徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

基数 (数学)

指数 基数 (数学)

在日常交流中,基數或量數是對應量詞的數,例如「一顆蘋果」中的「一」。與序數相對,序數是對應排列的數,例如「第一名」中的「一」及「二年級」中的「二」。 在數學上,基數或势,即集合中包含的元素的「个数」(參見势的比较),是日常交流中基數的概念在數學上的精確化(並使之不再受限於有限情形)。有限集合的基數,其意義與日常用語中的「基數」相同,例如\的基數是3。無限集合的基數,其意義在於比較兩個集的大小,例如整數集和有理數集的基數相同;整數集的基數比實數集的小。.

44 关系: 势的比较单射可數集双射子集实数對角論證法希尔伯特旅馆悖论序列序数交換律康托尔-伯恩斯坦-施罗德定理康托尔-伯恩斯坦-施罗德定理代數數保羅·哈爾莫斯分配律冯·诺伊曼基数指派公理化集合论元素笛卡儿积等势算术类 (数学)结合律置換超限数连续统假设量詞自然数良序定理良序关系艾禮富數集合集合论逻辑选择公理格奥尔格·康托尔满射有理数有限集合映射无限集合数学

势的比较

#重定向 势 (数学).

新!!: 基数 (数学)和势的比较 · 查看更多 »

单射

在數學裡,單射函數(或稱嵌射函數,國家教育研究院雙語詞彙、學術名詞暨辭書資訊網、一對一函數,英文稱 injection、injective function或 one-to-one function)為一函數,其將不同的輸入值對應到不同的函數值上。更精確地說,函數f被稱為是單射的,當對每一陪域內的y,存在至多一個定義域內的x使得f(x).

新!!: 基数 (数学)和单射 · 查看更多 »

可數集

在数学上,可数集,或称可列集、可数无穷集合,是与自然数集的某个子集具有相同基數(等势)的集合。在这个意义下不是可数集的集合称为不可数集。这个术语是康托尔创造的。可数集的元素,正如其名,是“可以计数”的:尽管计数永远无法终止,集合中每一个特定的元素都将对应一个自然数。 “可数集”这个术语也可以代表能和自然数集本身一一对应的集合。例子参见两个定义的差别在于有限集合在前者中算作可数集,而在后者中不算作可数集。 为了避免歧义,前一种意义上的可数有时称为至多可数,参见.

新!!: 基数 (数学)和可數集 · 查看更多 »

双射

數學中,一個由集合X映射至集合Y的函數,若對每一在Y內的y,存在唯一一個在X內的x与其对应,則此函數為對射函數。 換句話說,f為雙射的若其為兩集合間的一一對應,亦即同時為單射和滿射。 例如,由整數集合\Z至\Z的函數\operatorname,其將每一個整數x連結至整數\operatorname(x).

新!!: 基数 (数学)和双射 · 查看更多 »

子集

子集,為某個集合中一部分的集合,故亦稱部分集合。 若A和B为集合,且A的所有元素都是B的元素,则有:.

新!!: 基数 (数学)和子集 · 查看更多 »

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

新!!: 基数 (数学)和实数 · 查看更多 »

對角論證法

对角论证法是乔治·康托尔於1891年提出的用于说明实数集合是不可数集的证明。 对角线法并非康托尔关于实数不可数的第一个证明,而是发表在他第一个证明的三年后。他的第一个证明既未用到十进制展开也未用到任何其它數系。自从该技巧第一次使用以来,在很大范围内的证明中都用到了类似的证明构造方法,它們一般亦稱為對角論證法。.

新!!: 基数 (数学)和對角論證法 · 查看更多 »

希尔伯特旅馆悖论

希尔伯特旅馆悖论是一个与无限集合有关的数学悖论,由德国数学家大卫·希尔伯特提出。.

新!!: 基数 (数学)和希尔伯特旅馆悖论 · 查看更多 »

序列

数学上,序列是被排成一列的对象(或事件);这样,每个元素不是在其他元素之前,就是在其他元素之后。这里,元素之间的顺序非常重要。.

新!!: 基数 (数学)和序列 · 查看更多 »

序数

數學上,序數是自然數的一種擴展,與基數相對,著重於次序的性質。大於有限數的序數也稱作超限序數。 超限序数是由數學家格奥尔格·康托尔于1897年引入,用來考慮無窮序列,並用來對具有序结构的無窮集進行分類。.

新!!: 基数 (数学)和序数 · 查看更多 »

交換律

交換律(Commutative property)是被普遍使用的一個數學名詞,意指能改變某物的順序而不改變其最終結果。交換律是大多數數學分支中的基本性質,而且許多的數學證明需要倚靠交換律。簡單運算的交換律許久都被假定存在,且沒有給定其一特定的名稱,直到19世紀,數學家開始形式化數學理論之後,交換律才被聲明。.

新!!: 基数 (数学)和交換律 · 查看更多 »

康托尔-伯恩斯坦-施罗德定理

#重定向 康托尔-伯恩斯坦-施罗德定理.

新!!: 基数 (数学)和康托尔-伯恩斯坦-施罗德定理 · 查看更多 »

康托尔-伯恩斯坦-施罗德定理

康托尔-伯恩斯坦-施罗德定理(Cantor-Bernstein-Schroeder theorem)是集合论中的一个基本定理,得名於康托爾、伯恩斯坦和 Ernst Schröder。该定理陈述说:如果在集合 A 和 B 之间存在单射 f: A → B 和 g: B → A,则存在一个双射 h: A → B。從势的角度來看, 这意味着如果 |A| ≤ |B| 并且 |B| ≤ |A|,则 |A|.

新!!: 基数 (数学)和康托尔-伯恩斯坦-施罗德定理 · 查看更多 »

代數數

代數數是代数与数论中的重要概念,指任何整係數多项式的复根。 所有代数数的集合构成一个域,称为代数数域(与定义为有理数域的有限扩张的代数数域同名,但不是同一个概念),记作\mathcal或\overline,是复数域\mathbb的子域。 不是代数数的实数称为超越数,例如圆周率。.

新!!: 基数 (数学)和代數數 · 查看更多 »

保羅·哈爾莫斯

保羅·哈爾莫斯(Paul Halmos,),生於匈牙利布達佩斯的美國數學家,主要研究概率論(特別是遍歷理論)、統計學和泛函分析(特別是希爾伯特空間及算子理論)。 使用「iff」來表示「if and only if」(若且唯若)有時認為是哈爾莫斯的功勞,但哈爾莫斯說他只是借用的。使用∎(墓碑符號)來表示證明完畢是由他開始用的,故這個符號有時叫哈爾莫斯。.

新!!: 基数 (数学)和保羅·哈爾莫斯 · 查看更多 »

分配律

在抽象代数中,分配律是二元运算的一个性质,它是基本代数中的分配律的推广。.

新!!: 基数 (数学)和分配律 · 查看更多 »

冯·诺伊曼基数指派

冯·诺伊曼基数指派是使用序数的基数指派。对于良序集合 U,我们定义它的基数为等势(equinumerous)于 U 的最小序数。更加精确的, 當中:.

新!!: 基数 (数学)和冯·诺伊曼基数指派 · 查看更多 »

公理化集合论

在數學中,公理化集合论是集合論透過建立一階邏輯的嚴謹重整,以解決樸素集合論中出現的悖論。集合論的基礎主要由德國數學家格奧爾格·康托爾在19世紀末建立。.

新!!: 基数 (数学)和公理化集合论 · 查看更多 »

元素

#重定向 化學元素.

