学分支中,豪斯多夫空间、分离空间或T2空间是其中的点都“由邻域分离”的拓扑空间。在众多可施加在拓扑空间上的分离公理中,“豪斯多夫条件”是最常使用和讨论的。它蕴涵了序列、网和滤子的极限的唯一性。直观地讲,这个条件可用个双关语来形容:如果某空间中任两点可用开集合将彼此“豪斯多夫”开来,该空间就是“豪斯多夫”的。 豪斯多夫得名于拓扑学的创立者之一费利克斯·豪斯多夫。豪斯多夫最初的拓扑空间定义把豪斯多夫条件包括为公理。.
查看 特殊化预序和豪斯多夫空间
范畴论
疇論是數學的一門學科,以抽象的方法來處理數學概念,將這些概念形式化成一組組的「物件」及「態射」。數學中許多重要的領域可以形式化成範疇,並且使用範疇論,令在這些領域中許多難理解、難捉摸的數學結論可以比沒有使用範疇還會更容易敘述及證明。 範疇最容易理解的一個例子為集合範疇,其物件為集合,態射為集合間的函數。但需注意,範疇的物件不一定要是集合,態射也不一定要是函數;一個數學概念若可以找到一種方法,以符合物件及態射的定義,則可形成一個有效的範疇,且所有在範疇論中導出的結論都可應用在這個數學概念之上。 範疇最簡單的例子之一為广群,其態射皆為可逆的。群胚的概念在拓撲學中很重要。範疇現在在大部分的數學分支中都有出現,在理論電腦科學的某些領域中用于對應資料型別,而在數學物理中被用來描述向量空間。 範疇論不只是對研究範疇論的人有意義,對其他數學家而言也有著其他的意思。一個可追溯至1940年代的述語「一般化的抽象廢話」,即被用來指範疇論那相對於其他傳統的數學分支更高階的抽象化。.
查看 特殊化预序和范畴论
闭包
闭包可以指:.
查看 特殊化预序和闭包
闭集
在拓扑空间中,闭集是指其补集为开集的集合。在一个拓扑空间内,闭集可以定义为一个包含所有其极限点的集合。在完备度量空间中,一个闭集的极限运算是闭合的。.
查看 特殊化预序和闭集
自反关系
自反关系是在逻辑学和数学中一种特殊的二元关系,这样的二元关系被称为自反的,也被称为具有自反性。自反關係的一個例子是關於實數集合的“等於”關係,因為每個實數都等於它自己。自反關係被認為擁有自反性或被認為具備自反性。对称性、传递性以及自反性是定義等價關係的三個屬性。.
查看 特殊化预序和自反关系
連續函數 (拓撲學)
在拓撲學和數學的相關領域裡,連續函數是指在拓撲空間之間的一種態射。直觀上來說,其為一個函數f,其中每一群在f(x)附近的點都會含有在x附近的一群點之值。對一個一般的拓撲空間來說,這是指f(x)的鄰域總會包含著x之鄰域的值。 在一個度量空間(如實數)裡,這是指在f(x)一定距離內的點總會包含著在x某些距離內的所有點。.
T1空间
在拓扑学和相关的数学分支中,T1 空间和 R0 空间是特定种类的拓扑空间。T1 和 R0 性质是分离公理的个例。.
查看 特殊化预序和T1空间
极小元
设(A, \leq)是偏序集,B \subseteq A,y \in B,若对于所有的x \in B,x \leq y ~\implies~x.
查看 特殊化预序和极小元
指称语义
在计算机科学中,指称语义(Denotational semantics)是通过构造表达其语义的(叫做指称(denotation)或意义的)数学对象来形式化计算机系统的语义的一种方法。编程语言的形式语义的其他方法包括公理语义和操作语义。指称语义方式最初开发来处理一个单一计算机程序定义的系统。后来领域扩展到了由多于一个程序构成的系统,比如网络和并发系统。 指称语义起源于 克里斯托弗·斯特雷奇 和 Dana Scott 在1960年代的工作。在 Strachey 和 Scott 最初开发的时候,指称语义把计算机程序的指称(意义)解释为映射输入到输出的函数。后来证明对于允许包含递归定义的函数和数据结构,这样的元素的程序的指称(意义)定义太受限制了。为了解决这个困难,Scott 介入了基于域的指称语义的一般性方法。后来的研究者介入了基于幂域的方法,来解决并发系统的语义的问题。 粗略的说,指称语义关注找到代表程序所做所为的数学对象。这种对象的搜集叫做域。例如,程序(或程序段)可以被偏函数,或演员事件图想定,或用环境和系统之间的博弈表示: 它们都是域的一般性例子。 指称语义的一个重要原则是“语义应当是复合性的”: 程序段的指称应当建立自它的子段的指称。最简单的例子是: “3 + 4”的意义确定自“3”、“4”和“+”的意义。 指称语义最初被开发为把函数式和顺序式程序建模为映射输入到输出的数学函数的框架。本文第一节描述在这个框架内开发的指称语义。后续章节处理多态、并发等问题。.
