我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

有限交集性质

指数 有限交集性质

在点集拓扑学中,有限交集性质是集合 X 的子集的集合(子集族,即幂集P(X) 的子集)的性质。一个集合有这个性质如果这个集合的任何有限子集上的交集为非空。.

目录

  1. 9 关系: 吉洪诺夫定理实数不可數集紧空间点集拓扑学超滤子集合集合族滤子 (数学)

  2. 集合族
  3. 集合论

吉洪诺夫定理

在数学上,吉洪诺夫(Тихонов)定理断言,任意个紧致空间的乘积空间对于乘积拓扑是紧致的,这个定理1930年由吉洪诺夫 (数学家)(Andrey Nikolayevich Tychonoff,Андрей Николаевич Тихонов)发表。这个定理在微分拓扑、代数拓扑和泛函分析等领域中有诸多运用。 对有限个空间来说,这个定理没有特别之处;对无限个,无论是可数无穷还是不可数无穷,这个结论仍然成立,它依赖于乘积拓扑的定义,与选择公理(它又等价于佐恩引理)是等价的。 J J J.

查看 有限交集性质和吉洪诺夫定理

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

查看 有限交集性质和实数

不可數集

不可數集是無窮集合中的一種。一個無窮集合和自然数之間要是不存在一個双射,那麼它就是一個不可數集。集合的不可数性与它的基数密切相关:如果一个集合的基数大于自然数的基数,那么它就是不可数的。.

查看 有限交集性质和不可數集

紧空间

在数学中,如果欧几里得空间Rn的子集是闭合的并且是有界的,那么称它是--的。例如,在R中,闭合单位区间是紧致的,但整数集合Z不是(它不是有界的),半开区间.

查看 有限交集性质和紧空间

点集拓扑学

点集拓扑学(Point Set Topology),有时也被称为一般拓扑学(General Topology),是数学的拓扑学的一个分支。它研究拓扑空间以及定义在其上的数学结构的基本性质。这一分支起源于以下几个领域:对实数轴上点集的细致研究,流形的概念,度量空间的概念,以及早期的泛函分析。它的表述形式大概在1940年左右就已经成文化了。通过这种可以为所有数学分支适用的表述形式,点集拓扑学基本上抓住了所有的对连续性的直观认识。.

查看 有限交集性质和点集拓扑学

超滤子

在数学领域集合论中,在集合 X 上的超滤子是作为极大滤子的 X 子集的搜集。超滤子可以被认为是有限可加性测度。那么 X 的所有子集要么被认为是“几乎所有”(有测度 1)要么被认为是“几乎没有”(有测度 0)。如果 A 是 X 的子集,则要么 A 要么 X\A 是超滤子的元素(这里 X\A 是 A 在 X 中的相对补集;就是说,X 的不在 A 中的所有元素的集合)。这个概念可以被推广到布尔代数甚至是一般偏序,并在集合论、模型论和拓扑学中有很多应用。.

查看 有限交集性质和超滤子

集合

集合可以指:.

查看 有限交集性质和集合

集合族

在集合论和有关的数学分支中,给定集合S的子集的搜集F叫做S的子集族或S上的集合族。更一般的说,无论什么任何集合的搜集都叫做集合族。.

查看 有限交集性质和集合族

滤子 (数学)

在数学中,滤子(英語:filter)是偏序集合的特殊子集。经常使用的特殊情况是:要考虑的有序集合只是某个集合的幂集,并用集合包含来排序。滤子出现在序理论和格理论中,还可以在它们所起源的拓扑学中找到。滤子的对偶概念是理想。 滤子是昂利·嘉当在1937年发明的并随后在尼古拉·布尔巴基的书《Topologie Générale》中作为对E.

查看 有限交集性质和滤子 (数学)

另见

集合族

集合论