新!!: 基数 (数学)和元素 · 查看更多 »

笛卡儿积

在数学中,两个集合X和Y的笛卡儿积(Cartesian product),又称直积,在集合论中表示为X × Y,是所有可能的有序对組成的集合,其中有序對的第一个对象是X的成员,第二个对象是Y的成员。 舉個實例,如果集合X是13个元素的点数集合,而集合Y是4个元素的花色集合,则这两个集合的笛卡儿积是有52个元素的标准扑克牌的集合。 笛卡儿积得名于笛卡儿,因為這概念是由他建立的解析几何引申出來.

新!!: 基数 (数学)和笛卡儿积 · 查看更多 »

等势

在数学领域中,两个集合 A 和 B 是等势的(equinumerous),当它们有相同的势的时候,就是说如果存在一个双射 f: A → B。这通常指示为 两个有限集是等势的,当且仅当它们的元素个数相等。 例如, 势的研究中经常叫做等势性(equinumerosity)。有时还使用术语 equipotent 或 equipollent。 在集合范畴中,带有函数作为态射的所有集合的范畴,在两个集合之间的同构正好是一个双射,而两个集合正好是等势的,如果它们在这个范畴中是同构的。.

新!!: 基数 (数学)和等势 · 查看更多 »

算术

算術(arithmetic)是数学最古老且最簡單的一個分支,幾乎被每個人使用著,從日常生活上簡單的算數到高深的科学及工商业計算都會用到。一般而言,算術這一詞指的是記錄數字某些運算基本性質的数学分支。常用的运算有加法、減法、乘法、除法,有时候,更复杂的运算如指数和平方根,也包括在算术运算的范畴内。算术运算要按照特定规则来进行。 自然数、整数、有理数(以分數的形式)和实数(以十进制指数的形式)的运算主要是在小学和中学的时候学习。用百分比形式进行运算也主要是在这个时候学习。然而,在成人中,很多人使用计算器,计算机或者算盘来进行数学计算。 專業数学家有時會使用高等算術來指数论,但這不應該和初等算術相搞混。另外,算術也是初等代數的重要部份之一。.

新!!: 基数 (数学)和算术 · 查看更多 »

类 (数学)

在集合論及其數學應用中,類是由集合(或其他數學物件)的搜集(collection),可以依所有成員所共享的性質被無歧定義。有些類是集合(例如由所有偶數構成的類),但有些則不是(如所有序數所構成的類或所有集合所構成的類)。一個不是集合的類被稱之為真類。一个是集合的类被称为“小类”。 在數學裡,有許多物件對集合而言太大,而必須以類來描述,像是大的範疇和超實數的類體之類等。要證明一給定「事物」為一真類,一般的做法是證明此一「事物」至少有著如序數一般多的元素。有關此一證明的例子,請參見。 真類不能是一個集合或者是一個類的元素,而且不受ZF集合論中的公理所限制;因此避免掉了許多樸素集合論中的悖論。反而,這些悖論成了證明某一個類是否為真類的方法之一。例如,羅素悖論可以證明由所有不包含集合自身的集合所構成的類是一個真類,而布拉利-福尔蒂悖论則可證明所有序數所構成的類是一個真類。 標準的ZF集合論公理不會論及到類;而在元語言中,類只作為邏輯公式的等價類而存在。馮諾伊曼-博內斯-哥德爾集合論則採取了另一種方式;類在此一理論中是基礎的物件,而集合則被定義為可以是其他某些類的元素的類。真類,則為不可以是其他任何類的元素的類。 在其他集合論如新基础集合论或半集合的理論中,「真類」的概念依然是有意義的(不是任一堆事物都會是集合),但對集合特質的認定並非依據其大小。例如,所有包含全集的集合論都會有個是集合的子類的真類。 「類」這一詞有時會和「集合」同義,最為人知的是「等價類」這一術語。這種用法是因為從前對類和集合不如現今一樣地區別的緣故。許多19世紀之前對「類」的討論提及的實際上是集合,又或者會是個更為模糊的概念。.

