目录
110 关系: 原神星,健神星,假超新星,南門二,双筒望远镜,參宿四,后发座,大角星,大麦哲伦星系,天王星,天球,天狼星,天文單位,太阳,太陽,妊神星,宇宙塵,对数,對數尺度,小行星2060,小行星90377,希臘化時代的希臘,希腊,三角座星系,亮星星表,人,人眼,仙女座星系,弧矢七,伽玛射线暴,土卫八,土卫六,土星,地平線,地球,地球大气层,喜帕恰斯,哈勃空间望远镜,哈雷彗星,冥卫三,冥卫二,冥王星,冪定律,光学,光度,光污染,光感測器,勾陳一,勒克斯,皇家天文學會月報,... 扩展索引 (60 更多) »
- 對數測量尺度
原神星
(Cybele)是第65颗被人类发现的小行星,于1861年3月8日发现。的直径为237.3千米,质量为1.4×1019千克,公转周期为2323.521天。.
查看 视星等和原神星
健神星
健神星是主帶小行星內第四大的小行星,稍微有一些橢圓,直徑大約有300-500公里,並且估計佔有小行星帶3%的質量。 在主帶中,它是黑暗的C型小行星,也是這一區內最大的一顆小行星。C型小行星是主帶外緣最主要的小行星,分佈在2.82天文單位的柯克伍德空隙之外。它黑暗的表面和與太陽的距離大於平均距離,使從地球觀測到的它在大的小行星中顯得很黯淡。事實上,在早先發現的23顆小行星中,它是第三暗的,只有芙女星(13號小行星)和海女星(17號小行星)在衝的時候仍比它暗淡。.
查看 视星等和健神星
假超新星
假超新星有時也稱為第五型超新星,是類似海山二的,和高光度藍變星(LBV)的巨大噴發現象。.
查看 视星等和假超新星
南門二
南門二(α Cen、半人馬座α)位於天空南方的半人馬座,英文名Alpha Centauri或Toliman,雖然肉眼分辨不出來,不過南門二實際上是一個三合星系統,其中一顆恆星是全天空第4明亮的恆星。不過因為其中兩顆恆星距離過近,肉眼無法分辨出來,所以它們的綜合視星等為-0.27等(超過第3亮的大角星),絕對星等為4.4等。南門二也作為南十字星座最外圍的指引而聞名,因為南十字星座的位置太過南邊,所以大部分的北半球都看不到。傳聞當年鄭和下西洋,就是用它來指引方向。 南門二是距離太陽最近的恆星系,只有4.37光年(約277,600天文單位)。比鄰星(Proxima Centauri)通常被認為是這個恆星系的成員,距離太陽只有4.24光年。因為南門二距離地球相對較近,所以在關於星際旅行的冒險小說中,理所當然將它當成「第一個停靠港口」,並預測在人口爆炸時甚至會對這個恆星系進行開發與殖民活動。這些觀點通常也在科幻小說與電子遊戲中出現。 2016年8月24日ESO(欧洲南方天文台)发布了他们的新发现——一颗位于比邻星附近的类地行星。.
查看 视星等和南門二
双筒望远镜
双筒望远镜(或直接簡稱雙筒鏡,也稱之為野外鏡)是将两个相同的或者镜像对称的望远镜并排連在一个架子上使得它们始终对准同一方向而制成的望远镜。使用者可透过它同时以双眼观察远处景象。双筒望远镜比单筒望远镜提供更高的深度和距离感。雙筒鏡也可以成由兩個短的折射望遠鏡組合,用於觀看遙遠目標的設備。 最常见的双筒望远镜的大小正好适合双手托拿,它包括内部的反射系统,这个系统可以缩短望远镜的长度,使它短于透镜的焦距。此外它还可以增大物镜之间的距离来改善深度感。所有常见的双筒望远镜是伽利略式的,或者使用稜镜来呈现一个正像。 大的双筒望远镜比较重,不易稳定地拿住,因此一般被固定在三腳架上或其它支柱上。在第二次世界大战中美国制造过非常大的(10吨),其物镜的距离相当远的(15米)大型双筒望远镜来确定25公里以外的海上目标的距离。目前世界上最大的双筒望远镜是位于美国亞利桑那州的大雙筒望遠鏡(Large Binocular Telescope,LBT)。.
查看 视星等和双筒望远镜
參宿四
参宿四(Betelgeuse),也就是拜耳命名法中著名的獵戶座α(α Orionis或α Ori),是全天第九亮星,也是獵戶座第二亮星,只比鄰近的参宿七(獵戶座β)暗淡一點。它有著明顯紅色的半規則變星,視星等在0.2至1.2等之間變化著,是變光幅度最大的一等星。這顆恆星標示著冬季大三角的頂點和冬季六邊形的中心。 在分類上,参宿四是一顆紅超巨星,並且是已知最大和最亮的恆星之一。如果它位於太陽系的中心,它的表面會超越小行星帶,並可能抵達並超越木星的軌道,完全地席捲掉水星、金星、地球和火星。但是,在上個世紀對参宿四的距離估計從180光年至1,300光年不等,因此對其直徑、光度和質量的估計是很難被證實的。目前認為参宿四的距離大約是640光年,平均的絕對星等是-6.05。 而事实上,有关参宿四的质量始终有争议,有的资料显示它的质量不过太阳的14至15倍,但也有的资料认为它的质量达到太阳的18至19倍甚至20倍的,而这种质量的不确定性,正是由于测量距离的不确定性造成的。 在1920年,参宿四是第一顆被測出角直徑的恆星(除太陽之外)。從此以後,研究人員不斷使用不同的技術參數和望遠鏡測量這顆巨星的大小,而且經常產生衝突的結果。目前估計這顆恆星的視直徑在0.043~0.056角秒,作為一個移動的目標,参宿四似乎周期性的改變它的形狀。由於周邊昏暗、光度變化(變星脈動理論)、和角直徑隨著波長改變,這顆恆星仍然充滿了令人費解的謎。参宿四有一些複雜的、不對稱的包層,引起巨大的質量流失,涉及從表面向外排出的龐大冠羽狀氣體,使事情變得更為複雜。甚至有證據指出在它的氣體包層內有伴星環繞著,可能加劇了這顆恆星古怪的行為。 天文學家認為参宿四的年齡只有1,000萬年,但是因為質量大而演化得很快。它被認為是來自獵戶座OB1星協的奔逃星,還包含在獵戶腰帶的参宿一、参宿二、和参宿三等0和B型晚期恆星的集團。以現行恆星演化的晚期階段,預料参宿四在未來的數百萬年將爆炸成為II型超新星,並變成一顆中子星。.
查看 视星等和參宿四
后发座
后发座(拉丁语名称Coma Berenices),北天星座,面积386.47平方度,占全天面积的0.937%,在全天88个星座中,面积排行第四十二位。后发座中亮于5.5等的恒星有23颗,最亮星为周鼎一(后发座β),视星等为4.26。每年4月2日子夜后发座中心经过上中天。银河坐标的北极位于后发座赤经 12h 51.42m 赤纬27° 07.8′的地方。.
查看 视星等和后发座
大角星
大--星(α Boo / 牧夫座α)英文名Arcturus(),是牧夫座中最明亮的恆星。以肉眼觀看大角星,它是橘黃色的,視星等-0.04,是全夜空第3亮的恆星,僅次於-1.46等的天狼星與-0.86等的老人星。雖然半人馬座的南門二(半人馬座α星)視星等是-0.27等,但它是由-0.01等的α1和+1.33等的α2組成的聯星,個別的亮度都低於大角星,只因為它們太過接近,所以肉眼無法分辨出來。因此,南門二雖然是相當明亮的恆星,但半人馬α1比大角星暗了一些,只是全天第4亮的恆星。大角星和南門二都位在本星際雲(Local Interstellar Cloud)中。 大角星雖然位於北半球,但距離天球赤道的緯度少於20度,因此在南北兩個半球都能看見。大角星大約在4月30日的子夜中天,因此在北半球的春天,南半球的秋天可以看見這顆恆星。北半球的觀察者可以沿著北斗星弧狀的柄來找到大角星。順著這個弧線繼續延伸,也可以觀測到角宿一。大角星與室女座角宿一、獅子座五帝座一共同組成春季大三角,如果再加上獵犬座的常陳一就成為春季大鑽石。.
查看 视星等和大角星
大麦哲伦星系
大麥哲倫星系又称大麦哲伦云(Large Magellanic Cloud,簡寫為LMC),是一個環繞著太陽所在的銀河系運轉的星系,距離約為50,000秒差距(~160,000光年),直徑大約是銀河系的1/20,恆星數量約為1/10(大約是100億顆恆星)。虽然比大多數星系為大,但在讨论银河系的时候也会被当做矮星系。 大麦哲伦星系的形态类似不规则星系,但似乎有一些螺旋結構的痕跡。有些推測認為大麦哲伦星系以前是棒旋星系,受到銀河系的重力擾動才成為不規則星系,因此在中央仍保有短棒的結構。在NASA銀河系外資料庫中依據哈伯星系分類為Irr/SB(s)m。 大麦哲伦星系是本星系群中第四大的星系,其餘三個依序為仙女座星系(M31)、銀河系及三角座星系(M33)。 在南半球的夜空中,大麦哲伦星系是一個昏暗的天體,跨立在山案座和劍魚座兩個星座的邊界之間。它的名稱來自航海家斐迪南·麥哲倫,在他繞行地球一週的遠航中觀察了它與小麥哲倫星系(SMC)。(其實早在約西元964年,波斯天文学家阿布德·热哈曼·阿尔苏飞就已經在恆星之書(Book of Fixed Stars)中記錄了這兩個星系)。.
查看 视星等和大麦哲伦星系
天王星
天王星是從太陽系由内向外的第七顆行星,其體積在太陽系排名第三(比海王星大),質量排名第四(比海王星輕)。其英文名稱Uranus來自古希臘神話的天空之神烏拉諾斯(),是克洛諾斯的父親,宙斯的祖父。与在古代就为人们所知的五顆行星(水星、金星、火星、木星、土星)相比,天王星的亮度也是肉眼可見的,但由於較為黯淡以及緩慢的繞行速度而未被古代的觀測者认定为一颗行星。直到1781年3月13日,威廉·赫歇耳爵士宣布發現天王星,从而在太陽系的現代史上首度擴展了已知的界限。這也是第一顆使用望遠鏡發現的行星。天文學符號為、♅(♅,Unicode編碼U+2645) 天王星和海王星的內部和大氣構成不同於更巨大的氣體巨星,木星和土星。同樣的,天文學家設立了不同的「冰巨行星」分類來安置她們。天王星大氣的主要成分是氫和氦,還包含較高比例的由水、氨、甲烷等結成的「冰」,與可以探测到的碳氫化合物。天王星是太陽系內大气层最冷的行星,最低溫度只有49K(−224℃)。其外部的大气层具有複杂的雲層結構,水在最低的雲層內,而甲烷組成最高處的雲層。相比较而言,天王星的内部则是由冰和岩石所构成。 如同其他的巨行星,天王星也有環系統、磁層和許多衛星。天王星的環系統在行星中非常獨特,因為它的自轉軸斜向一邊,幾乎就躺在公轉太陽的軌道平面上,因而南極和北極也躺在其他行星的赤道位置上。從地球看,天王星的環像是環繞著標靶的圓環,它的衛星則像環繞著鐘的指針(雖然在2007年與2008年該環看來近乎水平)。在1986年,來自太空探测器航海家2號的影像资料顯示天王星實際上是一顆平平無奇的行星,在其可見光的影像中沒有出现像在其他巨行星所擁有的雲彩或風暴。然而,近年內,隨著天王星接近晝夜平分點,地球上的觀測者发现天王星有季節變化的迹象和漸增的天氣活動。天王星上的風速可以達到每秒250公尺。 在西方文化中,天王星是太陽系中唯一以希臘神祇命名的行星,其他行星都依照羅馬神祇命名。.
查看 视星等和天王星
天球
天球(英語:Celestial sphere),是在天文學和導航上想出的一個與地球同圓心,並有相同的自轉軸,半徑無限大的球。天空中所有的物體都可以當成投影在天球上的物件。地球的赤道和地理極點投射到天球上,就是天球赤道和天極。天球是位置天文學上很實用的工具。 在亞里斯多德和托勒密的模型,天球想像成實際的物體,而不僅僅是一個幾何的投影(參見天球模型)。.
查看 视星等和天球
天狼星
天狼星(Bd:α CMa)是夜空中最亮的恆星,其視星等為-1.46,幾乎為第二亮恆星老人星的兩倍。它的英文名稱為Sirius,讀法為/sɪɹiəs/,源自古希臘語的Σείριος。天狼星根據拜耳命名法的名稱為大犬座α星。我們肉眼以爲是一顆恆星的天狼星,實際上是一個聯星系統,其中包括一顆光譜型A1V的白主序星和另一顆光譜型DA2的暗白矮星伴星天狼星B(Bd:α CMa B)。 天狼星如此之亮除了因爲其原本就很高的光度以外,還因爲它距離太陽很近。天狼星距離地球約2.6秒差距(約8.6光年),並是最近的恆星之一。天狼星A的質量為太陽的兩倍,而絕對星等為1.42等。它比太陽亮25倍,但光度明顯比其它亮星較暗,如對比老人星或參宿七。此雙星系統有約二億至三億年歷史,而初期是由兩顆藍色的亮星組成。更高質量的天狼星B耗盡了能源,成爲一顆紅巨星,然後又漸漸削去外層,約在一億二千萬年前坍塌成爲今天的白矮星狀態。 中國古代星象學說中,天狼星是「主侵略之兆」的惡星。屈原在《九歌·東君》中寫到:「舉長矢兮射天狼」,以天狼星比擬位於楚國西北的秦國;而蘇軾《江城子》中「會挽雕弓如滿月,西北望,射天狼」,以天狼星比擬威脅北宋西北邊境的西夏。.
查看 视星等和天狼星
天文單位
天文單位(縮寫的標準符號為AU,也寫成au、a.u.或ua)是天文學上的長度單位,曾以地球與太陽的平均距離定義。2012年8月,在中国北京举行的国际天文学大会(IAU)第28届全体会议上,天文学家以无记名投票的方式,把天文单位固定为149,597,870,700米。新的天文单位以公尺来定义,而公尺的定义来源于真空中的光速,也就是说,天文单位现在不再与地球與太阳的實際距离挂钩,而且也不再受时间变化的影响(虽然天文单位最初的来源就是日地平均距离)。 國際度量衡局建議的縮寫符號是ua,但英語系的國家最常用的仍是AU,國際天文聯合會則推薦au,同時國際標準ISO 31-1也使用AU,后来的國際標準ISO 80000-3:2006又改成了ua。通常,大寫字母僅用於使用科學家的名字命名的單位符號,而au或a.u.也可以是原子單位或是任意單位;但是AU被廣泛的地區使用作為天文單位的符號。以1天文單位距離的值為單位的天文常數的值會以符號A標示。.
查看 视星等和天文單位
太阳
太陽或日是位於太陽系中心的恆星,它幾乎是熱電漿與磁場交織著的一個理想球體。其直徑大約是1,392,000(1.392)公里,相當於地球直徑的109倍;質量大約是2千克(地球的333,000倍),約佔太陽系總質量的99.86% ,同時也是27,173,913.04347826(約2697.3萬)倍的月球質量。 从化學組成来看,太陽質量的大約四分之三是氫,剩下的幾乎都是氦,包括氧、碳、氖、鐵和其他的重元素質量少於2% 。 太陽的恆星光譜分類為G型主序星(G2V)。雖然它以肉眼來看是白色的,但因為在可见光的頻譜中以黃綠色的部分最為強烈,從地球表面觀看時,大氣層的散射使天空成為藍色,所以它呈現黃色,因而被非正式地稱為“黃矮星” 。 光譜分類標示中的G2表示其表面溫度大約是5778K(5505°C),V则表示太陽像其他大多數的恆星一樣,是一顆主序星,它的能量來自於氫融合成氦的核融合反應。太陽的核心每秒鐘聚变6.2億噸的氫。太陽一度被天文學家認為是一顆微小平凡的恆星,但因為銀河系內大部分的恆星都是紅矮星,現在認為太陽比85%的恆星都要明亮。太陽的絕對星等是 +4.83,但是由于其非常靠近地球,因此从地球上看来,它是天空中最亮的天體,視星等達到−26.74。太陽高溫的日冕持續的向太空中拓展,創造的太陽風延伸到100天文單位遠的日球層頂。這個太陽風形成的“氣泡”稱為太陽圈,是太陽系中最大的連續結構。 太陽目前正在穿越銀河系內部邊緣獵戶臂的本地泡區中的本星際雲。在距離地球17光年的距離內有50顆最鄰近的恆星系(最接近的一顆是紅矮星,被稱為比鄰星,距太阳大約4.2光年),太陽的質量在這些恆星中排在第四。 太陽在距離銀河中心24,000至26,000光年的距離上繞著銀河公轉,從銀河北極鳥瞰,太陽沿順時針軌道運行,大約2.25億至2.5億年遶行一周。由於銀河系在宇宙微波背景輻射(CMB)中以550公里/秒的速度朝向長蛇座的方向運動,这两个速度合成之后,太陽相對於CMB的速度是370公里/秒,朝向巨爵座或獅子座的方向運動。 地球圍繞太陽公轉的軌道是橢圓形的,每年1月離太陽最近(稱為近日點),7月最遠(稱為遠日點),平均距離是1.496億公里(天文学上稱這個距離為1天文單位) 。以平均距離算,光從太陽到地球大約需要经过8分19秒。太陽光中的能量通过光合作用等方式支持着地球上所有生物的生长 ,也支配了地球的氣候和天氣。人类從史前時代就一直認為太陽對地球有巨大影響,有許多文化將太陽當成神来崇拜。人类對太陽的正確科學認識進展得很慢,直到19世紀初期,傑出的科學家才對太陽的物質組成和能量來源有了一點認識。直至今日,人类对太阳的理解一直在不断进展中,还有大量有关太陽活动机制方面的未解之謎等待着人们来破解。 現今,太陽自恆星育嬰室誕生以來已經45億歲了,而現有的燃料預計還可以燃燒50億年之久。.
查看 视星等和太阳
太陽
#重定向 太阳.
查看 视星等和太陽
妊神星
妊神星是柯伊伯带的一颗矮行星,正式名称为(136108) Haumea。妊神星是太阳系的第三大矮行星,它的质量是冥王星质量的三分之一。妊神星的质量要比地球小1,400倍(地球质量的0.07%)。2004年,迈克尔·E·布朗领导的加州理工学院团队在美国帕洛玛山天文台发现了该天体;2005年,领导的团队在西班牙内华达山脉天文台亦发现了该天体,但后者的声明遭到质疑。2008年9月17日,国际天文联合会(IAU)将这颗天体定为矮行星,并以夏威夷生育之神为其命名。 在所有的已知矮行星中,妊神星具有独特的极度形变。尽管人们尚未直接观测到它的形状,但由光变曲线计算的结果表明,妊神星呈椭球形,其长半轴是短半轴的两倍。尽管如此,据推算其自身重力仍足以维持流体静力平衡,因此符合矮行星的定义。天文学家认为,妊神星之所以具备形状伸长、罕见的高速自转、高密度和高反照率(因其结晶水冰的表面)这些特点,是超级碰撞的结果;这让妊神星成为了碰撞家族中最大的成员,几颗大型的海王星外天体以及妊神星的两颗已知卫星亦是该家族的成员。.
查看 视星等和妊神星
宇宙塵
宇宙塵(Cosmic Dust)是由眾多細小粒子組成的一種固態塵埃,自宇宙大爆炸起,便四散在浩瀚宇宙之中。宇宙塵的組成包含矽酸鹽、碳等元素以及水分,部分來自彗星、小行星等星體的崩解而產生。 宇宙塵對一個天體的誕生亦有影響,例如一個星體崩壞後所產生的宇宙塵,在經過漫長的宇宙旅程後,可能與一個正在形成的星體撞上,於是又循環成為了一個新的星體。在太陽系中,木星、土星、天王星、海王星等行星的光環,即是由於在行星初形成時,碎裂的宇宙塵未能融為星球的主體,但卻又無法擺脫行星萬有引力的牽制而產生圍繞著星球的破碎物質。.
查看 视星等和宇宙塵
对数
在数学中,真数 x(对于底数 )的对数是 y 的指数 y,使得 。底数 的值一定不能是1或0(在扩展到复数的复对数情况下不能是1的方根),典型的是、 10或2。数x(对于底数β)的对数通常写为 稱作為以β為底x的對數。 当x和β进一步限制为正实数的时候,对数是1个唯一的实数。 例如,因为 我们可以得出 用日常语言说,以3为底81的对数是4。.
查看 视星等和对数
對數尺度
對數尺度(logarithmic scale)是一個非線性的測量尺度,用在數量有較大範圍的差異時。像黎克特制地震震級、聲學中的音量、光學中的光強度、及溶液的PH值等。 對數尺度是以數量級為基礎,不是一般的,因此每個刻度之間的商為一定值。.
查看 视星等和對數尺度
小行星2060
2060 凱龍 (,或是Χείρων),是查爾斯·科瓦爾在1977年於外太陽系發現的小行星(回溯發現影像已追溯到1895年),它是第一顆被發現軌道在土星和天王星之間的新族群半人馬小行星的一員。 雖然他最初被分類為小行星,稍後發生它究竟是小行星還是彗星的爭議。如今,它被分在這兩類當中,做為彗星的名稱是 95P/開朗 。 凱龍是依據希臘神話中的半人馬-zh-hans:喀戎;zh-hk:奇倫;zh-tw:凱隆;-(英文:Chiron)命名的。在1978年發現的冥王星衛星名為凱倫(英文:Charon),不要將兩者搞混了。.
查看 视星等和小行星2060
小行星90377
賽德娜(英文:Sedna)為一顆外海王星天體,小行星編號為90377。它於2003年11月14日由天文學家布朗(加州理工學院)、特魯希略(雙子星天文臺)及拉比諾維茨(耶魯大學)共同發現,它被發現時是太陽系中距離地球最遠的天然天體。賽德娜目前距離太陽88天文單位 ,為海王星與太陽之間距離的3倍。在賽德娜大部分的公轉週期中,它與太陽之間的距離比任何已知的矮行星候選都要遙遠。賽德娜是太陽系中颜色最紅的天體之一。它大部分由水、甲烷、氮冰及托林(Tholin)所構成。國際天文聯會目前並未將賽德娜視為矮行星,但是有一些天文學家認為它應該是一顆矮行星 。 賽德娜的公轉軌道是一個離心率較大的橢圓,遠日點估計為937天文單位,所以它是太陽系中最遙遠的天體之一,比大部份的長週期彗星都還要遠。賽德娜的公轉週期約為11,400年,近日點約為76天文單位,天文學家可以藉此推斷它的起源。小行星中心目前將賽德娜視為黃道離散天體,這類天體是因為海王星向外遷徙造成的引力擾動,从柯伊柏帶散射入高傾斜和高離心率的軌道內。但是這種分類已經引起爭議,因為賽德娜不曾接近海王星,所以海王星的引力擾動無法造成它的軌道如此橢圓。一些天文學家認為賽德娜是人類首度發現的首顆歐特雲天體,其他天文學家則認為賽德娜的橢圓軌道是一顆通過太陽系附近的恆星所造成的,它可能位在與诞生太陽的星團(一个疏散星團)之內,甚至有天文學家認為賽德娜是太陽從其他恆星系所捕捉到的天體。認為賽德娜的軌道是海王星外天體存在的證據。共同發現賽德娜和矮行星鬩神星,妊神星,和鸟神星的天文學家米高·E·布朗認為它是目前為止人類發現的外海王星天體中最重要的一顆,因為瞭解它的特殊公轉軌道可能可以得知太陽系的起源及早期的演化資訊 。.
查看 视星等和小行星90377
希臘化時代的希臘
希臘化時代的希臘是指古希臘核心—希臘半島在希臘化的時期,起始點從前323年亞歷山大大帝逝世到前146年被羅馬併吞為止,儘管之後被羅馬占領,古希臘的文學、藝術、建築、文化甚至希臘化的社會和科學的連續性並未因此中斷,希臘文化本質上一直持續到基督教文化到來為止,但羅馬的統治標誌著古希臘城邦的終結,結束了希臘政治上的獨立性。 在希臘化時期,希臘本土在希臘語世界中的重要性急劇下降。這段期間,希臘化文明的中心分別轉移到托勒密王國的首都亞歷山卓和塞琉古帝國的安條克,而其他城市如帕加馬、以弗所、羅德島和塞琉西亞也相當重要,東地中海的城市文明提高是這段時期的特徵。.
查看 视星等和希臘化時代的希臘
希腊
希腊(Ελλάδα,),官方名称为希腊共和国(希腊语:Ελληνική Δημοκρατία,),位于欧洲东南部的跨大洲国家。2015年其人口约为1,090万。雅典为希腊首都及最大城市,塞萨洛尼基为第二大城市。 希腊位于欧洲、亚洲和非洲的十字路口,战略地位重要。其位于巴尔干半岛南端,西北邻阿尔巴尼亚,北部邻马其顿共和国和保加利亚,东北邻土耳其。希腊分为九个地区:马其顿、中希腊、伯罗奔尼撒、色萨利、伊庇鲁斯、爱琴海诸岛(包括十二群岛及基克拉泽斯)、色雷斯、克里特和伊奥尼亚群岛。爱琴海位于希腊本土东侧,爱奥尼亚海位于西侧,克里特海和地中海位于南侧。希腊海岸线长达,为地中海盆地国家中最长,世界第11长。希腊拥有大量岛屿,其中227个岛屿有人居住。其百分之八十区域为山地,奥林波斯山为全境最高峰,海拔。 希腊为世界历史最悠久的国家之一,自公元前270,000年起即有人居住。其被称作西方文明的摇篮,为民主制度、西方哲学、奥林匹克运动会、西方文学、史学、政治学、重要科学及数学原理、西方戏剧(悲剧及喜剧)的发源地。公元前4世纪马其顿腓力二世首先统一了希腊。其子亚历山大大帝迅速征服了古代世界的大片地区,将希腊文化和科学自东地中海地区传播至印度河流域。公元前2世纪希腊为罗马所吞并,成为罗马帝国及其继承国拜占庭帝国的核心组成部分,其中后者为希腊语言及文化所主导。公元1世纪希腊正教会建立起来,塑造了现代希腊的文化认同,并将希腊传统传播至正教世界。15世纪中叶,奥斯曼帝国夺取了希腊地区。1830年,在经历独立战争后,希腊作为现代民族国家建立起来。希腊的文化遗产由其18个联合国教科文组织世界遗产数可见一斑,这一数目在欧洲及世界均居前列。 希腊为民主制国家,发达国家及高收入经济体,其生活质量较高,及人类发展指数为极高。希腊为联合国创始国之一,为欧洲共同体(欧洲联盟前身)第十个成员国,并自2001年以来为欧元区成员国。其亦为诸多国际组织的成员国,包括欧洲委员会、北大西洋公约组织、经济合作与发展组织、世界贸易组织、欧洲安全与合作组织及法语圈国际组织。希腊的独特文化地位、旅游业、船运业及战略地位使其被归为一中等强国。其为巴尔干地区最大规模经济体,并为这一区域重要的投资者之一。.
查看 视星等和希腊
三角座星系
三角座星系是位於三角座,距離地球大約300萬光年的一個螺旋星系。它被編入梅西爾 33或NGC 598。三角座星系繼仙女座星系和銀河系之後,是本星系群第三大的星系。它是長久以來以肉眼可以看見的最遙遠天體。 這個星系是本星系群中最小的螺旋星系,並且因為與仙女座星系的有交互作用、速度,與在夜空中互相靠近而被認為是仙女座星系的一個衛星星系。.
查看 视星等和三角座星系
亮星星表
亮星星表,也称为亮星耶鲁星表(Yale Catalogue of Bright Stars)或耶鲁亮星星表(Yale Bright Star Catalogue),是一个列举了视星等超过6.5的恒星的星表。它几乎涵盖了地球上肉眼能看到的所有恒星。现在可以通过数种方法在线查看它的第五版。第一版於1930年出版,由于该星表的前身是由哈佛大学天文台於1908年出版的哈佛恒星测光表修订版(Harvard Revised Photometry)的原因,尽管耶鲁亮星星表的缩写为BS或YBS,但从该星表引用的恒星名都以HR开头。耶鲁亮星星表包含了9110个天体,其中9096个为恒星,9个为新星或超新星,4个为非恒星。这四个非恒星分别为球状星团杜鹃座47(HR 95)、NGC 2808 (HR 3671)、疏散星团NGC 2281 (HR 2496) 和M67 (HR 3515)。 自從1930年第一版問世之後,星表中的天體數量就固定了,1940年第二版、1964年第三版及1982年的第四版都只對內容加以修訂,並增加註解中的資料。1983年出版了增補版,收錄了2603顆亮度高於7.1等的恆星,其中也包括哈佛恒星测光表修订版中原已收錄的500多顆。1991年出版的第5版已改為網路版,可以在網路上查閱。這個版本的註釋就被大量的擴充,其份量已經比星表本身略為多了一些。.
查看 视星等和亮星星表
人
代人在生物学上属靈長目、人科、人屬、智人种,由人猿/古猿演化而来。長者智人化石表明,現代人類在約20萬年前的東非大裂谷演化成形。 人类有比其他動物更發達的大腦,能進行複雜的計算和抽象思維。加上人類的直立身驅使人類的前肢可以自由活動,因此人類對工具的使用遠超出其他任何物種。人类还试图用哲学、艺术、科学、神话以及宗教来解释自然界的现象。这強烈的好奇心促使了高级工具和科學技术的发展。 与其他高等灵长目动物一样,人类是社会性的。人类个体之间的社会交际创立了广泛的传统、习俗、宗教制度、价值观、法律,这些共同构成了人类社会的基础。人尤其擅长用口語、手势、肢體語言与书面语言来溝通、協作、表达自我、交際、交换意见、组织事物。 截至公元2012年,世界人口已超过70億,大约是所有曾生活在地球上的人的6%。.
查看 视星等和人
人眼
睛是一種人體器官,位於頭部,左右成對。與其它哺乳動物的眼睛相同,人眼有多種用途。作為感覺器官,眼睛能對光起反應,傳送訊號至大腦,以產生視覺。在眼睛後端的視網膜上,擁有杆細胞和錐細胞,能夠分辨出外界事物的顏色、外形,並產生景深。據估計,人眼可分辨約一千萬個不同的顏色。 眼睛的非成像光敏神經節細胞在視網膜接收到光的訊號強弱、荷爾蒙的褪黑激素和生理時鐘 誘導的規畫和抑制,會影響到和調整瞳孔的大小。.
查看 视星等和人眼
仙女座星系
仙女座星系(Andromeda Galaxy,國際音標為:,也稱為梅西爾31、星表编号为M31和NGC 224,在舊文獻中曾經稱為仙女座星雲)是一個螺旋星系,距離地球大約250萬光年,是除麦哲伦云(地球所在的银河系的伴星系)以外最近的星系。位於仙女座的方向上,是人類肉眼可見(3.4等星)最遠的深空天體。 仙女座星系被相信是本星系群中最大的星系,直径约20万光年,外表颇似银河系。本星系群的成員有仙女星系、銀河系、三角座星系,還有大約50個小星系。但根據改進的測量技術和最近研究的數據結果,科學家現在相信銀河系有許多的暗物質,並且可能是在這個集團中質量最大的。 然而,史匹哲太空望遠鏡最近的觀測顯示仙女座星系有將近一兆(1012)顆恆星,數量遠比我們的銀河系為多。在2006年重新估計銀河系的質量大約是仙女座星系的50%,大約是7.1M☉.
查看 视星等和仙女座星系
弧矢七
弧矢七(ε CMa/大犬座ε星)是大犬座第2亮的恆星,也是夜空中最明亮的恆星之一。弧矢七的英文名稱為Adhara,是從阿拉伯文當中的عذارى aðāra轉變而來的。.
查看 视星等和弧矢七
伽玛射线暴
伽玛射线暴(Gamma Ray Burst,缩写GRB),又称伽玛暴,是来自天空中某一方向的伽玛射线强度在短时间内突然增强,随后又迅速减弱的现象,持续时间在0.01-1000秒,辐射主要集中在0.1-100 MeV的能段。伽玛暴发现于1967年,数十年来,人们对其本质了解得还不很清楚,但基本可以确定是发生在宇宙学尺度上的恒星级天体中的爆发过程。伽玛暴是目前天文学中最活跃的研究领域之一,曾在1997年和1999年两度被美国《科学》杂志评为年度十大科技进展之列。.
查看 视星等和伽玛射线暴
土卫八
土卫八又稱為「伊阿珀托斯」(Iapetus或Japetus,希腊语:Ιαπετός),是土星的第3大卫星,同时也是太阳系中的第11大卫星,由乔凡尼·多美尼科·卡西尼于1671年发现。土卫八以其两半球面巨大的颜色差异而著称,而卡西尼号最近的发现则揭示了该卫星其他多处不寻常的特征,如其拥有一个环绕球体半圈的赤道脊。.
查看 视星等和土卫八
土卫六
土卫六又稱為「泰坦」(Titan),是环绕土星运行的一颗卫星,是土星卫星中最大的一个,也是太陽系第二大的衛星。荷兰物理学家、天文学家和数学家克里斯蒂安·惠更斯在1655年3月25日发现它,也是在太阳系内继木星伽利略卫星後发现的第一颗卫星。由於它是太陽系第一颗被发现擁有濃厚大氣層的衞星,因此被高度懷疑有生命體的存在,科學家也推測大氣中的甲烷可能是生命體的基礎。土衛六可以被視為一個時光機器,有助我們了解地球最初期的情況,揭開地球生物如何誕生之謎。.
查看 视星等和土卫六
土星
土星,為太陽系八大行星之一,至太阳距离(由近到远)位於第六、体积則僅次於木星。並與木星、天王星及海王星同属氣體(類木)巨星。古代中国亦称之填星或鎮星。 土星是中国古代人根据五行学说结合肉眼观测到的土星的颜色(黄色)来命名的(按照五行学说即木青、金白、火赤、水黑、土黄)。而其他语言中土星的名称基本上来自希臘/羅馬神話传说,例如在欧美各主要语言(英语、法语、西班牙语、俄语、葡萄牙语、德语、意大利语等)中土星的名称来自于羅馬神話中的农业之神萨图尔努斯(拉丁文:Saturnus),其他的还有希臘神話中的克洛諾斯(泰坦族,宙斯的父親,一说其在罗马神话中即萨图尔努斯)、巴比倫神话中的尼努尔塔和印度神话中的沙尼。土星的天文学符號是代表农神萨图尔努斯的鐮刀(Unicode: )。 土星主要由氫組成,還有少量的氦與微痕元素,內部的核心包括岩石和冰,外圍由數層金屬氫和氣體包覆著。最外層的大氣層在外观上通常情况下都是平淡的,雖然有时会有長时间存在的特徵出現。土星的風速高達1,800公里/時,明顯的比木星上的風快速。土星的行星磁場強度介於地球和更強的木星之間。 土星有一個顯著的環系統,主要的成分是冰的微粒和較少數的岩石殘骸以及塵土。已經確認的土星的衛星有62顆。其中,土卫六是土星系統中最大和太陽系中第二大的衛星(半徑2575KM,太陽系最大的衞星是木星的木衛三,半徑2634KM),比行星中的水星還要大;並且土卫六是唯一擁有明顯大氣層的衛星。.
查看 视星等和土星
地平線
地平線指地面與天空的分隔線,此線將所有可見的方向分成二種:能與地表相交,和不能與地表相交。在很多地方,真地平線會被樹木、建築物、山脈等所掩蓋而其與天空相交造成的線稱作可見地平線。然而,如果身處海中的船上,則可以輕易看到真地平線。.
查看 视星等和地平線
地球
地球是太阳系中由內及外的第三顆行星,距离太阳约1.5亿公里。地球是人類已知宇宙中唯一存在生命的天体,也是人類居住的星球,共有74.9億人口。地球质量约为5.97×1024公斤,半径约6,371公里,密度是太阳系中最高。地球同时进行自转和公转运动,分别产生了昼夜及四季的变化更替,一太陽日自转一周,一太陽年公转一周。自转轨道面称为赤道面,公转轨道面称为黄道面,两者之间的夹角称为黄赤交角。地球仅擁有一顆自然卫星,即月球。 地球表面有71%的面积被水覆盖,称为海洋或可以成为湖或河流,其余是陆地板块組成的大洲和岛屿,表面分布河流和湖泊等水源。南极的冰盖及北极存有冰。主體包括岩石圈、地幔、熔融态金属的外地核以及固态金属的內地核。擁有由外地核產生的地磁场。外部被氣體包圍,称为大氣層,主要成分為氮、氧、氬。 地球诞生于约45.4亿年前,42億年前開始形成海洋。并在35亿年前的海洋中出现生命,之后逐步涉足地表和大气,并分化为好氧生物和厌氧生物。早期生命迹象产生的具體证据包括格陵兰岛西南部中拥有约37亿年的历史的石墨,以及澳大利亚大陆西部岩石中约41亿年前的 Early edition, published online before print.。此后除去数次生物集群灭绝事件,生物种类不断增多。根据学界测定,地球曾存在过的50亿种物种中,已经绝灭者占约99%,据统计,现今存活的物种大约有1,200至1,400万个,其中有记录证实存活的物种120万个,而余下的86%尚未被正式发现。2016年5月,有科学家认为现今地球上大概共出现过1--种物种,其中人类正式发现的仅占十万分之一。2016年7月,科学家称现存的生物共祖中共存在有355种基因。地球上有约74亿人口,分成了约200个国家和地区,藉由外交、旅游、贸易、传媒或战争相互联系。.
查看 视星等和地球
地球大气层
地球大氣層,又稱大氣圈,因重力關係而圍繞著地球的一層混合氣體,是地球最外部的气体圈层,包围着海洋和陆地,大气圈没有确切的上界,在离地表2000-16000公里高空仍有稀薄的气体和基本粒子,在地下、土壤和某些岩石中也会有少量氣體,它们也可視同大气圈的組成部分,地球大气的主要成分為氮、氧、氩、二氧化碳和不到0.04%比例的微量氣體,這些混合氣體即稱為空氣,地球大气圈气体的总质量约为5.136×1021克,相当于地球总质量的百万分之0.86,由于地球引力作用,几乎全部的气体集中在离地面100公里的熱层、其中99%在低於25~30公里以內,地球高密度大氣的氣壓也相當驚人,海平面每平方公尺所受空氣擠壓高達11公噸,每立方公尺的空氣質量可達1.29kg之多。大氣層保護地表避免太陽輻射直接照射,尤其是紫外線;也可以減少一天當中極端溫差的出現。.
查看 视星等和地球大气层
喜帕恰斯
喜帕恰斯(ίππαρχος,Hipparkhos,),或译希帕求斯,古希腊的天文学家,有“方位天文学之父”之稱。 公元前134年,他繪製出包含1025颗恒星的星图,并创立星等的概念,亦发现了岁差现象。。喜帕恰斯也被認為是三角函數的創始者。.
查看 视星等和喜帕恰斯
哈勃空间望远镜
哈勃太空望遠鏡(Hubble Space Telescope,HST),是以天文學家愛德溫·哈伯為名,在地球軌道的望遠鏡。哈勃望远镜接收地面控制中心(美国马里兰州的霍普金斯大学内)的指令并将各种观测数据通过无线电传输回地球。由于它位于地球大氣層之上,因此獲得了地基望遠鏡所沒有的好處:影像不受大氣湍流的擾動、視相度絕佳,且无大氣散射造成的背景光,還能觀測會被臭氧層吸收的紫外線。於1990年發射之後,已經成為天文史上最重要的儀器。它成功弥补了地面觀測的不足,幫助天文學家解決了許多天文学上的基本問題,使得人类对天文物理有更多的認識。此外,哈勃的超深空視場则是天文學家目前能獲得的最深入、也是最敏銳的太空光學影像。 哈勃太空望遠鏡和康普頓γ射線天文台、錢德拉X光天文台、史匹哲太空望遠鏡都是美國太空總署大型轨道天文台计划的一部分。哈勃空间望远镜由NASA和ESA合作共同管理。.
查看 视星等和哈勃空间望远镜
哈雷彗星
哈雷彗星(正式名稱是1P/Halley)是著名的短周期彗星,每隔75-76年就能從地球上看見,是唯一能用裸眼直接從地球看見的短週期彗星,人一生中可能经历两次他的来访。其他能以裸眼观察的彗星可能會更壯觀和更美麗,但可能要數千年才會出現一次。 至少在西元前240年,或許在更早的西元前466年,哈雷彗星返回內太陽系就已經被天文學家觀測和記錄到。在中國、巴比倫、和中世紀的歐洲都有這顆彗星出現的清楚紀錄,但是當時並不知道這是同一顆彗星的再出現。英國人愛德蒙·哈雷最先使用開普勒第三定律估算出他的週期,1758-1759年彗星再次来临的时候,這顆彗星被命名为哈雷彗星,以纪念哈雷的工作。哈雷彗星上一次回歸是在1986年,而下一次回歸將在2061年。 1986年哈雷彗星回歸時,人类第一次用太空船詳細觀察彗星,得到了第一手的彗核結構與彗髮和彗尾形成機制的資料。這些觀測支持一些彗星結構的假設,如弗雷德·惠普的「髒雪球」模型比较正確地预测了哈雷彗星是揮發性冰——水、二氧化碳、和氨-和宇宙塵埃的混合物。資料使科学家建立了更准确的模型;例如,哈雷彗星的表面大部分是宇宙塵埃,沒有揮發性物質,並且只有一小部分是冰。.
查看 视星等和哈雷彗星
冥卫三
冥衛三正式名稱為Hydra( ,許德拉),是冥王星的一颗卫星。 2005年5月首次被冥王星伴侣搜索团队通过哈勃太空望远镜观测到。並于同年5月15日和5月18日拍到照片;2005年5月15日观测者Max J. Mutchler经确认和预估後,於2005年10月31日公布發現衛星的消息,當時暫編號為S/2005 P1,2006年6月下旬經國際天文學聯合會會議後正式命名為Hydra(許德拉),在《伊利亞特》中是守衛地獄的九頭蛇,名字的概念取自2006年1月飛往冥王星的新視野號(New Horizons)探測器名字的第二個字的首字母H。 观测显示其与冥卫一(卡戎)类似,軌道半徑約65,000公里,以38天周期繞冥王星運轉。估計其直径在52-160公里间。許德拉(冥衛三)比冥衛二亮25%,故可能也较大。.
查看 视星等和冥卫三
冥卫二
冥衛二正式名稱為Nix( ,尼克斯),是冥王星的一颗卫星。 2005年5月首次被冥王星伴侣搜索隊通过哈勃太空望远镜观测到。其照片于2005年5月15日和2005年5月18日被哈勃望遠鏡拍摄到;2005年5月15日Max J. Mutchler经确认和预估後,于2005年10月31日公布卫星发现的消息,初被編號為S/2005 P2,於2006年6月下旬的國際天文學聯合會會議上正式被命名為Nix(尼克斯,希臘神話中代表黑夜的女神)(原本建議命名為Nyx,但是為了不和小行星3908(Nyx)混淆,所以把它命名為與Nyx同音的Nix),名字以2006年1月啟程飛往冥王星的新视野號(New Horizons)探測器名字的首個字母為概念。 观测显示其与冥卫一(卡戎)类似,軌道半徑50,000公里,以25天周期繞冥王星運轉;估計其直径在32-145公里之间(依反照率判定将可研判出更精确的数据)。冥衛二比冥衛三暗25%,所以可能也比较小。 初時研究時認為冥衛二和冥王星一樣是紅色的,後來才發現冥衛二和其他兩顆衛星一樣是灰色的。.
查看 视星等和冥卫二
冥王星
冥王星(小行星序号:134340 Pluto。天文代號:♇,Unicode編碼U+2647)是柯伊伯带中的矮行星。冥王星是第一颗被发现的柯伊伯带天体。冥王星是太阳系内已知体积最大、质量第二大的矮行星。在直接围绕太阳运行的天体中,冥王星体积排名第九,质量排名第十。冥王星是体积最大的海王星外天体,其质量仅次于位于离散盘中的阋神星。与其他柯伊伯带天体一样,冥王星主要由岩石和冰组成。冥王星相对较小,仅有月球质量的六分之一、月球体积的三分之一。冥王星的轨道离心率及倾角皆较高,近日点为30天文单位(44亿公里),远日点为49天文单位(74亿公里)。冥王星因此周期性进入海王星轨道内侧。海王星与冥王星因相互的轨道共振而不会碰撞。在冥王星距太阳的平均距离上阳光需要5.5小时到达冥王星。 1930年克莱德·汤博发现冥王星,并将其视为第九大行星。1992年后在柯伊伯带发现的一些质量与冥王星相若的冰制天体挑战冥王星的行星地位。2005年发现的阋神星质量甚至比冥王星质量多出27%,国际天文联合会(IAU)因此在翌年正式定义行星概念。新定义将冥王星排除行星范围,将其划为矮行星(類冥矮行星)。 冥王星目前已知的卫星总共有五颗:冥卫一、冥卫二、冥卫三、冥卫四、冥卫五。冥王星与冥卫一的共同质心不在任何一天体内部,因此有时被视为一联星系统。IAU并没有正式定义矮行星联星,因此冥卫一仍被定义为于冥王星的卫星。 2015年7月14日新视野号探测器成为首架飞掠冥王星的宇宙飞船。在飞掠的过程中,新视野号对冥王星及其卫星进行细致的观测。.
查看 视星等和冥王星
冪定律
冪定律(power law)是一種多項式關係。遵守這關係的多項式,會展現出標度不變性(scale invariance)的性質。最普通的,表達兩個變量之間關係的冪定律,其形式為 其中,a\,\!與k\,\!都是常數,o(x^k)\,\!是x\,\!的一個漸近微小函數。.
查看 视星等和冪定律
光学
光學(Optics),是物理學的分支,主要是研究光的現象、性質與應用,包括光與物質之間的相互作用、光學儀器的製作。光學通常研究紅外線、紫外線及可見光的物理行為。因為光是電磁波,其它形式的電磁輻射,例如X射線、微波、電磁輻射及無線電波等等也具有類似光的特性。英文術語「optics」源自古希臘字「ὀπτική」,意為名詞「看見」、「視見」。 大多數常見的光學現象都可以用古典電动力學理論來說明。但是,通常這全套理論很難實際應用,必需先假定簡單模型。幾何光學的模型最為容易使用。它試圖將光當作射線(光線),能夠直線移動,並且在遇到不同介質時會改變方向;它能夠解釋像直線傳播、反射、折射等等很多光線現象。物理光學的模型比較精密,它把光當作是傳播於介質的波動(光波)。除了反射、折射以外,它還能夠以波性質來解釋向前傳播、干涉、偏振等等光學現象。幾何光學不能解釋這些比較複雜的光學現象。在歷史上,光的射線模形首先被發展完善,然後才是光的波動模形.
查看 视星等和光学
光度
光度在科學的不同領域中有不同的意義。.
查看 视星等和光度
光污染
#重定向 光害.
查看 视星等和光污染
光感測器
光感測器是可以感測光或是其他電磁能量的感測器。.
查看 视星等和光感測器
勾陳一
勾陳一(α UMi / 小熊座α)是小熊座內最亮的恆星。它非常靠近天球北極(在2006年相距僅42′),是地球現在的北極星。.
查看 视星等和勾陳一
勒克斯
勒克斯(Lux,通常简写为lx)是一个标识照度的国际单位制单位,1流明每平方米--積,就是1勒克斯。 其單位換算是1勒克斯.
查看 视星等和勒克斯
皇家天文學會月報
皇家天文學會月報(Monthly Notices of the Royal Astronomical Society,MNRAS)是世界上最主要的天文學和天文物理學領域同行評審的學術期刊之一。出刊於1827年,發表作為天文等相關領域原創研究的論文或事件通報。另外,該期刊實際上並非每月出刊,所發表的文章也不僅限於英國皇家天文學會的訊息 。.
查看 视星等和皇家天文學會月報
火星
火星(Mars, 天文符號♂),是離太陽第四近的行星,為太陽系中四顆類地行星之一。西方稱火星為瑪爾斯,是羅馬神話中的戰神;古漢語中則因为它荧荧如火,位置、亮度時常變動讓人無法捉摸而稱之為熒惑。火星在太陽系的八大行星中,第二小的行星,其質量、體積仅比水星略大。火星的直徑約為地球的一半,自轉軸傾角、自轉週期則與地球相當,但繞太陽公轉周期是地球的兩倍。在地球上,火星肉眼可見,亮度可達-2.91,只比金星、月球和太陽暗,但在大部分時間裡比木星暗。 火星大气以二氧化碳为主,既稀薄又寒冷。火星在視覺上呈現為橘紅色是由其地表所廣泛分佈的氧化鐵造成的。火星地表沙丘、砾石遍布且没有稳定的液态水,火星南半球是古老、充满陨石坑的高地,北半球则是较年轻的平原。 火星有兩個天然衛星:火衛一和火衛二,形狀不規則,可能是捕獲的小行星。火星目前有四艘在軌運行的探測船,分別是火星奧德賽號、火星快車號和火星偵察軌道器以及2014年9月22日抵达的MAVEN轨道器,地表還有很多火星車和著陸器,包括兩台火星車:機會號和好奇號,和已經結束任務的精神號和鳳凰號。根據觀測的證據,火星以前可能覆蓋大面積的水。亦觀察到最近十年內類似地下水湧出的現象。 火星全球勘測者則觀察到南極冠有部份退縮。火星快車號和火星偵察軌道器的雷達資料顯示兩極和中緯度地表下存在大量的水冰Water ice in crater at Martian north pole http://www.esa.int/SPECIALS/Mars_Express/SEMGKA808BE_0.html。2008年7月31日,鳳凰號直接於表土之下證實水冰的存在。2013年9月26日,火星探測車好奇號發現火星土壤含有豐富水分,大約為1.5至3重量百分比,顯示火星有足夠的水資源供給未來移民使用。2015年9月證實火星有間歇流動的液態水(液態鹽水)。.
查看 视星等和火星
灶神星
星, 小行星序號為4 Vesta,是太陽系最大的小行星之一,平均直徑。它是海因里希·歐伯斯在1807年3月29日發現的,以羅馬神話中家和壁爐的女神Vesta命名,中文翻譯為灶神星。 灶神星是繼矮行星穀神星之後,質量第二大的主帶小行星 ,佔有主小行星帶總質量的9%。 質量雖然比智神星多一點點,但體積卻比較小,是體積第三大的小行星。灶神星形成岩質行星剩餘的原行星(內部分異)。一、二億年前,灶神星曾經被撞擊,產生了許多碎片,並留下兩個巨大的撞擊坑,而且南半球有著很高的密度。這次事件的一些碎片已經墬落到地球,成為HED隕石,提供了有關灶神星的豐富資訊來源。 灶神星是從地球可以看見的最亮的小行星,它距離太陽最遠時的距離只比穀神星最近的距離遠了一點,不過灶神星的軌道完全都在穀神星的軌道之內。 NASA的''黎明號''太空船在2011年7月16日至2012年9月5日進入環繞灶神星的軌道,進行了將近一年的探測,然後前往穀神星。研究人員繼續分析黎明號收集到的資訊,期望能更了解灶神星的形成和歷史。.
查看 视星等和灶神星
獵戶座
獵戶座(Orion)是一個非常顯著的星座,也許是夜空中最出名的一個。全世界的人都能看到它那些分佈在天赤道上耀眼的星,也是各地人都認得的星座,也因此獵戶座一直有著「星座之王」的美譽,形如獵人俄里翁站在波江座的河岸,身旁有他的兩頭獵犬大犬座和小犬座,與他一起追逐著金牛座。一些其他的獵物如天兔座都在他的附近。.
查看 视星等和獵戶座
秒差距
差距(parsec,符號為pc)是一個宇宙距離尺度,用以測量太陽系以外天體的長度單位。1秒差距定義為某一天體與1天文單位的為1時的距離,但於2015年時被重新定義為一個精確值,為天文單位。1秒差距的距離等同於3.26光年(31兆公里或19兆英里)。離太陽最近的恆星比鄰星,距離大約為。絕大多數位於距太陽500秒差距內的恆星,可以在夜空中以肉眼看見。 秒差距最早於1913年,由英國天文學家提出。其英語名稱為一個混成詞,由「1角秒(arcsecond)的視差(parallax)」組合而來,使天文學家可以只從原始觀測數據,就能夠進行天文距離的快速計算。由於上述部分原因,即使光年在科普文字與日常上維持優勢地位,秒差距仍受到天文學與天體物理學的喜愛。秒差距適用於銀河系內的短距離表述,但在描述宇宙大尺度的用途上,會將其加上詞頭來應用,如千秒差距(kpc)表示銀河系內與周圍物體的距離,百萬秒差距(Mpc)描述銀河系附近所有星系的距離,吉秒差距(Gpc)則是描述極為遙遠的星系與眾多類星體。 2015年8月,國際天文學聯合會通過B2決議文,將絕對星等與進行標準定義,也包含將秒差距定義為一個精確值,即天文單位,或大約公尺(基於2012年國際天文學聯合會對於天文單位的精確國際單位制定義)。此定義對應於眾多當代天文學文獻中對於秒差距的小角度定義。.
查看 视星等和秒差距
穀神星
星(Ceres,; 小行星序號:1 Ceres)是在火星和木星軌道之間的主小行星帶中最亮的天體。它的直徑大約是,使它成為海王星軌道以內最大的小行星。在太陽系天體大小列表排名第35,是在海王星軌道內唯一被標示為矮行星的天體。穀神星由岩石和冰組成,估計它的質量佔整個主小行星帶的三分之一。穀神星也是主小行星帶唯一已知自身達到流體靜力平衡的天體。從地球看穀神星,它的視星等範圍在+6.7至+9.3之間,因此即使在最亮時,除非天空是非常的黑暗,否則依然是太暗淡而難以用肉眼直接看見。1801年1月1日意大利人朱塞普·皮亞齊在巴勒莫首先發現了穀神星。最初被當成一顆行星,随着越來越多的小天體在相似的軌道上被發現,因此在1850年代被重分類為小行星。 穀神星顯示已經有區分成岩石、核和冰的地函,並且在冰層之下可能留有液態水的內部海洋。表面可能是水冰和不同的水合物礦物,像是黏土和碳酸鹽,的混合。在2014年1月,在穀神星的幾個地區都檢測到排放出的水蒸氣。這是出乎意料之外的,在主小行星帶的大天體床不會發出水蒸氣,因為這是彗星的特徵。 美國NASA的機器人曙光號在2015年3月6日進入繞行穀神星的軌道。從2015年1月,曙光號就以前所未見的高解析度傳回影像,顯示表面有著坑坑窪窪。兩個獨特的亮點(或高反照率特徵)出現在撞擊坑內(不同於早些時候哈伯太空望遠鏡在一個撞擊坑中觀測到的影像。);出現於2015年2月19日的影像,導致考慮可能有冰火山 或釋氣的發想。在2015年3月3日,NASA的一位發言人說,這些點符合含冰或鹽的反光物質,但不太可能是冰。在2015年5月11日,NASA釋放出高解析的影像,顯示不是一個或兩個點,實際上在高解析的影像上有好幾個。在2015年12月9日,NASA的科學家報導,穀神星的亮斑可能是一種類型的鹽類,特別是“滷水”,包括硫酸鎂等硫酸水合物(MgSO4·6H2O);也發現這些斑點與富含氨的黏土相關聯。2015年10月,NASA釋出了由曙光號拍攝的真實色彩穀神星影像。.
查看 视星等和穀神星
类星体
類星體 (quasar,,也以QSO或quasi-stellar object為人所知)是極度明亮的活躍星系核(AGN,active galactic nucleus)。大多數星系的核心都有一個超大質量黑洞,它的質量從百萬至數十億太陽質量不等。在類星體和其它形式的活躍星系核,黑洞被氣態的吸積盤環繞著。當吸積盤中的氣體朝向黑洞墬落,能量就會以電磁輻射的形式釋放出來。這些輻射被觀測到可以跨越電波、紅外線、可見光、紫外線、X射線、和γ射線等電磁頻譜的波長。類星體輻射的功率非常巨大:最強大的類星體的光度超過1041 瓦特,是普通星系,例如銀河系,的數千倍。 "類星體"這個名詞源自於準恆星狀電波源(quasi-stellar radio source)的縮寫,因為在20世紀50年代發現這種天體時,被認定為未知物理源的電波發射源。當在可見光的照相圖中篩檢出來時,它們類似可見光的星狀微弱光點。 類星體的高解析影像,特別是哈伯太空望遠鏡,已經證明類星體是發生在星系的中心,一些類星體的宿主星系是強烈的交互作用星系或.
查看 视星等和类星体
紅外過量
紅外過量是天文學上對能量來源,通常都是恆星,測量時,該天體輻射出比被視為黑體的恆星所預期更多的紅外線流量。紅外過量通常是星周塵和初期恆星體共通的現象,也出現在恆星演化的漸近巨星分支和更老的的天體。 此外,監測恆星的紅外過量現象是搜尋外星文明的一種可能的方法,可以搜尋到假設性的外星文明大型工程,例如戴森球或戴森群.
查看 视星等和紅外過量
織女一
織女一又稱為織女星或天琴座α(α Lyr,α Lyrae),是天琴座中最明亮的恆星,在夜空中排名第五,是北半球第二明亮的恆星,僅次於大角星。它與大角星及天狼星一樣,是非常靠近地球的恆星,距離地球只有25.3光年;它也是太陽附近最明亮的恆星之一。在中國古代的「牛郎織女」神話中,織女為天帝孫女,故亦稱天孫。 天文學家對織女星進行過大量的研究,因此它「無疑是天空中第二重要的恆星,僅次於太陽」。織女星大約在西元前12,000年曾是北半球的極星,但因歲差現象地球自轉軸傾斜,再加上日月對地球各部份的引力並不一致,使地球自轉軸緩慢轉圈,週期約兩萬六千年,稱為歲差現象。,它在13,727年會再度成為北極星,屆時它的赤緯會達到+86°14'。織女星是太陽之外第一顆被人類拍攝下來的恆星,也是第一顆有光譜記錄的恆星。它也是第一批經由視差測量估計出距離的恆星之一。織女星也曾是測量光度亮度標尺的校準基線,是UBV測光系統用來定義平均值的恆星之一。在北半球的夏天,觀測者多半可在天頂附近的位置見到織女星,因為身為天文學上星等的標準,其視星等被定義為0等,因此天文學家會以織女星作為光度測定的標準。 織女星的年齡只有太陽的十分之一,但是因為它的質量是太陽的2.1倍,因此它的預期壽命也只有太陽的十分之一;這兩顆恆星目前都在接近壽命的中點上。織女星的光譜分類為A0V,其溫度比天狼星的A1V高一點。它仍处於主序星階段,透過把核心內的氫聚變成氦來發光發熱。織女星比氦重(原子序數較大)的元素豐度異常的低,織女星光度有輕微的周期性變化,因此天文學家懷疑它是一顆變星。它的自轉相當快速,赤道自轉速度是每秒274公里。離心力的影響導致恆星的赤道向外突起,溫度的變化通過光球表面在極點達到最大值。地球上的觀測者視線正朝著織女星的極點。天文學家經過測定後,得知織女星每12.5小時自轉一周,整顆恆星呈扁平狀,赤道直徑比兩極大了23%。 天文學家觀測到織女星紅外線輻射超量,顯示織女星似乎有塵埃組成的拱星盤。這些塵粒可能類似於太陽系的柯伊伯带,是岩屑盤中的天體碰撞產生的結果。這些由於塵埃盤造成紅外線輻射超量的恆星被歸類為類織女恆星。織女星盤的分布並不規則,顯示至少有一顆大小類似木星的行星環繞著織女星公轉。.
查看 视星等和織女一
絕對星等
在天文學上,絕對星等(Absolute magnitude,M)是指把天體放在指定的距離时(10秒差距)天体所呈现出的视星等(Apparent magnitude,m)。此方法可把天體的光度在不受距離的影響下,作出客觀的比較。.
查看 视星等和絕對星等
照度
照度(Illuminance)是每單位面積所接收到的光通量。SI制單位是勒克斯(lx.
查看 视星等和照度
韋伯-費希納定理
韋伯定理(Weber-Fechner law)分為韋伯及費希勒兩種定理,韋伯定理又稱「感覺閾限定律」(absolute threshold),用於差異閾限定義。 1860年由德國心理學家的費希勒提出費希勒定律,定義於絕對閾限上。.
查看 视星等和韋伯-費希納定理
面亮度
面亮度亦稱表面亮度(Surface brightness),是指擴展的物體表面一塊標準尺寸的亮度。這是一個相關的概念,一個擴展開的天體,像是星系、星團或星雲,可以通過測量其總星等、集成星等、集成視星等的整體亮度來導出面亮度。.
查看 视星等和面亮度
视知觉
在心理学中,视知觉是一种将到达眼睛的可见光信息解释,并利用其来计划或行动的能力。这种知觉的结果也被称为视力、目力或者视觉。视觉中不同的组分被称为视觉系统。 Category:心理学 Category:神经科学 Category:视觉.
查看 视星等和视知觉
諾曼·羅伯特·普森
諾曼·羅伯特·普森 (Norman Robert Pogson,),出生於英國諾丁漢,天文學家。 他在18歲的時候,己計算出兩顆彗星的軌道。1851年,他在牛津的Radcliffe天文台擔任助手,1860年,他前往印度馬德拉斯出任官方天文學家。在馬德拉斯天文台,他編製了包括11,015顆恆星的Madras星表。此外,他在這段期間亦發現了5顆小行星及6顆變星。 普森最廣為人知的貢獻,便是將星等這個概念數學化。星等最先由古希臘天文學家喜帕恰斯提出,他將全天的恆星由亮至暗分為1等至6等。普森則將1等星定義為比6等星亮100,即每暗一星等,光度減少100^(1/5),即2.512倍,後人將此比例稱為“普森比例”。 計算星等的方程式如下: m為恆星的星等;E為恆星的光亮度(天文学中光亮度概念相当于光辐射度学中的光照度概念,单位:勒克斯) 1868年及1871年,他參加了印度的日食觀測隊。 在他的天文生涯中,一共發現了8顆小行星及21顆變星。他出任馬德拉斯天文台共30年,直至去世。.
距离模数
距離模數 是經常用於天文學上表示距離的一種方法。.
查看 视星等和距离模数
鸟神星
鸟神星(Makemake/Maha-Maha,发音为: 或 ),正式名称为 (136472) Makemake,是太陽系內已知的第三大矮行星,亦是傳統古柏帶天體中最大的兩顆之一。鸟神星的直徑大約是冥王星的四分之三。鳥神星有一颗衛星。鸟神星的平均溫度極低(約30 K(−243.2 °C)),这意味着它的表面覆蓋着甲烷与乙烷,并可能还存在固态氮。 最初被稱為的鸟神星(後来被编号为136472),是由迈克尔·E·布朗領導的团队在2005年3月31日發现的;2005年7月29日,他们公佈了该次發現。2008年6月11日,國際天文聯合會將鳥神星列入類冥矮行星的候選者名單內。類冥矮行星是海王星轨道外的矮行星的专属分類,當時只有冥王星和鬩神星屬於這個分類。2008年7月,鳥神星正式被列为類冥矮行星。.
查看 视星等和鸟神星
黑体 (物理学)
在熱力學中,黑体(Black body),旧称绝对黑体,是一个理想化的物体,它能夠吸收外来的全部电磁辐射,並且不會有任何的反射與透射。隨著溫度上升,黑體所輻射出來的電磁波與光線則稱做黑體辐射。這個名詞在1862年由古斯塔夫·基爾霍夫所提出並引入熱力學內。.
查看 视星等和黑体 (物理学)
輻照度
在光學裏,輻照度(irradiance)是電磁輻射入射於曲面時每單位面積的功率。輻射出射度(radiant emittance,radiant exitance)是從曲面輻射出的功率每單位面積。採用國際單位制,這些物理量的單位為瓦特每平方米(W/m2),採用CGS單位制,這些物理量的單位為爾格每平方厘米每秒(erg·cm−2·s−1,常用於天文學)。 物理学中,代表单位面积功率的物理量常被稱為強度,但這用法會與輻射強度(单位立体角内的辐射通量)引起混淆。特别在光学和激光物理学中,辐照度也被叫做光强。 輻照度表示各種頻率輻射的總量。物理學者時常也會分開檢驗輻射頻譜的每一單獨頻率。假設對於入射於曲面的輻射做這動作,則稱這輻射為光譜輻照度(spectral irradiance),國際單位制的單位為W/m2。 假設一個點光源均勻地朝著所有方向傳播光波,則輻照度按照平方反比定律遞減。.
查看 视星等和輻照度
阋神星
鬩神星(小行星序號:136199 Eris)是現已知太陽系中第二大的矮行星,在所有直接圍繞太陽運行的天體中質量排名第九。它估測直徑約為公里 ,比冥王星重約27%(但冥王星的體積更大一些),質量約為地球質量的0.27%。它由米高·布朗、乍德·特魯希略和大衛·拉比諾維茨在2005年1月5日,從一堆於2003年10月21日拍攝的相片中發現,並在2005年7月29日與2003 EL61一起公佈,當時它的暫時編號為2003 UB313,名字暫稱為齊娜(Xena,美国电视剧《战士公主西娜》的女主角)。 鬩神星於2005年7月位於距離太陽97個天文單位遠的位置,而它的軌道極為傾斜,公轉周期為557年。它被分類為黃道離散天體(偏離地球軌道平面的星體)。在2006年8月之「第26屆國際天文學大會」上,把2003 UB313劃入矮行星之列,賦與小行星編號136199號,並以希臘神話中的鬩神厄里斯(Ἒρις)命名。 因为阋神星看起来比冥王星要大,所以一开始它的发现者和NASA 把其称之为太阳系的第十大行星。但隨著其他类似大小天体的陸續發現,符合行星定義的太陽系天體數量驟增,促使国际天文联合会第一次重新进行行星定义。根据2006年8月24日的IAU的行星定义 ,阋神星是一个同冥王星、谷神星、妊神星、鸟神星一样的矮行星。 2010年11月6日,对阋神星掩星的初步结果显示,其直径约2326公里,誤差±12公里,只和冥王星相当 。从标准差来估计,现在还很难确定阋神星和冥王星哪个更大。估计两者固体直径大约在2330公里。.
查看 视星等和阋神星
葛利斯710
格利澤710是位於巨蛇座尾部的一顆恆星,視星等9.69等,光譜類型為K7Vk,這意味著它是一顆以核心的氫進行熱核融合做為能量來源的主序星 (尾碼的k顯示光譜中有星際物質吸收的譜線)。這顆恆星的質量大約是太陽質量的60% ,而估計半徑是太陽半徑的67%。它可能是一顆光度在9.65-9.69之間的疑似變星。 這顆恆星目前至地球的距離是63.8光年 (19.6秒差距),但是依據過去和現在依巴谷衛星的資料指出,以它的自行和徑向速度,它將在140萬年後接近太陽至很近的距離 - 或許少於一光年。在最接近的時候,它的光度將達到1等星的亮度,如同心宿二一樣的亮。在目前的距離上,格利澤710的自行非常小,這意味著它幾乎是直接朝向著我們的是線方向移動著,可以與牧夫座的大角星比較。 從現在開始在±1,000萬年的時間內,結合格利澤710這顆恆星的質量和距離的接近將對太陽系造成最大的萬有引力攝動。.
查看 视星等和葛利斯710
鄰近恆星列表
這份清單包含距離太陽系5秒差距(16.3光年)內所有已知的恆星和棕矮星。除了太陽系之外,目前已知在這個距離內還有56個恆星系統。這些系統共包含60顆進行氫融合的恆星(其中50顆是紅矮星)、13顆棕矮星和4顆白矮星。儘管這些天體相對而言都很接近地球,但是只有9顆的視星等小於6.5等,這意味著這些天體只有大約12%是可以用裸眼看見。除了太陽之外,只有三顆是明亮的1等星:南門二(半人馬座α星)、天狼星(大犬座α星)、和南河三(小犬座α星)。這些天體全部都位於銀河系獵戶臂的本地泡。.
查看 视星等和鄰近恆星列表
里奇-克萊琴望遠鏡
里奇-克萊琴望遠鏡(RCT, Ritchey-Chrétien telescope)是專業的卡塞格林望遠鏡(Cassegrain),被設計用來消除彗形像差,與常規的配置比較,相對地能提供更大的視野。RCT的主鏡和次鏡都是雙曲面鏡,是在1910年代早期由美國天文學家喬治·威利斯·里奇(George Willis Ritchey)和法國天文學家亨利·克萊琴(Henri Chrétien)發明的。里奇在1927年率先建造出一架口徑0.5米的RCT,第二架也是里奇在美國海軍天文臺(United States Naval Observatory)製造的一米RCT。.
金星
金星(英語、拉丁語:Venus,天文符號:♀),在太陽系的八大行星中,是從太陽向外的第二顆行星,軌道公轉週期為224.7地球日,它沒有天然的衛星。在中國古代稱為太白、明星或大囂,另外早晨出現在東方稱啟明,晚上出現在西方稱長庚。到西漢時期,《史記‧天官書》作者天文學家司馬遷從實際觀測發現太白為白色,與「五行」學說聯繫在一起,正式把它命名為金星。它的西文名稱源自羅馬神話的愛與美的女神,维纳斯(Venus),古希腊人称为阿佛洛狄忒,也是希腊神话中爱与美的女神。金星的天文符号用维纳斯的梳妆镜来表示。 它在夜空中的亮度僅次於月球,是第二亮的天然天體,視星等可以達到 -4.7等,足以照射出影子。由於金星是在地球內側的內行星,它永遠不會遠離太陽運行:它的離日度最大值為47.8°。 金星是一顆類地行星,因為它的大小、質量、體積與到太陽的距離,均與地球相似,所以經常被稱為地球的姊妹星。然而,它在其它方面則明顯的與地球不同。它有著四顆類地行星中最濃厚的大氣層,其中超過96%都是二氧化碳,行星表面的大氣壓力是地球的92倍。表面的平均溫度高達,是太陽系最熱的行星,比最靠近太陽的水星還要熱。金星沒有將碳吸收進入岩石的碳循環,似乎也沒有任何有機生物來吸收生物量的碳。金星被一層高反射、不透明的硫酸雲覆蓋著,阻擋了來自太空中,可能抵達表面的可見光。它在過去可能擁有海洋,並且外觀與地球極為相似,但是隨著失控的溫室效應導致溫度上升而全部蒸發掉了B.M.
查看 视星等和金星
英国
大不列颠及北爱尔兰联合王国(United Kingdom of Great Britain and Northern Ireland),简称联合王国(United Kingdom,缩写作 UK)或不列颠(Britain),中文通称英国(中文世界早期亦称英联王国),是本土位於西歐並具有海外領地的主權國家,英國為世界七大國之一,位于欧洲大陆西北面,由大不列颠岛、爱尔兰岛东北部分及一系列较小岛屿共同组成。英国和另一国家唯一的陆上国境线位于北爱尔兰,和爱尔兰共和国相邻。英国由大西洋所环绕,东为北海,南为英吉利海峡,西南偏南为凯尔特海,同爱尔兰隔爱尔兰海相望。该国总面积达,为世界面积第80大的主权国家及欧洲面积第11大的主权国家,人口6510万,为全球第21名及歐洲第3名。 英国为君主立宪国家,采用议会制进行管辖。其首都伦敦为全球城市A++级别和国际金融中心,大都会区人口达1380万,为欧洲第三大和欧盟第一大。现在位英国君主为女王伊丽莎白二世,1952年2月6日即位。英国由四个构成国组成,分别为英格兰、苏格兰、威尔士和北爱尔兰,其中后三者在权力下放体系之下各自拥有一定的权力。三地首府分别为爱丁堡、加的夫和贝尔法斯特。附近的马恩岛、根西行政区及泽西行政区并非联合王国的一部分,而为王冠属地,英国政府负责其国防及外交事务。 英国的构成国之间的关系在历史上经历了一系列的发展。英格兰王国通过1535年和1542年的《联合法令》将威尔士纳入其领土范围。1707年的条约使英格兰和苏格兰王国联合成为大不列颠王国,而1801年后者则进一步同爱尔兰王国联合成为大不列颠及爱尔兰联合王国。1922年,爱尔兰的六分之五脱离联邦,由此便有了今日的大不列颠及北爱尔兰联合王国。大不列颠及北爱尔兰联合王国亦有14块海外领地,为往日帝国的遗留部分。大英帝国在1921年达到其巅峰,拥有全球22%的领土,是有史以来面积最大的帝国。英国在语言、文化和法律体系上对其前殖民地保留了一定的影响力,因而吸引許多以前英聯邦的移民前來居住。 英国为发达国家,以名义GDP为量度为世界第五大经济体,以购买力平价为量度为世界第九大经济体。英国同时还是世界首个工业化国家,在1815年-1914年为世界第一强国,现今仍是強國之一,在全球范围内的经济、文化、军事、科技和政治上有显著影响力。英国为国际公认的有核国家,其军事开支位列全球第五 (IISS)。自1946年以来,英国即为联合国安全理事会常任理事国,而自1973年以来即为欧洲联盟(EU)及其前身欧洲经济共同体(EEC)的成员国,同时还为英联邦、欧洲委员会、七国财长峰会、七国集团、二十国集团、北大西洋公约组织、经济合作与发展组织和世界贸易组织成员国。2016年英國脫離歐盟公投中,英国民众决定脱离欧盟,但因間接影響全球經濟,所以並未得到多數國家支持。.
查看 视星等和英国
雙星 (天文)
雙星是觀測天文學的名詞,當兩顆恆星由地球上觀察時,在視線的方向上非常接近,以致以肉眼看起來像是只有一顆恆星,但使用望遠鏡時就能分辨出來是一對的恆星。這種情形可以發生在一對聯星,也就是有著互動的軌道,並且被彼此的引力束縛在一起;也可以是光學雙星,這是兩顆有著不同的距離,但恰巧在天空中相同的方向上被對準在一起The Binary Stars, Robert Grant Aitken, New York: Dover, 1964, p.
查看 视星等和雙星 (天文)
老人星
老人星(α Car / 船底座α)亦叫南極老人星,壽星,是船底座主星,在中国传统天文系统里是位于井宿的老人星官裡唯一肉眼可见的恒星。雖然老人星距離地球超過300光年,不過視星等為−0.72等,是南半球船底座最明亮的恆星,也是全天空中第二亮的恆星,僅次於天狼星。而它實際的絕對星等則為−5.71等。.
查看 视星等和老人星
虹神星
虹神星(7 Iris)太阳系中的一颗小行星。.
查看 视星等和虹神星
GRB 080319B
GRB 080319B是一個曾於牧夫座發生的伽瑪射線暴,於2008年3月19日(06:12 UTC)為雨燕衛星所偵測到。它值得注意的地方,在於刷新了人類肉眼可見最遠天體的紀錄,其視星等最亮達5.8等,肉眼理論可見時間維持了約半分鐘,亮於9.0等的時間也持續了近一分鐘。 人們測得該射線暴的紅移值為0.937,代表該爆炸發生於大約75億年前,即由宇宙大爆炸開始至今時間的一半。首篇關於此事件的科學論文,关于该事件递交的首份科学报告指出:使用带有近红外滤镜的亚毫米波望远镜,能够容易地发现相当于红移16距离的γ射线暴(GRB),红移值16对应于第一批恒星刚刚形成的早期宇宙——再电离阶段。 這次射線暴的餘暉也刷新了人類有史以來,觀測到宇宙最明亮天體的紀錄,其亮度估計為最明亮超新星SN 2005ap的250萬倍。 據推測,餘暉特別明亮的原因,是因為伽瑪射線噴流直接朝向地球。 除了肉眼可見的最遙遠天體紀錄外,探測衛星也於同一天偵測到共4個射線暴,是歷來最多的。該射線暴以“B”作結尾,代表這是於當天偵測到的第二個射線暴。另外,該衛星也於連續24小時的期間偵測到共5個射線暴,包括GRB 080320。 位於三角座的M33星系距離地球約290萬光年,在發生這次射線暴以前,該星系一直是人類肉眼可見的最遙遠天體。直至事件發生期間,該星系一度「屈居第二」約半分鐘。 該射線暴也是英國科幻小說作家亞瑟·查理斯·克拉克去世後不久才被偵測得到,因此有人主張把是次事件命名為「克拉克事件」。.
LBV 1806-20
LBV 1806-20是一顆高光度藍變星或是聯星,距離太陽38,700光年,靠近銀河系的中心。這個系統包含2个蓝色的超巨星或是特超巨星,總質量約為150–200倍太陽質量,总光度估計是太陽的500萬倍。这对双星单颗子星状况不明,总光谱在O9-B2之间,说明每颗子星表面温度至少在20,000K以上。,使它的光度可以和海山二一較高下,得已列名於巨大質量恆星列表中(表中全部都是高光度藍變星)。 儘管它的光度很高,但實際上從太陽系是看不見的,因為只有少於十億分之一的可見光能抵達我們所在之處,其餘的都被星際塵埃和氣體吸收掉了。在2微米的紅外線波段觀察,它也只是顆8等星,而經過計算在可見光的領域中它更是顆是探測不到的35等恆星。.
M41
M41(又稱NGC 2287)是位於大犬座的一個疏散星團,它是義大利天文學家Giovanni Batista Hodierna早在1654年以前就發現的星團,而且亞里斯多德有可能在前325年 就知道它的存在。M41幾乎就位於天狼星的正南方,相距僅僅只有4度左右,並且大犬座μ2構成一個三角形,並且使用雙筒望遠鏡可以在視野中同時看見這三個天體。這個星團涵蓋的區域大約與滿月相當 ,包含百餘顆恆星,其中有幾顆是紅巨星,還有一些白矮星。最亮的一顆靠近星團的中心,視星等為6.3等,是光譜類型為K3的巨星。估計這個團正以每秒23.3公里的速度遠離地球 。這個星團的直徑在25-26光年,年齡大約是1億9000萬年,但是依據星團的屬性和動態,認為這個星團的壽命大約只有5億年,而在這之前就會瓦解。 Walter Scott Houston用小望遠鏡描述了這個星團的外觀 : 許多目視觀測者表示看見M41的恆星形成曲線。它們在照片中雖然不顯眼,但在我的10吋反射望遠鏡這些曲線卻很明顯,而且靠近星團中心的亮紅色恆星非常突出。.
查看 视星等和M41
NGC 4414
NGC 4414 是后髮座的一個螺旋星系,距離地球6200萬光年。超新星SN 1974G是目前在NGC 4414內唯一發現的一顆超新星,1995年哈勃望遠鏡曾經觀察過它,當時為了測量它與地球的距離。.
查看 视星等和NGC 4414
SN 1006
SN 1006是地球上的人們在1006年普遍記錄到的一顆超新星;與地球的距離是7,200光年。它是歷史上記錄到的最明亮的恆星事件,估計視星等達到-7.5等,最早的紀錄是在1006年4月30日與5月1日之間出現在豺狼座。在中國、埃及、伊拉克、日本、瑞士都有這顆「客星」的觀測紀錄,甚至北美洲可能也有。.
查看 视星等和SN 1006
SN 1054
天關客星(編號:SN 1054),是1054年金牛座內爆發的一顆超新星,古代中國和阿拉伯的天文學家在史書中對這顆星留下了詳細的記錄。因該星星突然出現在天關星(金牛座ζ)附近,故名天關客星。 《宋史‧天文志》中載: 至和元年五月己丑也就是1054年7月4日。 《宋史‧仁宗本紀》中載: 《續資治通鑒長編》卷一七六中載: 《宋會要》卷五十二中記載: 根據中國史籍中的記錄可以推斷,這顆超新星在23天的時間內白天都可以見到,在夜晚可見的時間則持續了一年十個月。據研究,這顆星可能是Ⅱ型超新星。天關客星爆炸後的遺骸形成了蟹狀星雲,在1774年收錄在梅西耶天體列表中成為第1號天體(蟹狀星雲M1,NGC 1952)。 在人类有文字记载的历史上,观测到银河系内的超新星爆发的机会非常少。除了蟹状星云以外,还有被第谷和他的学生开普勒观测到的第谷超新星与开普勒超新星。据天文学家推算,银河系内的超新星爆发平均20-50年出现一次。但是大都发生在银核内部,或者在银盘的另一半完全被银核遮挡。蟹状星云的超新星爆发,恰巧发生在银河系内与太阳同一侧银盘上但是比太阳系更远离银核的外侧。这样的部位发生超新星爆发,从地球上观测完全没有遮挡,但是这样机会就极为罕见。 20世纪早期,对早期间隔数年的星雲照片进行分析表明,它正在不断膨胀。根据其膨胀速度反推可得,该星云在地球上开始可见的时间至少在900年以前。而中国天文学家1054年的记录过在天空的相同区域产生过一颗亮星,甚至白天都可观测到。由于距离十分遥远,当时中国人观测到的白天的“客星”只可能是超新星。这是一种核聚变已耗尽能量并自行坍缩,从而发生爆炸的巨大恒星。 近期对历史记载的分析表明,产生蟹状星云的超新星爆发时间为4月或5月上旬,到了7月最亮时视星等升至−7到−4.5之间(比夜空中除了月球以外的任何天体都亮)。该超新星在首次发现大约两年之内都可用肉眼看到。归功于东亚地区和中东地区天文学家1054年记录的观测,蟹状星云成为第一个被确认与超新星爆发有关的天体。.
查看 视星等和SN 1054
SN 1987A
SN 1987A是1987年2月24日在大麥哲倫雲內发现的一次超新星爆发,是自1604年开普勒超新星(SN 1604)以来观测到的最明亮的超新星爆發,肉眼可见,位於蜘蛛星雲的外圍,距離地球大約51,400秒差距(約168,000光年)。由於是在1987年發現的第一顆超新星,因此被命名為「1987A」。SN 1987A爆發的光線於1987年2月23日到達地球,亮度於5月左右到達頂峰,視星等達3等,之後漸漸轉暗。这是现代的天文学家在近距离观测到一颗超新星的第一次机会,提供了核心坍缩超新星的许多深入了解。.
查看 视星等和SN 1987A
恒星
恆星是一種天體,由引力凝聚在一起的一顆球型發光電漿體,太陽就是最接近地球的恆星。在地球的夜晚可以看見的其他恆星,幾乎全都在銀河系內,但由於距離非常遙遠,這些恆星看似只是固定的發光點。歷史上,那些比較顯著的恆星被組成一個個的星座和星群,而最亮的恆星都有專有的傳統名稱。天文學家組合成的恆星目錄,提供了許多不同恆星命名的標準。 至少在恆星生命的一段時期,恆星會在核心進行氫融合成氦的核融合反應,從恆星的內部將能量向外傳輸,經過漫長的路徑,然後從表面輻射到外太空。一旦核心的氫消耗殆盡,恆星的生命就即將結束。有一些恆星在生命結束之前,會經歷恆星核合成的過程;而有些恆星在爆炸前會經歷超新星核合成,會創建出幾乎所有比氦重的天然元素。在生命的盡頭,恆星也會包含簡併物質。天文學家經由觀測其在空間中的運動、亮度和光譜,確知一顆恆星的質量、年齡、金屬量(化學元素的豐度),和許多其它屬性。一顆恆星的總質量是恆星演化和決定最終命運的主要因素:恆星在其一生中,包括直徑、溫度和其它特徵,在生命的不同階段都會變化,而恆星周圍的環境會影響其自轉和運動。描繪眾多恆星的溫度相對於亮度的圖,即赫羅圖(H-R圖),可以讓我們測量一顆恆星的年齡和演化的狀態。 恆星的生命是由氣態星雲(主要由氫、氦,以及其它微量的較重元素所組成)引力坍縮開始的。一旦核心有了足夠的密度,氫融合成氦的核融合反應就可以穩定的持續進行,釋放過程中產生的能量。恆星內部的其它部分會進行組合,形成輻射層和對流層,將能量向外傳輸;恆星內部的壓力能防止其因自身的重力繼續向內坍縮。一旦耗盡了核心的氫燃料,質量大於0.4太陽質量的恆星,會膨脹成為一顆紅巨星,在某些情況下,在核心或核心周圍的殼層會融合成更重的元素。然後這顆恆星會演化出簡併型態,並將一些物質回歸至星際空間的環境中。這些釋放至間中的物質有助於形成新一代的恆星,它們會含有比例較高的重元素。與此同時,核心成為恆星殘骸:白矮星、中子星、或黑洞(如果它有足夠龐大的質量)。 聯星和多星系統包含兩顆或更多受到引力束縛的恆星,通常彼此都在穩定的軌道上各自運行著。當這樣的兩顆恆星在相對較近的軌道上時,其间的引力作用可以對它們的演化產生重大的影響。恆星可以構成更巨大的引力束縛結構,像是星團或是星系。.
查看 视星等和恒星
恆星亮度列表
亮星之所以亮是因为它们的光度较高且/或离地球距离较近。以下是在可见光波段从地球看起来视星等亮于+2.5的恒星列表。由于随着视星等的增加,可观测恒星的数目将大大增加,因此此处只列出前100颗。实际上,整个天空亮过视星等+11的恒星几乎都记录在案了,对更暗天体的探索也在持续之中。 相較之下,太陽系中非恆星的天體最亮光度在視星等+2.50等以下有月球(-12.7)、金星(-4.6)、木星(-2.9)、火星(-2.9)、水星(-1.9)、土星(-0.2)。 以下列表中的恆星視星等無法準確判定有如下原因:.
查看 视星等和恆星亮度列表
揚斯基
揚斯基(Jansky,符號Jy)是一個非國際標準制的光谱光通量密度單位,或是光谱辐照度單位,等效於10−26瓦特每平方米每赫茲。一個光源的通量密度S是光谱辐照度B在立體角下的積分: S.
查看 视星等和揚斯基
欧洲南方天文台
歐洲南天天文台()是為在南半球研究天文學,在政府間組織的一個研究機構,由15個國家組成和支援的一個天文研究組織。它成立於1962年,目的是為歐洲天文學家提供先進的設施和捷徑以研究南方的天空。這個組織總部設在德國慕尼黑附近的加興,雇用了約730名工作人員,每年並接受成員國約1億3100萬歐元的經費。 歐洲南天天文台建設和經營一些已知規模最大和技術最先進的望遠鏡,包括首創主動光學技術的新技術望遠鏡、和由4個8米等級的望遠鏡和4個1.8米輔助望遠鏡組成的甚大望遠鏡。目前由ESO進行的計畫包括亞他加馬大型毫米波陣列和歐洲極大望遠鏡。 ALMA是下一個十年最大的地面天文專案,將成為在毫米與次毫米波尺度下觀測的主要新工具。他的建設正在進行中,預計於2013年完成。ALMA專案是歐洲各國、亞洲、北美洲和智利之間的國際合作計畫。歐洲執行權由ESO代表行使,並且還主持ALMA區域中心。 E-ELT是40米等級的望遠鏡,目前還在細部設計階段,將是世界上觀測天空最大的巨眼。 歐洲極大望遠鏡,它將極有力的推動天文物理學的知識,能夠仔細研究的天體,包括圍繞著其它恆星的行星、宇宙中的第一個天體、超大質量黑洞、和主宰宇宙的暗物質與暗能量的自然本質和分布。從2005年底,ESO就一直與工作和使用社群的歐洲天文學家和天文物理學家共同來定義此新的聚型望遠鏡。 ESO的觀測機構已經作出許多重大的天文發現和一些天體目錄。最近的研究結果包括發現最遙遠的伽瑪射線暴和我們的星系,銀河系,中心有黑洞的證據。2004年,甚大望遠鏡讓天文學家獲得第一張在173光年外環繞著的棕矮星的系外行星2M1207b軌道的絕佳影像。安裝在ESO另一架望遠鏡上的儀器,高精度徑向速度行星搜索器發現許多的系外行星,包括迄今發現最小的系外行星格利澤581c。甚大望遠鏡還發現迄今距離人類最遙遠星系的候選者阿貝爾1835 IR1916。.
查看 视星等和欧洲南方天文台
欧洲极大望远镜
欧洲极大望远镜(European Extremely Large Telescope,简写E-ELT)是欧洲南方天文台(ESO)准备建造的地面光学天文望远镜,其主镜直径为39.3米,由798个六角形小镜片拼接而成,集光面积达到了978平方米,建造完成后将成为世界上最大的光学望远镜。2010年4月26日,ESO最终选择智利阿马索内斯山区作为极大望远镜的建造地点。 极大望远镜的集光能力比现在最大的光学望远镜强15倍;比单架甚大望远镜强26倍;比当年伽利略制造的望远镜强8百万倍;比人类肉眼强1亿倍。它的光学系统由独创的五个镜面组成,这种先进的自适应光学系统可以减少大气湍流的影响,提高图像的光学质量。 欧洲极大望远镜是极大望远镜计划的一部分,这个计划中的巨型麦哲伦望远镜(口径25米,集光面积368平方米)和TMT/30米望远镜(口径30米,集光面积655平方米)也将在2018年完工。.
查看 视星等和欧洲极大望远镜
水星
水星(Mercurius),中國古稱辰星;到西漢時期,《史記‧天官書》作者天文學家司馬遷從實際觀測發現辰星呈灰色,與「五行」學說聯繫在一起,以黑色配水星,因此正式把它命名為水星。 水星是太陽系的八大行星中最小和最靠近太陽的行星,但有著八大行星中最大的離心率 ,軌道週期是87.969 地球日。從地球上看,它大约116天左右與地球會合一次,公转速度遠遠超過太阳系的其它星球。水星的快速運動使它在羅馬神話中被稱為墨丘利,是快速飛行的信使神。由于大氣層极为稀薄,无法有效保存热量,水星表面昼夜温差极大,为太阳系行星之最。白天时赤道地區温度可达430°C,夜间可降至-170°C。極區气温則終年維持在-170°C以下。水星的軸傾斜是太陽系所有行星中最小的(大約度),但它有最大的軌道偏心率。水星在遠日點的距離大約是在近日點的1.5倍。水星表面充滿了大大小小的坑穴(環形山),外觀看起來與月球相似,顯示它的地質在數十億年來都處於非活動狀態。 水星无四季变化。它也是唯一被太陽潮汐鎖定的行星。相對於恆星,它每自轉三圈的時間與它在軌道上繞行太陽兩圈的時間几乎完全相等。從太陽看水星,參照它的自轉與軌道上的公轉運動,是每兩個水星年才一個太陽日。因此,对一位在水星上的觀測者来说,一天相当于兩年。 因為水星的軌道位於地球的內側(金星也一樣),所以它只能在晨昏之際與白天出現在天空中,而不會在子夜前後出現。同時,也像金星和月球一樣,在它繞著軌道相對於地球,會呈現一系列完整的相位。雖然从地球上觀察,水星會是一顆很明亮的天體,但它比金星更接近太陽,因此比金星還難看見。 從地球看水星的亮度有很大的變化,視星等從-2.3至5.7等,但是它與太陽的分離角度最大只有28.3°。當它最亮時,从技術角度上讲應該很容易就能從地球上看見它,但由于其距离太阳过近,實際上並不容易找到。除非有日全食,否則在太陽光的照耀下通常是看不見水星的。在北半球,只能在凌晨或黃昏的曙暮光中看見水星。當大距出現在赤道以南的緯度時,在南半球的中緯度可以在完全黑暗的天空中看見水星。 水星軌道的近日點每世紀比牛頓力學的預測多出43角秒的進動,這種現象直到20世紀才從愛因斯坦的廣義相對論得到解釋。.
查看 视星等和水星
河鼓二
河鼓二,即著名的“牛郎星”,“天鹰座α”(Altair),又叫“牵牛星”或“大将军”,在日文中称作“彦星”。 排名全天第十二的明亮恒星,白色。在星空观测中,是夏季大三角中的一角。它和天鹰座β、γ星的连线正指向织女星。西方称呼此星为Altair,是阿拉伯语的“飞翔的大鹫(Al nasr-l'tair:النسر الطائر)”的缩写。 位置:赤经19时48.3分,赤纬8度44分。.
查看 视星等和河鼓二
波德星系
M81(NGC 3031)是一个经典的Sb型漩涡星系, 又名波德星系。在小型望远镜里,它是一个有明亮中心的大椭圆光球.
查看 视星等和波德星系
消光
消光(Extinction)是天文學中觀測者用來描述被觀測的天體發射的光線被路途中的物質(氣體和塵埃)吸收和散射的狀態。對地面的觀測者而言,消光來自於星際物質(ISM)和地球大氣層,他也可能來自於被觀測天體周圍的星周塵。大氣層的消光在一些波段(X射線、紫外線和紅外線)上非常強烈,必須進入太空才能觀測。在可見光的波段上,藍色遠比紅色被稀釋的強烈,結果是天體會比預期的偏紅,星際消光也會使天體紅化 (不要與紅移混淆)。.
查看 视星等和消光
測光系統
測光系統是天文學中以一套已知敏感度的分離通帶(過濾器),測量事件輻射的裝置,而敏感度通常依所使用的光學系統、探測器和濾鏡有關。每一個測光系統都需要提供主標準星。 最早規範出來的測光系統是約翰遜摩根或UBV測光系統(1953年),現今已經有200套以上這種的系統。 測光系統通常根據濾鏡的通帶寬度來描述其特性:.
查看 视星等和測光系統
满月
满月是指月和太阳的黄经差达到180度时的瞬间,以及此时的月相(也称望月)。 满月的时候,月球和太阳分别在地球的两侧。若此时为正对面,即发生月食。满月的日周运动,和春秋、冬夏相反的太阳的日周运动几乎一样。日没时升起,在午夜时其高度角达到最大,在日出时沉没。北半球夏季的时候,中国大部分地区可以看见其从东南方向升起,低平的位置横穿南方的夜空。冬季的时候偏北,南中时分的满月在夜空的较高位置。春分与秋分时候从正东附近升起,在正西附近落下。.
查看 视星等和满月
木卫十七
木卫十七又稱為「卡利羅厄」(S/1999 J 1, Callirrhoe),是环绕木星运行的一颗卫星,是所有有名稱的木星的衛星最遠的,它在1999年10月6日被太空監視發現,剛開始以為是一個小行星,因此把它命名為(1999UX18)。直到2000年7月8日被斯帕爾(Tim Spahr)發現它其實是木星的衛星之一,所以後來賦予一個臨時編號S/1999 J 1。 木卫十七直到2002年10月才以希臘神話中的卡利羅厄(河神阿科洛厄斯的女兒)命名。。木卫十七屬於帕西法爾群,離木星平均距離24,356,000公里,公轉一圈要776.543天,軌道傾斜141°,離心率0.264。.
查看 视星等和木卫十七
木卫三
* 注意:在希臘神話方面,名稱叫做伽倪墨得斯。關於天文學方面,名稱叫蓋尼米德,也可以叫做甘尼米德。 木卫三又稱為「蓋尼米德」(Ganymede,),是围绕木星运转的一颗卫星,公转周期约为7天。按距离木星从近到远排序,木卫三在木星的所有卫星中排第七,在伽利略卫星中排第三。它与木卫二及木卫一保持着1:2:4的轨道共振关系。木卫三是太阳系中最大的卫星,其直径大于水星,质量约为水星的一半。 木卫三主要由硅酸盐岩石和冰体构成,星体分层明显,拥有一个富铁的、流动性的内核。人们推测在木卫三表面之下200公里处存在一个被夹在两层冰体之间的咸水海洋。木卫三表面存在两种主要地形。其中较暗的地区约占星体总面积的三分之一,其间密布着撞击坑,地质年龄估计有40亿年之久;其余地区较为明亮,纵横交错着大量的槽沟和山脊,其地质年龄较前者稍小。明亮地区的破碎地质构造的产生原因至今仍是一个谜,有可能是潮汐热所导致的构造活动造成的。 木卫三是太阳系中已知的唯一一颗拥有磁圈的卫星,其磁圈可能是由富铁的流动内核的对流运动所产生的。 其中的少量磁圈与木星的更为庞大的磁场相交迭,从而产生了向外扩散的场线。木卫三拥有一层稀薄的含氧大气层,其中含有原子氧,氧气和臭氧,同时原子氢也是大气的构成成分之一。而木卫三上是否拥有电离层还尚未确定。 一般认为木卫三是由伽利略·伽利莱在1610年首次观测到的。后来天文学家西门·马里乌斯建议以希腊神话中神的斟酒者、宙斯的爱人蓋尼米德为之命名。 从先驱者10号开始,多艘太空船曾近距离掠过木卫三。旅行者号太空船曾经精确地测量了该卫星的大小,伽利略号探测器则发现了它的地下海洋和磁场。此外,一个被称为“木衛二-木星系統任務”的全新的探测木星的冰卫星的计划,预计将会于2020年实施。.
查看 视星等和木卫三
木星
|G1.
查看 视星等和木星
望远镜
望遠鏡是一種可以透過遙控方式收集電磁波(例如可見光)以協助觀察遠方物體的工具。已知能實用的第一架望遠鏡是在17世紀初期在荷蘭使用玻璃透鏡發明的。這項發明現在被應用在陸地和天文學。 在第一架望遠鏡被製造出來幾十年內,用鏡子收集和聚焦光線的反射望遠鏡就被製造出來。在20世紀,許多新型式的望遠鏡被發明,包括1930年代的電波望遠鏡和1960年代的紅外線望遠鏡。望遠鏡這個名詞現在是泛指能夠偵測不同區域的電磁頻譜的各種儀器,在某些情況下還包括其他類型的探測儀器。 英文的「telescope」(來自希臘的τῆλε,tele "far"和 σκοπεῖν,skopein "to look or see";τηλεσκόπος,teleskopos "far-seeing")。這個字是希臘數學家乔瓦尼·德米西亚尼在1611年於伽利略出席的意大利猞猁之眼国家科学院的一場餐會中,推銷他的儀器時提出的。在《星際信使》這本書中,伽利略使用的字是"perspicillum"。.
查看 视星等和望远镜
星周盤
星周盤 (circumstellar disk)是在環繞著恆星的軌道上,由氣體、塵埃、星子、小行星或碰撞的碎屑堆積,構成花托或環狀的物質。環繞在年輕的恆星周圍,將來可能成為構成行星的原料;環繞在成熟的恆星,它們可以發展成微星;而如果是環繞著白矮星,則表明了是整個恆星演化過程剩下來的材料。這些盤面可以呈現如下的形式:.
查看 视星等和星周盤
星等
星等(magnitude),為天文学术语,是指星体在天空中的相对亮度。一般而言,这也指“视星等”,即为从地球上所见星体的亮度。在地球上看起来越明亮的星体,其视星等数值就越低。常见情况下人们使用可见光来衡量视星等,但在科学探测中,红外线等其它波段也有用到。不同波段探测到的星等数据会有所不同。一颗星星的星等,取决于它离地球的距离、它本身的光度(即为绝对星等)、星际尘埃遮蔽等多重因素。一般人的肉眼能够分辨的极限大约是6.5等。.
查看 视星等和星等
流量
流量,指单位时间内通过特定表面的流体(液體或氣體)的量(体积或質量)。 若以體積衡量流體的量,其流量稱之為「體積流量」,這也是多數場合中,流量所指的涵義。在国际单位制(SI)中,體積流量的標準單位為立方米每秒(m3/s)。若以質量衡量流體的量,其流量稱之為「質量流量」。在国际单位制中,質量流量的標準單位為公斤每秒(kg/s)。.
查看 视星等和流量
海卫一
海卫一是环绕海王星运行的衛星中最大的一颗,它也是太阳系中最冷的天体之一,具有复杂的地质历史和一个相对来说比较年轻的表面。1846年10月10日威廉·拉塞尔(William Lassell)发现了海卫一(这是海王星被发现后第17天)。拉塞尔以为他还发现了海王星的一个环。虽然后来发现海王星的确有一个环,但是拉塞尔的发现还是值得怀疑,因为实际上海王星的环太暗了,不可能被拉塞尔用他的仪器发现。.
查看 视星等和海卫一
海山二
海山二(Eta Carinae)是位于船底座的一個恆星系統(赤經10 h 45.1 m、赤緯−59°41m),距離太陽大約7,500至8,000光年,在北緯27°以北的地區难以看見,而在南緯30°是一顆拱極星。這個系統至少有兩顆恆星,其中一顆是位於恆星生命早期階段,質量大約是太陽150倍的高光度藍變星(LBV),並且至少已經流失30個太陽質量。雖然它被認為還有一顆質量約為太陽30倍的沃夫–瑞葉星環繞著它較大的伴星,但海山二周圍有巨大厚重的紅色星雲,因而很難直接的發現。它總體的光度大約是太陽的590萬倍,而系統的質量估計超過150倍太陽質量 。由於它的質量和生命階段,預期在天文學上不久的將來,它將爆炸成為一顆極超新星,目前的估計是從現在開始的10,000年至20,000年。 在中國,它屬於近南極星區的星官海山,除了海山二之外,屬於這個星官的恆星還有半人馬座λ、、、船帆座μ和蒼蠅座λ 。.
查看 视星等和海山二
海王星
海王星是太陽系八大行星中距离太阳最远的,體積是太陽系第四大,但質量排名是第三。海王星的質量大約是地球的17倍,而類似雙胞胎的天王星因密度較低,質量大約是地球的14倍。海王星以羅馬神話中的尼普顿(Neptunus)命名,因為尼普顿是海神,所以中文譯為海王星。天文學的符號(♆,Unicode編碼U+2646),是希臘神話的海神波塞頓使用的三叉戟。 作爲一個冰巨行星,海王星的大氣層以氫和氦為主,還有微量的甲烷。在大氣層中的甲烷,只是使行星呈現藍色的一部分原因。因為海王星的藍色比有同樣份量的天王星更為鮮豔,因此應該還有其他成分對海王星明顯的顏色有所貢獻。 海王星有太陽系最強烈的風,測量到的風速高達每小時2,100公里。 1989年航海家2號飛掠過海王星,對南半球的大黑斑和木星的大紅斑做了比較。海王星雲頂的溫度是-218 °C(55K),因為距離太陽最遠,是太陽系最冷的地區之一。海王星核心的溫度約為7,000 °C,可以和太陽的表面比較,也和大多數已知的行星相似。 海王星在1846年9月23日被發現, 是唯一利用數學預測而非有計畫的觀測發現的行星。天文學家利用天王星軌道的攝動推測出海王星的存在與可能的位置。迄今只有航海家2號曾經在1989年8月25日拜訪過海王星。2003年,美國國家航空暨太空總署提出有如卡西尼-惠更斯號科學水準的海王星軌道探測計畫,但不使用熱滋生反應提供電力的推進裝置;這項計劃由噴射推進實驗室和加州理工學院一起完成。.
查看 视星等和海王星
新月
新月、月缺,指月亮無光之月相,一種天文現象。月球在繞行地球的軌道上,介合於太陽和地球之間之時,就會呈現此月相;在此刻,月球背向太陽的黑暗面朝向地球,因此從地球上以肉眼看不見月球。夏曆以「朔」定義每月初一。.
查看 视星等和新月
攝影星等
攝影星等是以傳統的乾版或底片拍攝得到的星等。 在光度計出現之前,要精確的測量天體的亮度,是用照相機來制定它的視星等。這些影像,使用正色的攝影膠片或乾版,在藍色端的視頻譜比人眼或現代的光度計敏銳。結果是,藍色星的攝影星等會有比現在視星等低的星等(也就是較亮),因為它們在相片上的亮度比現代的光度計明亮。相反的,紅色的星有著比視星等較高的攝影星等(也就是較暗淡),因為它們顯得比較暗淡。例如,紅色的超新星人馬座KW的攝影星等介於11.0〜13.2,但是視星等在8.5〜11.0。也常見在星圖上列出藍色星等(B),像是劍魚座S和天箭座WZ。 視攝影星等的符號是mpg,絕對攝影星等的符號是Mpg。 攝影星等現在被認為是過時的。.
查看 视星等和攝影星等
托勒密
#重定向 克劳狄乌斯·托勒密.
查看 视星等和托勒密
智神星
智神星(英語、拉丁語:Pallas),小行星序號是2 智神星(2 Pallas),是人類繼谷神星(太陽系最大的小行星之一)後所發現的第二顆小行星。估計它的質量是小行星帶的7%。智神星直徑為,比灶神星稍大一些,但是其質量卻比灶神星輕10–30% ,所以智神星是小行星帶中第三重的小行星。智神星可能是太陽系中最大的不規則天體(也就是本身的重力不能使外貌呈現圓滑),也可能是殘餘的原行星。 天文學家海因里希·歐伯斯在1802年3月28日發現智神星,那時被歸類為行星。事實上,19世紀初期發現的小行星都曾經被歸類為行星,直到1845年有更多的小行星被發現之後,才重新分類。 智神星的表面似乎由矽酸鹽組成;表面光譜和密度類似於碳質球粒隕石。智神星有異常高的軌道傾角(高達34.8°)、高離心率,類似冥王星,所以太空船很難前往智神星拜訪。.
查看 视星等和智神星
3C 273
3C 273是位於室女座的一個類星體。它在可見光波段上是最明亮的一個類星體,在天空中的視星等大約是12.9等,是最靠近地球的类星体之一,紅移 z只有0.158。它的光度距離,D L.
查看 视星等和3C 273