我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

正四面體

指数 正四面體

正四面體是由四個等邊三角形組成的正多面體,是一种錐體,有4個頂點,6條邊和4个正三角形面。 將立方體的其中四個頂點两两相連,而這四個頂點任何兩條都沒有落在立方體同一條的邊上,可得到一個正四面體,其邊長為立方體邊長的\sqrt,其體積為立方體體積的\frac,从这里看,正四面体是半立方体。 正四面体是一个拥有无穷多个成员的多胞形家族—正单纯形家族的3维成员。正四面体是一种棱锥体,即它可以被描述成由一个多边形底面和链接底面和一个共同顶点的三角形面组成,对于正四面体来说,这个底面是正三角形,并且它的侧面也都是正三角形,应此正四面体是正三棱锥。 正四面体是三维的正单纯形(3-simplex),这意味着四面体是三维中最简单的多面体,顶点数、棱数、面数比它少的多面体都只能成为退化多面体,同时在更高维的超空间中,任意4个顶点一定共在同一三维空间中,这4个顶点若不存在四点共面、三点共线和两点重合的情况,一定能构成一个四面体,并且只要6条棱的长度确定了,四面体就被唯一确定了(即四面体具有稳定性。这是单纯形面多胞形共有的一个基本特性),由此可知,一个四面体的6条棱长都相等,则其一定是一个正四面体。正四面体是柏拉图立体中唯一一个所有顶点之间的距离都相等的,同时正四面体也是三维空间中使4个顶点每两个顶点间距离相等的唯一方式。.

目录

  1. 55 关系: 半立方体十复合四面体卡塔蘭立體单纯形多面形多面体七角錐三维投影三階無限邊形鑲嵌三角形平面亚里士多德交錯正八邊形鑲嵌交错交错群交集二面角五复合四面体五角錐体积内切球全等六角錐共轭类四元數四面體四角錐倒角十二面體倒角二十面體倒角四面體倒角立方體球面度立體角立方體等距同构等腰三角形顶点複正方鍥形體阶(群论)杨辉三角形棱锥正十二面體正十二邊形正多面體正三角形正二十面體正八面體正八邊形鑲嵌正六邊形鑲嵌... 扩展索引 (5 更多) »

半立方体

#重定向 超半方形.

查看 正四面體和半立方体

十复合四面体

#重定向 十複合正四面體.

查看 正四面體和十复合四面体

卡塔蘭立體

卡塔蘭立體是半正多面體的對偶多面體,都是凸多面體。1865年比利時數學家歐仁·查理·卡塔蘭最先描述它們。 卡塔蘭立體面可遞而點不可遞,而其對偶多面體半正多面體點可遞而面不可遞。只有兩個邊可遞的卡塔蘭立體:菱形十二面體和菱形三十面體。 所有多面體中只有有13種是卡塔蘭立體,其對偶多面體均為阿基米德立體(半正多面體)。.

查看 正四面體和卡塔蘭立體

单纯形

几何学上,单纯形或者n-单纯形是和三角形类似的n维几何体。精确的讲,单纯形是某个n维以上的欧几里得空间中的(n+1)个仿射无关(也就是没有m-1维平面包含m+1个点;这样的点集被称为处于一般位置)的点的集合的凸包。 例如,0-单纯形就是点,1-单纯形就是线段,2-单纯形就是三角形,3-单纯形就是四面体,而4-单纯形是一个五胞体(每种情况都包含内部)。 正单纯形是同时也是正多胞形的单纯形。正n-单纯形可以从正(n − 1)-单纯形通过将一个新顶点用同样的边长连接到所有旧顶点构造。.

查看 正四面體和单纯形

多面形

在幾何學中,多面形(Hosohedron)是一種由月牙形或球弓形組成的球面鑲嵌,並且使得每一個月牙形或球弓形共用相同的兩個頂點。其在施萊夫利符號中用 表示n面形。 其亦可以視為由球面正二角形組成的球面鑲嵌圖,又稱為二角形鑲嵌或二邊形鑲嵌。.

查看 正四面體和多面形

多面体

多面體(polyhedron)是指三維空間中由平面和直邊組成的幾何形體。英文 polyhedron 源於古希臘語 πολύεδρον,由poly-(詞根 πολύς,多)和 -edron(έδρα,基底、座、面)構成,即意為「多面體」。 然而,「由平面和直邊組成的有界體」的定義方式並不明確,對現代數學而言更是不合格。克羅埃西亞數學家 Grünbaum 曾評論道:“多面體理論的原罪可追溯至歐幾里得,還有之後的克卜勒、龐索、柯西……各個時期……數學家們都未能準確定義何謂『多面體』。”自此,數學家雖以特定說法對「多面體」訂定了嚴謹的定義,但任一種卻都無法完全兼容其他定義方式。.

查看 正四面體和多面体

七角錐

在幾何學中,七角錐是指底面為七邊形的錐體。所有七角錐皆為八面體,具有8個面、14個邊和8個頂點,對偶仍為七角錐,是一個自身對偶多面體。 七角錐是257種凸八面體之一,七角錐也可以做為有形數的形.

查看 正四面體和七角錐

三维投影

三维投影是将三维空间中的点映射到二维平面上的方法。由于目前绝大多数图形数据的显示方式仍是二维的,因此三维投影的应用相当广泛,尤其是在计算机图形学,工程学和工程制图中。.

查看 正四面體和三维投影

三階無限邊形鑲嵌

在幾何學中,三階無限邊形鑲嵌是一種雙曲面的正鑲嵌,由無限邊形組成,在施萊夫利符號中用表示,即每個頂點周為皆有三個無限邊形,頂點圖可計為∞.∞.∞或∞3。每個無限邊形都內接在極限圓上。 三階無限邊形鑲嵌無法在平面上構造,因為二個無限邊形就已經完全密鋪平面了,即所謂的二階無限邊形鑲嵌,另一個原因是正無限邊形的內角為180度,三個正無限邊形內角為540度,因此無法構造於平面上,但可以在一個雙曲拋物面上構造,另外亦有四階無限邊形鑲嵌和五階無限邊形鑲嵌等雙曲面幾何體。.

查看 正四面體和三階無限邊形鑲嵌

三角形

三角形,又稱三邊形,是由三条线段顺次首尾相连,或不共線的三點兩兩連接,所组成的一个闭合的平面图形,是最基本和最少邊的多边形。 一般用大写英语字母A、B和C为三角形的顶点标号;用小写英语字母a、b和c表示边;用\alpha、\beta和\gamma給角標號,又或者以\angle ABC這樣的顶点标号表示。.

查看 正四面體和三角形

平面

数学上,一个平面(plane)就是基本的二维对象。直观的讲,它可以视为一个平坦的拥有无穷大面积的纸。多数几何、三角学和制图的基本工作都在二维进行,或者说,在平面上进行。 给定一个平面,可以引入一个直角坐标系以便在平面上用两个数字唯一的标示一个点,这两个数字也就是它的坐标。 在三维x-y-z坐标系中,可以将平面定义为一个方程的集: 其中a, b, c和d是实数,使得a, b, c不全为0。或者,一个平面也可以参数化的表述,作为所有具有u + s v + t w形式的点的集合,其中s和t取遍所有实数,而u, v 和w是给定用于定义平面的向量。 平面由如下组合的任何一个唯一确定.

查看 正四面體和平面

亚里士多德

亞里士多德(Αριστοτέλης,Aristotélēs,),古希腊哲学家,柏拉圖的學生、亚历山大大帝的老師。他的著作包含許多學科,包括了物理學、形而上學、詩歌(包括戲劇)、音乐、生物學、經濟學、動物學、邏輯學、政治、政府、以及倫理學。和柏拉圖、蘇格拉底(柏拉圖的老師)一起被譽為西方哲學的奠基者。亞里士多德的著作是西方哲學的第一個廣泛系統,包含道德、美學、邏輯和科學、政治和形而上学。 亞里士多德关于物理學的思想深刻地塑造了中世紀的學術思想,其影響力延伸到了文藝復興時期,雖然最終被牛頓物理學取代。在動物科學方面,他的一些意見仅在19世纪被确信是準確的。他的学术领域还包括早期关于形式逻辑理论的研究,最终这些研究在19世纪被合并到了现代形式逻辑理论裡。在形而上學方面,亞里士多德的哲學和神學思想在伊斯蘭教和猶太教的傳統上產生了深遠影響,在中世紀,它繼續影響着基督教神學,尤其是天主教教會的學術傳統。他的倫理學,虽然自始至终都具有深刻的影响,后来也随着新兴現代美德倫理的到来获得了新生。今天亞里士多德的哲學仍然活躍在學術研究的各个方面。在經濟學方面,亞里士多德對於經濟活動的分類與看法持續影響到中世紀與重農主義,直到被亞當斯密的古典經濟學派取代為止。雖然亞里士多德寫了許多論文和優雅的對話(西塞羅描述他的文學風格為“金河”),但是大多數人認為他的著作现已失散,只有大約三分之一的原创作品保存了下來。.

查看 正四面體和亚里士多德

交錯正八邊形鑲嵌

#重定向 交錯八邊形鑲嵌.

查看 正四面體和交錯正八邊形鑲嵌

交错

#重定向 交錯 (幾何).

查看 正四面體和交错

交错群

数学中,交错群(alternating group)是一个有限集合偶置换之群。集合 上的交错群称为 n 阶交错群,或 n 个字母上的交错群,记做 An 或 Alt(n)。 例如,4 阶交错群是 A4.

查看 正四面體和交错群

交集

数学上,两个集合A和B的交集是含有所有既属于A又属于B的元素,而没有其他元素的集合。.

查看 正四面體和交集

二面角

二面角指两个半平面所夹的空间部分,而两个半平面所交的直线称为二面角的棱。.

查看 正四面體和二面角

五复合四面体

#重定向 五複合正四面體.

查看 正四面體和五复合四面体

五角錐

五角錐是指底面為五邊形的錐.

查看 正四面體和五角錐

体积

積(Volume)是物件佔有多少空間的量。體積的國際單位制是立方米。一件固體物件的體積是一個數值用以形容該物件在空間所佔有的空間。一維空間物件(如線)及二維空間物件(如正方形)在三維空間中均是零體積的。體積是物件佔空間的大小。.

查看 正四面體和体积

内切球

内切球是几何学中的概念。如果三维空间中的一个多面体内部的某个球和这个多面体的每一个面都相切,就称这个球为多面体的内切球。这时称这个多面体为球外切多面体。内切球的球心被称为多面体的内心。 内切球是多面体中所能容纳的最大球。并非所有的多面体都有内切球。正多面体和四面体都有内切球。.

查看 正四面體和内切球

全等

#重定向 全等 (幾何).

查看 正四面體和全等

六角錐

在幾何學中,六角錐是指底面為六邊形的錐體,由六邊形各個頂點向它所在的平面外一點依次連直線段而構成。所有六角錐皆為七面體,具有7個面、12個邊和7個頂點,如同其他的錐體,對偶仍為六角錐,是一個自身對偶多面體。 若一個六角錐的底面為正六邊形則可稱為正六角錐,但正六角錐不能算是詹森多面體,因為若每一個面都是正多邊形的話,整個圖形將會共平面,成為六階三角形鑲嵌的一部分。 正六角錐具有C6v symmetry對稱性,並且使得其高與底面的交點與任意底面頂點和錐體頂部的頂點可構成直角三角形。.

查看 正四面體和六角錐

共轭类

数学上,特别是在群论中,群的元素可以分割成共轭类(Conjugacy class);同一个共轭类的元素有很多共同的属性,而且研究非交换群的共轭类可以看出很多关于它们的结构的重要特征。对于交换群,这个概念是平凡的,因为每个类就是一个单元素集合。 在同一个共轭类上取常值的函数称为类函数。.

查看 正四面體和共轭类

四元數

四元數是由爱尔兰數學家威廉·盧雲·哈密頓在1843年创立出的數學概念。 從明確地角度而言,四元數是複數的不可交換延伸。如把四元數的集合考慮成多維實數空間的話,四元數就代表著一個四维空间,相對於複數為二维空间。 作为用于描述现实空间的坐标表示方式,人们在复数的基础上创造了四元数并以a+bi+cj+dk的形式说明空间点所在位置。 i、j、k作为一种特殊的虚数单位参与运算,并有以下运算规则:i0.

查看 正四面體和四元數

四面體

四面體是由四個三角形面組成的多面體,每两个三角形都有一个共同的边,每三个三角形都有一个共同的顶点。四面体有四个顶点,六条棱,四个面,是所有凸多面体中最简单的。四面體包括正四面體、鍥形體等種類,由四個全等的正三角形組成的四面體稱為正四面體。四面体也可以依角的類型分為銳角四面體、鈍角四面體、和直角四面體。 四面体是欧几里德单纯形在三维空间中的特例。 四面体也是锥体的一种。锥体是指将某个平面上的多面体的所有顶点分别和平面外的一点以线段连接後构成的多面体。按锥体的分类方法,所有四面體都是由某平面上的三角形和平面外一点构成的锥体,所以四面体也被称为三角錐。 与所有的凸多面体一样,四面体可以由某个平面图形(展开图)折叠而成。这样的展开图通常有两种。 与三角形类似,任何四面体的四个顶点都在同一个球面上。这个球称为四面体的外接球。同样地,存在一个与四面体的四个面都相切的球,称为四面体的内切球。.