新!!: 基数 (数学)和类 (数学) · 查看更多 »

结合律

在數學中,結合律(associative laws)是二元運算可以有的一個性質,意指在一個包含有二個以上的可結合運算子的表示式,只要運算元的位置沒有改變,其運算的順序就不會對運算出來的值有影響。亦即,重新排列表示式中的括號並不會改變其值。例如: 上式中的括號雖然重新排列了,但表示式的值依然不變。當這在任何實數的加法上都成立時,我們說「實數的加法是一個可結合的運算」。 結合律不應該和交換律相混淆。交換律會改變表示式中運算元的位置,而結合律則不會。例如: 是一個結合律的例子,因為其中的括號改變了(且因此運算子在運算中的順序也改變了),而運算元5、2、1則在原來的位置中。再來, 則不是一個結合律的例子,因為運算元2和5的位置互換了。 可結合的運算在數學中是很常見的,且事實上,大多數的代數結構確實會需要它們的二元運算是可結合的。不過,也有許多重要且有趣的運算是不可結合的;其中一個簡單的例子為向量積。.

新!!: 基数 (数学)和结合律 · 查看更多 »

置換

排列(Permutation)是將相異物件或符號根據確定的順序重排。每個順序都稱作一個排列對於不排序的情形,請見條目組合。。例如,從一到六的數字有720種排列,對應於由這些數字組成的所有不重複亦不闕漏的序列,例如"4, 5, 6, 1, 2, 3" 與1, 3, 5, 2, 4, 6。 置換的廣義概念在不同語境下有不同的形式定義:.

新!!: 基数 (数学)和置換 · 查看更多 »

超限数

超限数是大于所有有限数(但不必為绝对无限)的基数或序数,分別叫做超穷基数(transfinite cardinal number)和超穷序数(transfinite ordinal number)。术语「超限」(transfinite)是康托尔提出的,他希望避免词语无限(infinite)和那些只不过不是有限(finite)的那些对象有关的某些暗含。當時其他的作者少有这些疑惑;现在被接受的用法是称超限基数或序数为无限的。但是术语「超限」仍在使用。 超穷序数可以確定超穷基数,並導出阿列夫数序列。 对于有限数,有两种方式考虑超限数,作为基数和作为序数。不像有限基数和序数,超限基数和超限序数定义了不同类别的数。.

新!!: 基数 (数学)和超限数 · 查看更多 »

连续统假设

在數學中,連續統假設(Kontinuumshypothese;Continuum hypothesis,簡稱CH)是一個猜想,也是希尔伯特的23个问题的第一題,由康托尔提出,關於無窮集的可能大小。其為: 康托爾引入了基數的概念以比較無窮集間的大小,也證明了整數集的基數絕對小於實集的基數。康托爾也就給出了連續統假設,就是说,在无限集中,比自然数集基数大的集合中,基数最小的集合是实数集。而連續統就是實數集的一個舊稱。 更加形式地说,自然数集的基数为\aleph_0(讀作「阿列夫零」)。而连续统假设的观点认为实数集的基数为\aleph_1(讀作「阿列夫壹」)。于是,康托尔定义了绝对无限。 等價地,整數集的基数是\aleph_0而實數的基数是2^,連續統假設指出不存在一個集合S使得 \aleph_0 假設選擇公理是對的,那就會有一個最小的基數\aleph_1大於\aleph_0,而連續統假設也就等價於以下的等式: 連續統假設有個更廣義的形式,叫作廣義連續統假設(GCH),其命題為: 庫爾特·哥德尔在1940年用内模型法证明了连续统假设与ZFC的相对协调性(無法以ZFC證明為誤),保羅·柯恩在1963年用力迫法证明了连续统假设不能由ZFC推导。也就是说连续统假设獨立於ZFC。.

新!!: 基数 (数学)和连续统假设 · 查看更多 »

量詞

#重定向 量词.

新!!: 基数 (数学)和量詞 · 查看更多 »

自然数

数学中,自然数指用于计数(如「桌子上有三个苹果」)和定序(如「国内第三大城市」)的数字。用于计数时称之为基数,用于定序时称之为序数。 自然数的定义不一,可以指正整数 (1, 2, 3, 4, \ldots),亦可以指非负整数 (0, 1, 2, 3, 4, \ldots)。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 标准中所采用的定义。 数学家一般以\mathbb代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。.

