我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

费雪信息

指数 费雪信息

在 数理统计学, 费雪信息 (有时简称为 信息)是一种度量随机变量 X 所含有的关于其自身随机分布函数的未知参数 θ 的信息量。严格地说,它是分数对方差或观测信息的期望值。Fisher信息在最大似然估计量的大样本分布中地位是由统计学家罗纳德*费雪推广的(通过发展弗朗西斯*伊西德罗*埃奇沃思(Francis Ysidro Edgeworth)的初步结果)。 费雪信息矩阵是可以用来计算最大似然估计量的协方差矩阵。 此外,它还用在一些统计检验量(比如瓦尔德检验)的公式中。.

目录

  1. 6 关系: 协方差矩阵分數期望值最大似然估计方差数理统计学

  2. 信息论
  3. 實驗設計

协方差矩阵

在统计学与概率论中,共變異數矩阵(也称离差矩阵、方差-协方差矩阵)是一个矩阵,其 i, j 位置的元素是第 i 个与第 j 个(即随机变量构成的向量)之间的共變異數。这是从标量随机变量到高维度随机向量的自然推广。.

查看 费雪信息和协方差矩阵

分數

分數(fraction)是用分式(分數式)表達成 \frac 的数(a, b \in Z, b\neq 0)。在上式之中,b 稱為分母(Denominator)而 a 稱為分子(Numerator),可視為某件事物平均分成 b 份中佔 a 分,讀作「b 分之 a」。中間的線稱為分線或分数线。有時人們會用 a/b 來表示分數。.

查看 费雪信息和分數

期望值

在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望,物理学中称为期待值)是试验中每次可能的结果乘以其结果概率的总和。换句话说,期望值像是随机试验在同样的机会下重复多次,所有那些可能狀態平均的结果,便基本上等同“期望值”所期望的數。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合裡。) 例如,掷一枚公平的六面骰子,其每次「點數」的期望值是3.5,计算如下: \operatorname(X)&.

查看 费雪信息和期望值

最大似然估计

在统计学中,最大似然估计(maximum likelihood estimation,缩写为MLE),也称最大概似估计,是用来估计一个概率模型的参数的一种方法。.

查看 费雪信息和最大似然估计

方差

方差(Variance),應用數學裡的專有名詞。在概率论和统计学中,一个随机变量的方差描述的是它的离散程度,也就是该变量离其期望值的距离。一个实随机变量的方差也称为它的二阶矩或二階中心動差,恰巧也是它的二阶累积量。這裡把複雜說白了,就是將各個誤差將之平方(而非取絕對值,使之肯定為正數),相加之後再除以總數,透過這樣的方式來算出各個數據分佈、零散(相對中心點)的程度。繼續延伸的話,方差的算术平方根称为该随机变量的标准差(此為相對各個數據點間)。.

查看 费雪信息和方差

数理统计学

数理统计(Mathematical statistics)是统计学的数学基础,从数学的角度去研究统计学,为各种应用统计学提供理论支持。.

查看 费雪信息和数理统计学

另见

信息论

實驗設計