查看 正四面體和四面體

四角錐

四角錐是底面為四邊形的錐體。.

查看 正四面體和四角錐

倒角十二面體

在幾何學中,倒角十二面體是一種凸多面體,由12個五邊形和30個六邊形組成,那30個六邊形是全等的,惟非正六邊形。倒角十二面體共有42個面、120個邊和80個頂點,是五角化截半二十面體的對偶多面體。 是由正十二面體經由倒角變換產生的多面體,即是將正十二面體中的30條邊以六邊形取代所形成的凸多面體,因此倒角二十面體共有30個六邊形,而原本的五邊形被保留,但倒角變換產生的六邊形非正邊形。.

查看 正四面體和倒角十二面體

倒角二十面體

在幾何學中,倒角十二面體是一種凸多面體,可由十二面體經過倒角變換構成,也可由菱形三十面體截去20個相鄰三個面的頂點構成。倒角十二面體六邊形面可以是等邊六邊形但不是正六邊形。.

查看 正四面體和倒角二十面體

倒角四面體

在幾何學中,倒角四面體(Chamfered Tetrahedron),又稱為交错截角立方体(Alternate Truncated Cube)是一種凸多面體,透過交替地將立方體截去頂點或在將四面體進行倒角操作——用六邊形取代其6邊。 倒角四面體是一種戈德堡多面體,其符號為GIII(2,0).

查看 正四面體和倒角四面體

倒角立方體

#重定向 倒角立方体.

查看 正四面體和倒角立方體

球面度

球面度(steradian,符號:sr)是立體角的國際單位。它可算是三維的弧度。其英文字是希臘語「立體」(stereos)和弧度(radian)的混合。 以r為半徑的球的中心為頂點,若展開的立體角所對應的球面表面積為r2,該立體角的大小就是一球面度。球表面積為4πr2,因此整個球有4π個球面度。 球面度是無因次的。 球面度等於(180/π)2或3282.80635平方度。.

查看 正四面體和球面度

立體角

立体角,常用字母Ω表示,是一个物体对特定点的三维空间的角度,是平面角在三维空间中的类比。它描述的是站在某一点的观察者测量到的物体大小的尺度。例如,对于一个特定的观察点,一个在该观察点附近的小物体有可能和一个远处的大物体有着相同的立体角。 锥体的立体角大小定义为,以锥体的顶点为球心作球面,该锥体在球表面截取的面积与球半径平方之比,单位为球面度。.

查看 正四面體和立體角

立方體

立方體(Cube),是由6個正方形面組成的正多面體,故又稱正六面體(Hexahedron)、正方體或正立方體。它有12條稜(邊)和8個頂(點),是五個柏拉圖立體之一。 立方體是一種特殊的正四棱柱、長方體、三角偏方面體、菱形多面體、平行六面體,就如同正方形是特殊的矩形、菱形、平行四邊形一様。立方體具有,即考克斯特BC3對稱性,施萊夫利符號,,與正八面體對偶。.

查看 正四面體和立方體

等距同构

在数学中,「等距同构」或稱「保距映射」(isometry),是指在度量空间之中保持距离不变的同构关系。几何学中的对应概念是全等变换。 等距同构经常用于将一个空间嵌入到另一空间的构造中。例如,测度空间M的完备化即涉及从M到M' 的等距同构,这里M' 是M上柯西序列所构成的空间关于“距离为零”的等价关系的商集。这样,原空间M就等距同构到完备的度量空间的一个稠密子空间并且通常用这一空间来指代原空间M。 其它的嵌入构造表明每一度量空间都等距同构到某一賦範向量空間的一个闭子集以及每一完备度量空间都等距同构到某一巴拿赫空间的一个闭子集。 一个希尔伯特空间上的等距、满射的线性算子被称为酉算子。.

查看 正四面體和等距同构

等腰三角形

在幾何學中,等腰三角形(isosceles triangle)是指至少有兩邊等長或相等的三角形,因此會造成有2個角相等。相等的兩個邊稱等腰三角形的腰,另一邊稱為底邊,相等的兩個角稱為等腰三角形的底角,其餘的角叫做頂角《中學數學實用辭典》ISBN 957-603-093-5 九章出版。 等腰三角形的重心、中心和垂心都位於頂點向底邊的垂,可以把等腰三角形分成兩個全等的直角三角形。《圖解數學辭典》天下遠見出版 P.37 三角形 ISBN 986-417-614-5 等邊三角形是底邊和腰等長的等腰三角形,是等腰三角形的一個特殊形式。若等腰三角形的頂角為直角,稱為等腰直角三角形。.