新!!: 基数 (数学)和自然数 · 查看更多 »

良序定理

在數學中,良序定理(Well-ordering theorem)表示「所有集合都可以被良序排序」。这是非常重要的,因为它使所有集合均适用於超限归纳法。.

新!!: 基数 (数学)和良序定理 · 查看更多 »

良序关系

在数学中,集合S上的良序关系(或良序)需要满足:1.是在S上的全序关系2.

新!!: 基数 (数学)和良序关系 · 查看更多 »

艾禮富數

在集合論中,--,又稱--,是一連串超窮基數。其標記符號為(由希伯來字母(aleph)演變而來)加角標表示。 可數集(包括自然數)的勢標記為\aleph_0,下一個較大的勢為\aleph_1,再下一個是\aleph_2,以此類推。一直繼續下來,便可以對任一序數定義一個基數\aleph_\alpha。 這一概念來自於康托尔,他定義了勢,並认识到无穷集合是可以有不同的勢的。 阿列夫數与一般在代數與微積分中出現的無限 不同。阿列夫數用来衡量集合的大小,而無限只是在極限的寫法中出現,或是定義成擴展的實數軸上的端點。某些阿列夫數會大於另一些阿列夫數,而無限只是無限而已。.

新!!: 基数 (数学)和艾禮富數 · 查看更多 »

集合

集合可以指:.

新!!: 基数 (数学)和集合 · 查看更多 »

集合论

集合論(Set theory)或稱集論,是研究集合(由一堆構成的整體)的數學理論,包含集合和元素(或稱為成員)、關係等最基本數學概念。在大多數現代數學的公式化中,都是在集合論的語言下談論各種。集合論、命題邏輯與謂詞邏輯共同構成了數學的公理化基礎,以未定義的「集合」與「集合成員」等術語來形式化地建構數學物件。 現代集合論的研究是在1870年代由俄国数学家康托爾及德國数学家理察·戴德金的樸素集合論開始。在樸素集合論中,集合是當做一堆物件構成的整體之類的自證概念,沒有有關集合的形式化定義。在發現樸素集合論會產生一些後,二十世紀初期提出了許多公理化集合論,其中最著名的是包括選擇公理的策梅洛-弗蘭克爾集合論,簡稱ZFC。公理化集合論不直接定義集合和集合成員,而是先規範可以描述其性質的一些公理。 集合論常被視為數學基礎之一,特別是 ZFC 集合論。除了其基礎的作用外,集合論也是數學理論中的一部份,當代的集合論研究有許多離散的主題,從實數線的結構到大基数的一致性等。.

新!!: 基数 (数学)和集合论 · 查看更多 »

逻辑

邏輯(λογική;Logik;logique;logic;意大利语、西班牙语、葡萄牙语: logica),又稱理則、論理、推理、推論,是对有效推論的哲學研究。邏輯被使用在大部份的智能活動中,但主要在哲學、心理、学习、推论统计学、脑科学、數學、語義學、 法律和電腦科學等領域內被視為一門學科。邏輯討論邏輯論證會呈現的一般形式,哪種形式是有效的,以及其中的謬論。 邏輯通常可分為三個部份:歸納推理、溯因推理和演繹推理。 在哲學裡,邏輯被應用在大多數的主要領域之中:形上學/宇宙論、本體論、知識論及倫理學。 在數學裡,邏輯是指形式逻辑和数理邏輯,形式逻辑是研究某個形式語言的有效推論。主要是演繹推理。 在辯證法中也會學習到邏輯。数理邏輯是研究抽象邏輯关系和数学基本的问题。 在心理、脑科学、語義學、 法律裡,是研究人类思想推理的处理。 在学习、推论统计学裡,是研究最大可能的结论。主要是歸納推理、溯因推理。 在電腦科學裡, 是研究各种方法的性质,可能性,和实现在机器上。主要是歸納推理、溯因推理,也有在歸納推理的研究。 从古文明开始(如古印度、中國和古希臘)都有對邏輯進行研究。在西方,亞里斯多德將邏輯建立成一門正式的學科,並在哲學中給予它一個基本的位置。.

