我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

正八邊形鑲嵌

指数 正八邊形鑲嵌

在幾何學中,正八邊形鑲嵌()是一種由正八邊形拼合,並且將正八邊形重複排列組合,並讓圖形完全拼合,而且沒有空隙或重疊的幾何構造,每個頂點皆為三個正八邊形的公共頂點,以頂點圖8.8.8或83表示。 正八邊形鑲嵌是一種雙曲正鑲嵌,在施萊夫利符號中用表示。.

目录

  1. 14 关系: 多邊形二面體三階八邊形鑲嵌三角形交錯八邊形鑲嵌几何学八階三角形鑲嵌八階八邊形鑲嵌八邊形六階八邊形鑲嵌四階八邊形鑲嵌約翰·何頓·康威雙曲面正七邊形鑲嵌正六邊形鑲嵌

  2. 雙曲面鑲嵌

多邊形二面體

多邊形二面體是由2個面組成的多面體,是一種二面體,是一種由兩個共用相同的一組邊的多邊形面組成的多面體。在三維歐幾里德空間中,如果它的面是平的,他們就會屬於退化的多面體,即與多邊形相同,定不具有體積;而在三維球面中,與平面的兩面體可以認為是透鏡,它的一個例子是一個透鏡空間的基本域。 通常一個普通的二面體隱含的意義是多邊形(2正多邊形疊在一起),因此施萊夫利符號中利用來表示。.

查看 正八邊形鑲嵌和多邊形二面體

三階八邊形鑲嵌

#重定向 正八邊形鑲嵌.

查看 正八邊形鑲嵌和三階八邊形鑲嵌

三角形

三角形,又稱三邊形,是由三条线段顺次首尾相连,或不共線的三點兩兩連接,所组成的一个闭合的平面图形,是最基本和最少邊的多边形。 一般用大写英语字母A、B和C为三角形的顶点标号;用小写英语字母a、b和c表示边;用\alpha、\beta和\gamma給角標號,又或者以\angle ABC這樣的顶点标号表示。.

查看 正八邊形鑲嵌和三角形

交錯八邊形鑲嵌

在幾何學中,交錯八邊形鑲嵌是一種半正雙曲面鑲嵌,由三角形和正方形組成,在施萊夫利符號中用或h表示。交錯八邊形鑲嵌是指正八邊形鑲嵌經過交錯變換產生的鑲嵌圖。 交錯八邊形鑲嵌也可以算是一種雙曲面上的三角形-正方形鑲嵌。 交錯八邊形鑲嵌具有, (*433)的對稱性,在約翰·康威的軌形符號中以433表示。.

查看 正八邊形鑲嵌和交錯八邊形鑲嵌

几何学

笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.

查看 正八邊形鑲嵌和几何学

八階三角形鑲嵌

在幾何學中, 八階三角形鑲嵌 是由三角形組成的雙曲面正鑲嵌圖,每八個三角形共用一個頂點。在施萊夫利符號用表示。八階三角形鑲嵌即每個頂點皆為八個三角形的公共頂點,頂點周圍包含了八個不重疊的三角形,一個三角形內角60度,八個三角形超過了360度,因此無法因此無法在平面作出,但可以在雙曲面上作出。.

查看 正八邊形鑲嵌和八階三角形鑲嵌

八階八邊形鑲嵌

在幾何學中,八階八邊形鑲嵌是由八邊形組成的雙曲面正鑲嵌圖,在施萊夫利符號中用表示。八階八邊形鑲嵌即每個頂點皆為八個八邊形的公共頂點,頂點周圍包含了八個不重疊的八邊形,一個八邊形內角135度,八個八邊形超過了360度,因此無法因此無法在平面作出,但可以在雙曲面上作出。.

查看 正八邊形鑲嵌和八階八邊形鑲嵌

八邊形

#重定向 八边形.

查看 正八邊形鑲嵌和八邊形

六階八邊形鑲嵌

在幾何學中,六階八邊形鑲嵌是由八邊形組成的雙曲面正鑲嵌圖,每六個八邊形共用一個頂點。在施萊夫利符號用表示。六階八邊形鑲嵌即每個頂點皆為六個八邊形的公共頂點,頂點周圍包含了六個不重疊的八邊形,一個八邊形內角135度,六個八邊形超過了360度,因此無法因此無法在平面作出,但可以在雙曲面上作出。.

查看 正八邊形鑲嵌和六階八邊形鑲嵌

四階八邊形鑲嵌

在幾何學中,四階八邊形鑲嵌是由八邊形組成的雙曲面正鑲嵌圖,在施萊夫利符號中用表示。四階八邊形鑲嵌每個頂點皆由四個八邊形共用,且八邊形不重疊,這樣一來,該點處的內角和將超過360度,因此無法存於平面上,但可以在雙曲面上作出。.

查看 正八邊形鑲嵌和四階八邊形鑲嵌

約翰·何頓·康威

約翰·何頓·康威(John Horton Conway,),生於英國利物浦,數學家,活躍於有限群的研究、趣味數學、紐結理論、數論、組合博弈論和編碼學等範疇。 康威年少時就對數學很有強烈的興趣:四歲時,其母發現他背誦二的次方;十一歲時,升讀中學的面試,被問及他成長後想幹甚麼,他回答想在劍橋當數學家。後來康威果然於劍橋大學修讀數學,現時為普林斯頓大學的教授。.

查看 正八邊形鑲嵌和約翰·何頓·康威

雙曲面

在數學裏,雙曲面是一種二次曲面。採用直角坐標 (x,\ y,\ z)\,\! ,雙曲面可以用公式表達為 或 假若,a.

查看 正八邊形鑲嵌和雙曲面

正七邊形鑲嵌

在幾何學中,正七邊形鑲嵌()是一種由正七邊形拼合,並且將正七邊形重複排列組合,並讓圖形完全拼合,而且沒有空隙或重疊的幾何構造。 正七邊形鑲嵌是一種雙曲正鑲嵌,由正七邊形組成,在施萊夫利符號中用(7,3)來表示,因為每個頂點周圍都有3個正七邊形。 三個正七邊形由於超過360度,因此無法在平面作出,但若硬將正七邊形邊對邊接合,將會變成一個馬鞍形,且每個頂點皆會落在一個雙曲拋物面上。 正七邊形鑲嵌無法在一個平面上構造,因為每個頂點的角度128\frac \times 3.

查看 正八邊形鑲嵌和正七邊形鑲嵌

正六邊形鑲嵌

在幾何學中,正六邊形鑲嵌是一種平面鑲嵌,由正六邊形重覆組合排列而成,且填滿整個平面,而且沒有任何空隙或重疊,由於皆由正多邊形組成,因此稱為正鑲嵌圖。正六邊形鑲嵌是三维欧几里得空间中三个正密铺之一。另外两个分别是正三角形镶嵌和正方形镶嵌。 由於正六邊形鑲嵌是由正六邊形組成,又因正六邊形內角為120°,因此每個頂點周圍都有3個正六邊形,且剛好占滿360°,才能填滿平面。 在施萊夫利符號中,正六邊形鑲嵌可用或t表示。.

查看 正八邊形鑲嵌和正六邊形鑲嵌

另见

雙曲面鑲嵌