查看 正四面體和等腰三角形

顶点

顶点是数学和计算机科学等领域的术语,在不同的环境中有不同的意义。 在平面几何学中,顶点是指多边形两条边相交的地方,或指角的两条边的公共端点。 在立体几何学中,顶点是指在多面体中三个了了或更多的面连接的地方。 在图论中,顶点(vertex,node)可以理解为一个事物(object),而一张图则是由顶点的集合和顶点之间的连接构成的。 在计算机绘图中,顶点是空间中的一个点,一般由它的坐标表示。两个点可以确定一条直线,三个点可以确定一个平面。 在粒子物理学中,頂點是指粒子發生相互作用的點,例如LHC中兩粒子對撞產生反應的那個點就是頂點。.

查看 正四面體和顶点

複正方鍥形體

#重定向 鍥形體.

查看 正四面體和複正方鍥形體

边是一个几何图形两个相邻顶点之间线段,边长指這線段的長度。假如连接两个端点的是一段曲线,数学上稱為弧。 在图论中,边(Edge,Line)是两个事物间某种特定关系的抽象化。两个事物间有联系,则这两个事物代表的顶点间就连有边,用一根直线或曲线表示。 在某些教科书,边长也用于表示在一个封闭的平面几何图形中的所有连接相邻断点的线段的长度的总和,参见周长。.

查看 正四面體和边

阶(群论)

#重定向 階 (群論).

查看 正四面體和阶(群论)

杨辉三角形

杨辉三角形,又称賈憲三角形、帕斯卡三角形、海亚姆三角形、巴斯卡三角形,是二项式係數在的一种写法,形似三角形,在中国首现于南宋杨辉的《详解九章算术》得名,书中杨辉说明是引自贾宪的《释锁算术》,故又名贾宪三角形。前 9 行写出来如下:         1        1 1       1 2 1      1 3 3 1     1 4 6 4 1    1 5 10 10 5 1   1 6 15 20 15 6 1  1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 杨辉三角形第 n 层(顶层称第 0 层,第 1 行,第 n 层即第 n+1 行,此处 n 为包含 0 在内的自然数)正好对应于二项式 \left(a+b\right)^ 展开的系数。例如第二层 1 2 1 是幂指数为 2 的二项式 \left(a+b\right)^ 展开形式 a^+2ab+b^ 的系数。.

查看 正四面體和杨辉三角形

棱锥

在幾何學上,棱锥又稱角錐,是三维多面体的一種,由多边形各个顶点向它所在的平面外一点依次连直线段而构成。多边形称为棱锥的底面。随着底面形状不同,棱锥的稱呼也不相同,依底面多边形而定,例如底面是正方形的棱锥称为方锥,底面为三角形的棱锥称为三棱锥,底面为五边形的棱锥称为五棱锥等等。 从棱锥的定义可以推知,一个以边形为底面的棱锥,一共有+1个顶点,+1个面以及2条边。棱锥的对偶多面体是同样形状的棱锥。例如一个方锥的对偶形是(倒立的)方锥。 棱锥的对称性取决于底面多边形的形状和多边形以外那个顶点的位置。如果底面的多边形是正多边形,而且另外一个顶点在底面上的投影是多边形的中心,那么棱锥和正多边形有相同的对称结构(同构的对称群)。 棱锥和棱柱、棱台、帐塔一样,都是擬柱體中的一类。.

查看 正四面體和棱锥

正十二面體

正十二面體是由12個正五邊形所組成的正多面體,它共有20个顶点、30条棱、160条对角线,被施莱夫利符号所表示,与正二十面体互成对偶。它是一种只具有的五角十二面体的特殊形式,五角十二面体的另一种特殊形式是具有的卡塔兰多面体菱形十二面体,它(加上所有其它的五角十二面体)都与正十二面体在拓扑上等价。正十二面體还是截顶五方偏方面體的特例。其四維類比為正一百二十胞體。.

查看 正四面體和正十二面體

正十二邊形

#重定向 十二边形.