新!!: 基数 (数学)和逻辑 · 查看更多 »

选择公理

选择公理(Axiom of Choice,縮寫AC)是数学中的一条集合论公理。这条公理声明,对所有非空指标集族 (S_i)_,总存在一个索引族 (x_i)_,对每一个 i \in I,均有 x_i \in S_i。选择公理最早于1904年,由恩斯特·策梅洛为证明良序定理而公式化完成。 非正式地說,选择公理声明:給定一些盒子(可以是無限個),每个盒子中都含有至少一个小球,那么可以作出这样一种选择,使得可从每个盒子中恰好选出一个小球。在很多情况下这样的选择可不借助选择公理;尤其是在“盒子个数有限”和“存在具體的選擇規則”(當每個盒子都恰好只有一个小球具有某項特征)这两种情况下。再举一个例子,假设有许多(甚至是无限)双鞋子,则我们可以选取每双鞋左边的鞋子构成一个具体的选择。然而,假设有无限双袜子(假设每双袜子都没有可区分的特征),在这种情况下,有效的选择只能通过选择公理得到。 尽管曾具有争议性,选择公理現在已被大多数数学家毫无保留地使用着,例如带有选择公理的策梅洛-弗兰克尔集合论(ZFC)。数学家们使用选择公理的原因是,有许多被普遍接受的数学定理,比如是吉洪诺夫定理,都需要选择公理来证明。現代的集合论学家也研究与选择公理相矛盾的公理,例如。 在一些構造性數學的理論中會避免选择公理的使用,不過也有的將选择公理包括在內。.

新!!: 基数 (数学)和选择公理 · 查看更多 »

格奥尔格·康托尔

格奥尔格·费迪南德·路德维希·菲利普·康托尔(Georg Ferdinand Ludwig Philipp Cantor,),出生于俄国的德国数学家(波羅的海德國人)。他创立了现代集合论,是實數系以至整个微积分理论体系的基础,還提出了势和良序概念的定義;康托爾確定了在兩個集合中的成員,其間一對一關係的重要性,定義了無限且有序的集合,並證明了實數比自然數更多。康托爾對這個定理所使用的證明方法,事實上暗示了“無限的無窮” 的存在。他定義了基數和序數及其算術。康托爾很清楚地自知自覺他的成果,富有極濃厚的哲學興趣。康托爾提出的超越數,最初被當時數學界同儕認為如此反直覺-甚至令人震驚-因而拒絕接受他的理論,且以利奥波德·克罗内克为首的众多数学家长期攻击。克羅內克反對代數數為可數的,而超越數為不可數的證明。 康托爾本身是一位虔誠的路德派,相信這個理論是經由上帝傳達給他;但一些基督教神學家認為康托爾的理論,是在挑戰神學中只有上帝才具有絕對而唯一的無限性質。康托爾自 1869年任職於德國哈勒大學直到 1918年在哈勒大學附屬精神病院逝世;他的抑鬱症一直再發的病因,被歸咎於當代學界的敵對態度,儘管有人將這些事件解釋為,是他本人所患有的情感雙極障礙的病徵。他所受到的嚴厲攻擊,與後來的讚譽相匹配:在 1904年倫敦皇家學會授予他西爾維斯特獎章,這是皇家學會可授予數學研究者的最高榮譽。 在康托死後數十年,維特根斯坦撰文哀悼昔時學術界指責「集合論是假借通過數學而有害處的方言」的氛圍,他認為那是「可笑」和「錯誤」的「完全無稽之談」。当代数学家绝大多数接受康托尔的理论,并认为这是数学史上一次重要的变革。大卫·希尔伯特說:「沒有人能夠把我們從康托爾建立的樂園中趕出去。」(原文另譯:我們屏息敬畏地自知在康托所鋪展的天堂裡,不會遭逢被驅逐出境的。).