查看 特殊化预序和指称语义
有向集合
在数学中,有向集合(也叫有向预序或过滤集合),是一个具有预序关系(自反及传递之二元关系 ≤)的非空集合 A,而且每一對元素都會有個上界,亦即对于 A 中任意两个元素 a 和 b,存在着 A 中的一个元素 c(不必然不同于 a,b),使得 a ≤ c 和 b ≤ c(有向性)。 有向集合是非空全序集合的廣義化,亦即所有的全序集合都會是有向集合(偏序集合則不一定是有向的)。在拓撲學裡,有向集合被用來定義網,一種廣義化序列且統合用於數學分析中各式極限的概念。有向集合亦在抽象代數及(更一般的)範疇論中被用來產生有向極限這類的概念。.
查看 特殊化预序和有向集合
最小上界
在数学中,最小上界(supremum,亦称上确界,记为sup E)是序理论的重要概念,在格论和数学分析等领域有广泛应用。.
查看 特殊化预序和最小上界
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
查看 特殊化预序和数学
拓扑学
在數學裡,拓撲學(topology),或意譯為位相幾何學,是一門研究拓撲空間的學科,主要研究空間內,在連續變化(如拉伸或彎曲,但不包括撕開或黏合)下維持不變的性質。在拓撲學裡,重要的拓撲性質包括連通性與緊緻性。 拓撲學是由幾何學與集合論裡發展出來的學科,研究空間、維度與變換等概念。這些詞彙的來源可追溯至哥特佛萊德·萊布尼茲,他在17世紀提出「位置的幾何學」(geometria situs)和「位相分析」(analysis situs)的說法。莱昂哈德·歐拉的柯尼斯堡七橋問題與歐拉示性數被認為是該領域最初的定理。「拓撲學」一詞由利斯廷於19世紀提出,雖然直到20世紀初,拓撲空間的概念才開始發展起來。到了20世紀中葉,拓撲學已成為數學的一大分支。 拓撲學有許多子領域:.
查看 特殊化预序和拓扑学
拓扑不可区分性
在拓扑学中,拓扑空间X內的两点若有完全相同的鄰域,便稱這兩個點為「拓扑不可区分的」。亦即,設x及y為X內的兩點,A為由所有包含x的鄰域所組成的集合,且B為由所有包含y的鄰域所組成的集合,則x及y為「拓撲不可區分的」若且唯若A.
拓扑空间
拓扑空间是一种数学结构,可以在上頭形式化地定義出如收敛、连通、连续等概念。拓扑空间在现代数学的各个分支都有应用,是一个居于中心地位的、统一性的概念。拓扑空间有独立研究的价值,研究拓扑空间的数学分支称为拓扑学。.
查看 特殊化预序和拓扑空间
另见
序理论
- 三分律
- 上界和下界
- 上闭集合
- 伽罗瓦连接
- 佐恩引理
- 偏序关系
- 克纳斯特-塔斯基定理
- 克莱尼不动点定理
- 全序关系
- 共尾
- 共尾性
- 區間
- 升链条件
- 单调函数
- 原子 (序理论)
- 反链
- 哈斯圖
- 字典序
- 完全偏序
- 完全布尔代数
- 完全海廷代数
- 嵌入 (数学)
- 布尔素理想定理
- 序同构
- 序嵌入
- 序拓撲
- 序理论
- 戴德金分割
- 斯科特域
- 斯科特连续性
- 最小不动点
- 有向集合
- 有序交換群
- 有序对
- 有界集合
- 极限保持函数
- 滤子 (数学)
- 特殊化预序
- 理想 (序理论)
- 紧致元素
- 良序关系
- 超滤子
- 逆序对
- 闭包算子
- 预序关系
- 默比乌斯反演公式