查看 正四面體和正十二邊形

正多面體

正多面體,或稱柏拉圖立體, 指各面都是全等的正多邊形且每一個頂點所接的面數都是一樣的凸多面體。 正多面體的別稱柏拉圖立體是因柏拉圖而命名的。柏拉圖的朋友泰阿泰德告訴柏拉圖這些立體,柏拉圖便將這些立體寫在《蒂邁歐篇》(Timaeus) 內。正多面體的作法收錄《几何原本》的第13卷。在命題13描述正四面體的作法;命題14為正八面體作法;命題15為立方體作法;命題16則是正二十面體作法;命題17則是正十二面體作法。.

查看 正四面體和正多面體

正三角形

正三角形(等邊三角形)是指一種三個邊均等長的三角形,是銳角三角形的一種,其三個角大小相等、均為60度。.

查看 正四面體和正三角形

正二十面體

正二十面體是一種正多面體,由20個正三角形組成。同時,它也是柏拉圖立體、三角面多面體以及康威多面體。正二十面体是所有五种正多面體面數最多的。 正二十面體有20個面、30個邊和12個頂點,其對偶是正十二面體。它的頂點布局為3.3.3.3.3或35,在施萊夫利符號中可用來表示。.

查看 正四面體和正二十面體

正八面體

正八面體由八個等邊三角形,分別為上、下各四個三角形與一個正方形組成的正方錐體,上下黏合在一起而構成,是五種正多面體的第三種,有6個頂點和12條邊。正八面體也是正三角反棱柱。正八面体是三维的正轴形,施莱夫利符号,。 正八面體每四条棱可以成为一个正方形,共有三个独立的正方形。.

查看 正四面體和正八面體

正八邊形鑲嵌

在幾何學中,正八邊形鑲嵌()是一種由正八邊形拼合,並且將正八邊形重複排列組合,並讓圖形完全拼合,而且沒有空隙或重疊的幾何構造,每個頂點皆為三個正八邊形的公共頂點,以頂點圖8.8.8或83表示。 正八邊形鑲嵌是一種雙曲正鑲嵌,在施萊夫利符號中用表示。.

查看 正四面體和正八邊形鑲嵌

正六邊形鑲嵌

在幾何學中,正六邊形鑲嵌是一種平面鑲嵌,由正六邊形重覆組合排列而成,且填滿整個平面,而且沒有任何空隙或重疊,由於皆由正多邊形組成,因此稱為正鑲嵌圖。正六邊形鑲嵌是三维欧几里得空间中三个正密铺之一。另外两个分别是正三角形镶嵌和正方形镶嵌。 由於正六邊形鑲嵌是由正六邊形組成,又因正六邊形內角為120°,因此每個頂點周圍都有3個正六邊形,且剛好占滿360°,才能填滿平面。 在施萊夫利符號中,正六邊形鑲嵌可用或t表示。.

查看 正四面體和正六邊形鑲嵌

正方形

在平面几何学中,正方形是四邊相等且四個角是直角的四邊形。正方形是正多边形的一种:正四边形。四个顶点为ABCD的正方形可以记为。 正方形是二维的超方形,也是二维的正轴形。.

查看 正四面體和正方形

斜率

斜率用來量度斜坡的斜度。數學上,直線的斜率在任一處皆相等,是直線傾斜程度的量度。透過代數和幾何能計算出直線的斜率;曲線上某點的切線斜率反映此曲線的變數在此點的變化快慢程度,用微積分可計算出曲線中任一點的切線斜率,直线斜率的概念等同土木工程/地理的坡度。.

查看 正四面體和斜率

摺紙

摺紙是摺或疊紙張的藝術,把紙張摺出各種特定的形狀和花樣,可能是一張紙的作品,也可能是二張以上紙張作品。 摺紙只需要透過摺疊的技巧就可以創造出複雜精細的設計。摺紙設計,一般而言由正方形的紙張摺成,有些摺疊者也會用非正方形的紙張。有一說指,日本的傳統摺紙早見於江戶時代(1603年─1867年),但當時這門傳統手藝並不嚴謹,製作時間中甚至會運用到剪紙。另外,長方形、圓形、三角形以至其他形狀的紙張都能夠用來製作摺紙作品。 另外一種摺紙則是指必須使用張完整的正方形紙,並且不能包含切割、剪裁、撕開或用黏膠黏貼。.

查看 正四面體和摺紙

手征性

#重定向 手徵性.

查看 正四面體和手征性

拓扑

拓扑有以下領域的意義與應用:.

查看 正四面體和拓扑

正方形斜率摺紙手征性拓扑