徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

配分函数

指数 配分函数

配分函数(Partition function)是一个平衡態统计物理学中经常应用到的概念,經由計算配分函數可以将微观物理状态与宏观物理量相互联系起来,而配分函數等價於自由能,與路徑積分在數學上有巧妙的類似。 配分函数通常意指正則系綜中的配分函數,而其他的系綜,亦有其相對應的配分函數,如巨正則系綜對應巨配分函數。.

11 关系: 压强宏观内能统计力学绝对温度热力学热力学自由能路徑積分正则系综数学

压强

生在兩個物體接觸表面、垂直於該表面的作用力,亦可稱為壓力。通常來說,在液壓、氣動或大氣層等領域中提到的「壓力」指的實際上是壓强,即在数值上等於接觸表面上每單位面積所受壓力。 壓強是分布在特定作用面上之力與該面積的比值。換句話說,是作用在與物體表面垂直方向上的每單位面積的力的大小。計式壓強是相較於該地之大氣壓的壓強。雖然壓強可用任意之力單位與面積單位進行測量,但是壓強的國際標準單位(每單位平方公尺的牛頓)也被稱作帕斯卡。 一般以英文字母「p」表示。压力與力和--積的關係如下: 其中.

新!!: 配分函数和压强 · 查看更多 »

宏观

宏观这名词,通常用来描述,那些可以被肉眼测量与观察的物体。当用在现象或抽象物体(abstract object)时,则是描述,我们所能理解,存在于这世界上的。通常被认为是宏观的长度尺度,大致在1毫米至1公里之间。 宏观这词语也可指引为大尺度观点;那就是,只有从大尺度才能得着的观点。一个宏观的立场可以被认为是一副大图画。.

新!!: 配分函数和宏观 · 查看更多 »

内能

在熱力學裡,內能(internal energy)是熱力學系統內兩個具狀態變數之基本狀態函數的其中一個函數。內能是指系統所含有的能量,但不包含因外部力場而產生的系統整體之動能與位能。內能會因系統能量的增損而隨之改變。 系統的內能可能因(1)對系統加熱、(2)對系統作,或(3)添加或移除物質而改變。當系統內有不可穿透的牆阻止物質傳遞時,該系統稱之為「封閉系統」。如此一來,熱力學第一定律描述,內能的增加會等於增加的熱量加上環境對該系統所作的功。若該系統周圍的牆不能傳遞物質與能量,則該系統稱之為「孤立系統」,且其內能會維持定值。 一系統內給定狀態下的內能不能被直接量測。給定狀態下的內能可由一已給定其內能參考值之參考狀態開始,經過一連串及熱力學過程,以達到該給定狀態來決定其值。這一連串的操作及過程,理論上可使用該系統的某些外延狀態變數來描述,亦即該系統的熵 S、容量 V 及莫耳數 。內能 是這些變數的函數。有時,該函數還能再附加上其他的外延狀態變數,如電偶極矩。就熱力學及工程學上的實際用途來看,一般很少需要考慮一個系統的所有內含能量,如質量所含有的等價能量。一般而言,只有與研究的系統及程序有關的部分才會被包含進來。熱力學一般只在意內能的「變化量」。 內能是一系統內的狀態函數,因為其值僅取決於該系統的目前狀態,而與達到此一狀態所採之途徑或過程無關。內能是個外延物理量。內能是個基本熱動力位能。使用勒壤得轉換,可從內能開始,在數學上建構出其他的熱動力位能。這些函數的狀態變數,部分外延變數會被其共軛內含變數所取代。因為僅是將外延變數由內含變數所取代並無法得出其他熱動力位能,所以勒壤得轉換是必要的。熱力學系統的另一個基本狀態函數為該系統的熵 ,是個除熵 S 這個狀態變數被內能 U 所取代外,具有相同狀態變數之狀態函數。 雖然內能是個宏觀物理量,內能也可在微觀層面上由兩個假設的量來解釋。一個是系統內粒子的微觀運動(平移、旋轉、振動)所產生的微觀動能。另一個是與粒子間的化學鍵及組成物質的靜止質量能量等微觀力有關之位能。在微觀的量與系統因作功、加熱或物質轉移而產生之能量增損的量之間,並不存在一個簡單的普遍關係。 能量的國際單位為焦耳(J)。有時使用單位質量(公斤)的內能(稱之為「比內能」)會比較方便。比內能的國際單位為 J/kg。若比內能以物質數量(莫耳)的單位來表示,則稱之為「莫耳內能」,且該單位為 J/mol。 從統計力學的觀點來看,內能等於系統總能量的。.