新!!: 基数 (数学)和格奥尔格·康托尔 · 查看更多 »

满射

满射或蓋射(surjection、onto),或稱满射函数或映成函數,一个函数f:X\rightarrow Y为满射,則对于任意的陪域 Y 中的元素 y,在函数的定义域 X 中存在一點 x 使得 f(x).

新!!: 基数 (数学)和满射 · 查看更多 »

有理数

数学上,可以表达为两个整数比的数(a/b, b≠0)被定义为有理数,例如3/8,0.75(可被表达为3/4)。整数和分数统称为有理数。与有理数对应的是无理数,如\sqrt无法用整数比表示。 有理数与分數的区别,分數是一种表示比值的记法,如 分數\sqrt/2 是无理数。 所有有理数的集合表示为Q,Q+,或\mathbb。定义如下: 有理数的小数部分有限或为循环。不是有理數的實數遂稱為無理數。.

新!!: 基数 (数学)和有理数 · 查看更多 »

有限集合

数学中,一个集合被称为有限集合,簡單來說就是元素個數有限,嚴格而言則是指有一个自然数n使该集合与集合之间存在双射。例如 -15到3之间的整数组成的集合,这个集合有19个元素,它跟集合存在雙射,所以它是有限的。不是有限的集合称为无限集合。 也就是说如果一个集合的基数是自然数,那这个集合就是有限的。所有的有限集合都是可数的,但并不是所有的可数集都是有限的,例如所有素数的集合。 有一个定理(戴德金定理)是:一个集合是有限的当且仅当不存在一个该集合与它的任何一个真子集之间的双射。 I I.

新!!: 基数 (数学)和有限集合 · 查看更多 »

映射

映射,或者射影,在数学及相关的领域经常等同于函数。基于此,部分映射就相当于部分函数,而完全映射相当于完全函数。 在很多特定的数学领域中,这个术语用来描述具有与该领域相关联的特定性质函数,例如,在拓扑学中的连续函数,线性代数中的线性变换等等。.

新!!: 基数 (数学)和映射 · 查看更多 »

无限集合

无限集合是由无限个元素组成的集合,也称无穷集合。集合論中,集合主要分為有限集合與無限集合,有限集合很多的性質也是顯而易見的,反之,因為無限集合的非有限性,即使無限集合的一些基本性質也變得並不顯而易見,個別的數學家甚至質疑諸如选择公理等基本公設使用在無限集合身上是否仍然正確。罗素悖论提出以後,一些激進的數學哲學家提倡禁止在數學中使用無限集合以挽救第三次數學危機。 無限集合在數學中無處不在,一般常見的例子有整數集、有理集等。一般來說,無限集合還分為可數集和不可數集。.

新!!: 基数 (数学)和无限集合 · 查看更多 »

數是一個用作計數、標記或用作量度的抽象概念,是比同质或同属性事物的等级的简单符号记录形式(或称度量)。代表數的一系列符號,包括數字、運算符號等統稱為記數系統。在日常生活中,數通常出現在在標記(如公路、電話和門牌號碼)、序列的指標(序列號)和代碼(ISBN)上。在數學裡,數的定義延伸至包含如如分數、負數、無理數、超越數及複數等抽象化的概念。 起初人們只覺得某部分的數是數,後來隨著需要,逐步將數的概念擴大;例如畢達哥拉斯認為,數必須能用整數和整數的比表達的,後來發現无理数無法這樣表達,引起第一次數學危機,但人們漸漸接受無理數的存在,令數的概念得到擴展。 數的算術運算(如加減乘除)在抽象代數這一數學分支內被廣義化成抽象數字系統,如群、環和體等。.

新!!: 基数 (数学)和数 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 基数 (数学)和数学 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »