目录
玻尔兹曼分布
在統計力學與數學中,波茲曼分布(或稱吉布斯分布 Translated by J.B. Sykes and M.J. Kearsley.
查看 歸一化常數和玻尔兹曼分布
统计力学
统计力学(Statistical mechanics)是一個以波茲曼等人提出以最大熵度理論為基礎,藉由配分函數 將有大量組成成分(通常為分子)系統中微觀物理狀態(例如:動能、位能)與宏觀物理量統計規律 (例如:壓力、體積、溫度、熱力學函數、狀態方程式等)連結起來的科学。如氣體分子系統中的壓力、體積、溫度。易辛模型中磁性物質系統的總磁矩、相變溫度、和相變指數。 通常可分為平衡態統計力學,與非平衡態統計力學。其中以平衡態統計力學的成果較為完整,而非平衡態統計力學至今也在發展中。統計物理其中有許多理論影響著其他的學門,如資訊理論中的資訊熵。化學中的化學反應、耗散結構。和發展中的經濟物理學這些學門當中都可看出統計力學研究線性與非線性等複雜系統中的成果。.
查看 歸一化常數和统计力学
贝叶斯定理
贝叶斯定理(Bayes' theorem)是概率论中的一个定理,它跟随机变量的条件概率以及边缘概率分布有关。在有些关于概率的解释中,贝叶斯定理(贝叶斯公式)能够告知我们如何利用新证据修改已有的看法。這個名稱來自於托马斯·贝叶斯。 通常,事件A在事件B(发生)的条件下的概率,与事件B在事件A(发生)的条件下的概率是不一样的。然而,这两者是有确定的关系的,贝叶斯定理就是这种关系的陈述。贝叶斯公式的一个用途在于通过已知的三个概率函数推出第四个。 作为一个普遍的原理,贝叶斯定理对于所有概率的解释是有效的。然而,频率主义者和贝叶斯主义者对于“在应用中,某个随机事件的概率该如何被赋值?”这个问题有着不同的看法:频率主义者根据随机事件发生的频率,或者总体样本裡面的发生的个数来赋值概率;贝叶斯主义者则根据未知的命题来赋值概率。这样的理念导致贝叶斯主义者有更多的机会使用贝叶斯定理。.
查看 歸一化常數和贝叶斯定理
配分函数
配分函数(Partition function)是一个平衡態统计物理学中经常应用到的概念,經由計算配分函數可以将微观物理状态与宏观物理量相互联系起来,而配分函數等價於自由能,與路徑積分在數學上有巧妙的類似。 配分函数通常意指正則系綜中的配分函數,而其他的系綜,亦有其相對應的配分函數,如巨正則系綜對應巨配分函數。.
查看 歸一化常數和配分函数
条件概率
本文定义了表征两个或者多个随机变量概率分布特点的术语。 条件概率(conditional probability)就是事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”。 联合概率表示两个事件共同发生的概率。A与B的联合概率表示为P(A \cap B)或者P(A, B)或者P(AB)。 边缘概率是某个事件发生的概率。边缘概率是這樣得到的:在聯合概率中,把最終結果中不需要的那些事件合并成其事件的全概率而消失(對离散隨机變量用求和得全概率,對連續隨机變量用積分得全概率)。這稱為邊緣化(marginalization)。A的边缘概率表示为P(A),B的边缘概率表示为P(B)。 需要注意的是,在这些定义中A与B之间不一定有因果或者时间顺序关系。A可能会先于B发生,也可能相反,也可能二者同时发生。A可能会导致B的发生,也可能相反,也可能二者之间根本就没有因果关系。 例如考虑一些可能是新的信息的概率条件性可以通过贝叶斯定理实现。.
查看 歸一化常數和条件概率
概率论
概率论(Probability theory)是集中研究概率及随机现象的数学分支,是研究隨機性或不確定性等現象的數學。概率论主要研究对象为随机事件、随机变量以及随机过程。对于随机事件是不可能准确预测其结果的,然而对于一系列的独立随机事件——例如掷骰子、扔硬币、抽扑克牌以及輪盤等,会呈现出一定的、可以被用于研究及预测的规律,两个用来描述这些规律的最具代表性的数学结论分别是大数定律和中心极限定理。 作为统计学的数学基础,概率论对诸多涉及大量数据定量分析的人类活动极为重要,概率论的方法同样适用于其他方面,例如是对只知道系统部分状态的复杂系统的描述——统计力学,而二十世纪物理学的重大发现是以量子力学所描述的原子尺度上物理现象的概率本质。 數學家和精算師認為概率是在0至1閉區間内的數字,指定給一發生與失敗是隨機的「事件」。概率P(A)根據概率公理來指定給事件A。 一事件A在一事件B確定發生後會發生的概率稱為B給之A的條件概率;其數值為。若B給之A的條件概率和A的概率相同時,則稱A和B為獨立事件。且A和B的此一關係為對稱的,這可以由一同價敘述:「當A和B為獨立事件時,P(A \cap B).
查看 歸一化常數和概率论
概率质量函数
在概率论中,概率质量函数(probability mass function,简写为pmf)是离散随机变量在各特定取值上的概率。概率质量函数和概率密度函数不同之处在于:概率质量函数是对离散随机变量定义的,本身代表该值的概率;概率密度函数是对连续随机变量定义的,本身不是概率,只有对连续随机变量的概率密度函数在某区间内进行积分后才是概率。.
查看 歸一化常數和概率质量函数
機率密度函數
在数学中,连续型随机变量的概率密度函數(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。圖中,橫軸為隨機變量的取值,縱軸為概率密度函數的值,而随机变量的取值落在某个区域内的概率為概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累積分佈函數是概率密度函数的积分。概率密度函数一般以大写“PDF”(Probability Density Function)標记。 概率密度函数有时也被称为概率分布函数,但这种称法可能会和累积分布函数或概率质量函数混淆。.
查看 歸一化常數和機率密度函數
正态分布
常態分布(normal distribution)又名高斯分布(Gaussian distribution),是一個非常常見的連續機率分布。常態分布在统计学上十分重要,經常用在自然和社会科学來代表一個不明的隨機變量。 若隨機變量X服從一個位置參數為\mu、尺度參數為\sigma的常態分布,記為: 則其機率密度函數為 常態分布的數學期望值或期望值\mu等於位置參數,決定了分布的位置;其方差\sigma^2的開平方或標準差\sigma等於尺度參數,決定了分布的幅度。 常態分布的機率密度函數曲線呈鐘形,因此人們又經常稱之為鐘形曲線(类似于寺庙里的大钟,因此得名)。我們通常所說的標準常態分布是位置參數\mu.
查看 歸一化常數和正态分布
泊松分佈
Poisson分布(法語:loi de Poisson,英語:Poisson distribution),译名有--分布、--分布、--分佈、--分佈、--分佈、--分佈、卜氏分配等,又稱帕松小數法則(Poisson law of small numbers),是一種統計與概率學裡常見到的離散機率分佈,由法國數學家西莫恩·德尼·泊松(Siméon-Denis Poisson)在1838年時發表。 泊松分布适合于描述单位时间内随机事件发生的次数的概率分布。如某一服务设施在一定时间内受到的服务请求的次数,电话交换机接到呼叫的次数、汽车站台的候客人数、机器出现的故障数、自然灾害发生的次数、DNA序列的变异数、放射性原子核的衰变数、雷射的光子數分布等等。 泊松分布的概率質量函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。 根据泰勒展开式可得:e^.
查看 歸一化常數和泊松分佈
期望值
在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望,物理学中称为期待值)是试验中每次可能的结果乘以其结果概率的总和。换句话说,期望值像是随机试验在同样的机会下重复多次,所有那些可能狀態平均的结果,便基本上等同“期望值”所期望的數。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合裡。) 例如,掷一枚公平的六面骰子,其每次「點數」的期望值是3.5,计算如下: \operatorname(X)&.
查看 歸一化常數和期望值
方差
方差(Variance),應用數學裡的專有名詞。在概率论和统计学中,一个随机变量的方差描述的是它的离散程度,也就是该变量离其期望值的距离。一个实随机变量的方差也称为它的二阶矩或二階中心動差,恰巧也是它的二阶累积量。這裡把複雜說白了,就是將各個誤差將之平方(而非取絕對值,使之肯定為正數),相加之後再除以總數,透過這樣的方式來算出各個數據分佈、零散(相對中心點)的程度。繼續延伸的話,方差的算术平方根称为该随机变量的标准差(此為相對各個數據點間)。.
查看 歸一化常數和方差