我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

分划和有理数

快捷方式: 差异相似杰卡德相似系数参考

分划和有理数之间的区别

分划 vs. 有理数

分划是数学中对于全序集的操作。对于给定的全序集A及其中某个元素x而言,将A分拆为两个非空集合,使得两者其一中所有元素(按照顺序)均在x之前、另一中所有元素均在x之后。 常见的是对于全体有理数的操作,即A. 数学上,可以表达为两个整数比的数(a/b, b≠0)被定义为有理数,例如3/8,0.75(可被表达为3/4)。整数和分数统称为有理数。与有理数对应的是无理数,如\sqrt无法用整数比表示。 有理数与分數的区别,分數是一种表示比值的记法,如 分數\sqrt/2 是无理数。 所有有理数的集合表示为Q,Q+,或\mathbb。定义如下: 有理数的小数部分有限或为循环。不是有理數的實數遂稱為無理數。.

之间分划和有理数相似

分划和有理数有(在联盟百科)2共同点: 全序关系無理數

全序关系

全序关系即集合X上的反对称的、传递的和完全的二元关系(一般称其为\leq)。 若X满足全序关系,则下列陈述对于X中的所有a,b和c成立:.

全序关系和分划 · 全序关系和有理数 · 查看更多 »

無理數

無理數是指除有理数以外的实数,當中的「理」字来自于拉丁语的rationalis,意思是「理解」,实际是拉丁文对于logos「说明」的翻译,是指无法用两个整数的比来说明一个无理数。 非有理數之實數,不能寫作兩整數之比。若將它寫成小數形式,小數點之後的數字有無限多個,並且不會循環,即无限不循环小数。常見的無理數有大部分的平方根、π和e(其中後兩者同時為超越數)等。無理數的另一特徵是無限的連分數表達式。 傳說中,无理数最早由畢達哥拉斯學派弟子希伯斯发现。他以幾何方法證明\sqrt無法用整数及分數表示。而畢達哥拉斯深信任意数均可用整数及分数表示,不相信無理數的存在。後來希伯斯触犯学派章程,将无理数透露给外人,因而被扔进海中处死,其罪名竟然等同于“渎神”。另見第一次數學危機。 無理數可以通過有理數的分划的概念進行定義。.

分划和無理數 · 有理数和無理數 · 查看更多 »

上面的列表回答下列问题

分划和有理数之间的比较

分划有7个关系,而有理数有45个。由于它们的共同之处2,杰卡德指数为3.85% = 2 / (7 + 45)。

参考

本文介绍分划和有理数之间的关系。要访问该信息提取每篇文章,请访问: