目录
多項式
多项式(Polynomial)是代数学中的基础概念,是由称为未知数的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。多项式是整式的一种。未知数只有一个的多项式称为一元多项式;例如x^2-3x+4就是一个一元多项式。未知数不止一个的多项式称为多元多项式,例如就是一個三元多项式。 可以写成只由一项构成的多项式也称为单项式。如果一项中不含未知数,则称之为常数项。 多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。.
查看 冪定律和多項式
平方反比定律
反平方定律是一个物理学定律,又称平方反比定律、逆平方律、反平方律;如果任何一个物理定律中,某种物理量的分布或强度,会按照距离源的平方反比而下降,那么这个定律就可以称为是一个反平方定律。 例子:.
查看 冪定律和平方反比定律
伽瑪校正
伽馬校正(Gamma correction) 又叫伽馬非線性化(gamma nonlinearity)、伽馬編碼(gamma encoding) 或是就只單純叫伽馬(gamma)。是用來針對影片或是影像系統裡對於光線的輝度(luminance)或是三色刺激值(tristimulus values)所進行非線性的運算或反運算。最簡單的例子裡伽馬校正是由下列冪定律公式所定義的。 其中A是一个常量,輸入和輸出的值都為非負实数值。一般地來說在A.
查看 冪定律和伽瑪校正
开普勒定律
开普勒定律是开普勒所发现、关于行星运动的定律。他於1609年在他出版的《新天文学》科學雜誌上发表了关于行星运动的两条定律,又於1618年,发现了第三条定律。 开普勒幸运地得到了著名丹麦天文学家第谷·布拉赫所观察与收集、且非常精确的天文資料。大约于1605年,根据布拉赫的行星位置資料,开普勒发现行星的移动遵守著三条相当简单的定律。同年年底,他撰寫完成了發表文稿。但是,直到1609年,才在《新天文学》科學雜誌發表,這是因為布拉赫的觀察數據屬於他的繼承人,不能隨便讓別人使用,因此產生的一些法律糾紛造成了延遲。 在天文学与物理学上、开普勒的定律给予亚里士多德派与托勒密派极大的挑战。他主张地球是不斷地移动的;行星轨道不是圓形(epicycle)的,而是椭圆形的;行星公转的速度不等恒。这些论点,大大地动摇了当时的天文学与物理学。经过了几乎一個世纪披星戴月,废寝忘食的研究,物理学家终于能够運用物理理论解释其中的奧秘。艾萨克·牛顿應用他的第二定律和万有引力定律,在数学上严格地証明了开普勒定律,也让人们了解了其中的物理意义。.
查看 冪定律和开普勒定律
凡得瓦力
#重定向 范德华力.
查看 冪定律和凡得瓦力
兰贝格-奥斯古德关系
Ramberg-Osgood方程是固体力学中描述材料在其屈服点附近的应力-应变关系(应力-应变曲线)的一个理论模型,其形式为: \epsilon.
簡諧運動
谐运动(或简谐振动、谐振、SHM(Simple Harmonic Motion))即是最基本也是最简单的一种机械振动。当某物体进行简谐运动时,物体所受的力跟位移成正比,并且力总是指向平衡位置。 如果用F表示物体受到的回復力,用x表示物体对于平衡位置的位移,根据虎克定律,F和x成正比,它们之间的关系可用下式来表示: 式中的k是回复力与位移成正比的比例系数;负号的意思是:回复力的方向总跟物体位移的方向相反。 根据牛顿第二定律,F.
查看 冪定律和簡諧運動
牛顿万有引力定律
万有引力定律(Newton's law of universal gravitation)指出,兩個質點彼此之間相互吸引的作用力,是與它們的質量乘積成正比,並與它們之間的距離成平方反比。 万有引力定律是由艾薩克·牛頓(Isaac Newton)稱之為歸納推理的經驗觀察得出的一般物理規律。它是經典力學的一部分,是在1687年于《自然哲学的数学原理》中首次發表的,并於1687年7月5日首次出版。當牛頓的書在1686年被提交給英國皇家學會時,羅伯特·胡克宣稱牛頓從他那裡得到了距離平方反比律。 此定律若按照現代語文,明示了:每一點質量都是通過指向沿著兩點相交線的力量來吸引每一個其它點的質量。力與兩個質量的乘積成正比,與它們之間的距離平方成反比。關於牛頓所明示質量之間萬有引力理論的第一個實驗,是英國科學家亨利·卡文迪什(Henry Cavendish)於1798年進行的卡文迪許實驗。這個實驗發生在牛頓原理出版111年之後,也是在他去世大約71年之後。 牛頓的引力定律類似於庫侖電力定律,用來計算兩個帶電體之間產生的電力的大小。兩者都是逆平方律,其中作用力與物體之間的距離平方成反比。庫侖定律是用兩個電荷來代替質量的乘積,用靜電常數代替引力常數。 牛頓定律的理論基礎,在現代的學術界已經被愛因斯坦的廣義相對論所取代。但它在大多數應用中仍然被用作重力效應的經典近似。只有在需要極端精確的時候,或者在處理非常強大的引力場的時候,比如那些在極其密集的物體上,或者在非常近的距離(比如水星繞太陽的軌道)時,才需要相對論。.
查看 冪定律和牛顿万有引力定律
靜電學
電學是研究「靜止電荷」的特性及規律的一門學科,電學的領域之一。靜電即電荷在靜止時的狀態,沒有電荷流動。而靜止電荷所建立的電場稱為靜電場,是指不隨時間變化的電場,該靜電場對於場中的電荷有作用力。.
查看 冪定律和靜電學
重力位
在古典力學中,一個位置上的重力位(Gravitational potential)是一個有質量的物體所產生純量場。等於當一件物體從一個參考位置移向該位置時重力作用於每一單位質量上的功(即能量轉移)。 一物體若令某一點距其為r,此物體質量為M,重力位可表示成P.
查看 冪定律和重力位
電勢
在静電學裡,電勢(electric potential)定義為處於電場中某个位置的單位電荷所具有的電勢能。電勢又稱為電位,是純量。其數值不具有絕對意義,只具有相對意義,因此為了便於分析問題,必須設定一個參考位置,並把它設為零,稱為零勢能點。通常,會把無窮遠處的電勢設定為零。那麼,電勢可以定義如下:假設檢驗電荷從無窮遠位置,經過任意路徑,克服電場力,緩慢地移動到某位置,則在這位置的電勢,等於因遷移所做的機械功與檢驗電荷量的比值。在國際單位制裏,電勢的度量單位是伏特(Volt),是為了紀念意大利物理學家亞歷山德羅·伏打(Alessandro Volta)而命名。 電勢必需滿足帕松方程式,同時符合相關邊界條件;假設在某區域內的電荷密度為零,則帕松方程式約化為拉普拉斯方程式,電勢必需滿足拉普拉斯方程式。 在電動力學裏,當含時電磁場存在的時候,電勢可以延伸為「廣義電勢」。特別注意,廣義電勢不能被視為電勢能每單位電荷。.
查看 冪定律和電勢
斯特藩-玻尔兹曼定律
斯特藩-玻尔兹曼定律(Stefan-Boltzmann law),又称斯特藩定律,是热力学中的一个著名定律,其内容为: 一个黑体表面单位面积在单位时间内辐射出的总能量(称为物体的辐射度或能量通量密度)j*与黑体本身的热力学温度T(又称绝对温度)的四次方成正比,即: 其中辐射度j*具有功率密度的量纲(能量/(时间·距离2)),国际单位制标准单位为焦耳/(秒·平方米),即瓦特/平方米。绝对温度T的标准单位是开尔文,\epsilon为黑体的辐射系数;若为绝对黑体,则\epsilon.
另见
幂定律
指数
- 72法則
- Q指数
- Softmax函数
- 冪
- 冪定律
- 双曲函数
- 双曲函数积分表
- 古德曼函數
- 复利
- 平方
- 平方求幂
- 悬链线
- 指数函数
- 指数函数积分表
- 指数分布
- 指数积分
- 指数衰减
- 指數增長
- 放射性
- 林德曼-魏尔斯特拉斯定理
- 歐拉恆等式
- 矩阵指数
- 等角螺线
- 迭代冪次
- 雙重指數函數
- 高斯函数
概率分布理论
亦称为 Power Law,幂律,冪次現象。