新!!: 配分函数和内能 · 查看更多 »

统计力学

统计力学(Statistical mechanics)是一個以波茲曼等人提出以最大熵度理論為基礎,藉由配分函數 將有大量組成成分(通常為分子)系統中微觀物理狀態(例如:動能、位能)與宏觀物理量統計規律 (例如:壓力、體積、溫度、熱力學函數、狀態方程式等)連結起來的科学。如氣體分子系統中的壓力、體積、溫度。易辛模型中磁性物質系統的總磁矩、相變溫度、和相變指數。 通常可分為平衡態統計力學,與非平衡態統計力學。其中以平衡態統計力學的成果較為完整,而非平衡態統計力學至今也在發展中。統計物理其中有許多理論影響著其他的學門,如資訊理論中的資訊熵。化學中的化學反應、耗散結構。和發展中的經濟物理學這些學門當中都可看出統計力學研究線性與非線性等複雜系統中的成果。.

新!!: 配分函数和统计力学 · 查看更多 »

绝对温度

#重定向 开尔文.

新!!: 配分函数和绝对温度 · 查看更多 »

热力学

热力学,全稱熱動力學(thermodynamique,Thermodynamik,thermodynamics,源於古希腊语θερμός及δύναμις)是研究热现象中物态转变和能量转换规律的学科;它着重研究物质的平衡状态以及与準平衡态的物理、化学过程。热力学定義許多巨觀的物理量(像溫度、內能、熵、壓強等),描述各物理量之間的關係。热力学描述數量非常多的微觀粒子的平均行為,其定律可以用統計力學推導而得。 熱力學可以總結為四條定律。 熱力學第零定律定義了温度這一物理量,指出了相互接觸的两个系統,熱流的方向。 熱力學第一定律指出内能這一物理量的存在,並且與系統整體運動的動能和系統与與環境相互作用的位能是不同的,區分出熱與功的轉換。 熱力學第二定律涉及的物理量是温度和熵。熵是研究不可逆过程引入的物理量,表征系統通過熱力學過程向外界最多可以做多少熱力學功。 熱力學第三定律認為,不可能透過有限過程使系統冷却到絕對零度。 熱力學可以應用在許多科學及工程的領域中,例如:引擎、相變化、化學反應、輸運現象甚至是黑洞。熱力學計算的結果不但對物理的其他領域很重要,對航空工程、航海工程、車輛工程、機械工程、細胞生物學、生物醫學工程、化學、化學工程及材料科學等科學技術領域也很重要,甚至也可以應用在經濟學中。 热力学是从18世纪末期发展起来的理论,主要是研究功與热量之間的能量轉換;在此功定義為力與位移的內積;而熱則定義為在熱力系統邊界中,由溫度之差所造成的能量傳遞。兩者都不是存在於熱力系統內的性質,而是在熱力過程中所產生的。 熱力學的研究一開始是為了提昇蒸汽引擎的效率,早期尼古拉·卡諾有許多的貢獻,他認為若引擎效率提昇,法國有可能贏得拿破崙戰爭。出生於愛爾蘭的英國科學家開爾文在1854年首次提出了熱力學明確的定義: 一開始熱力學研究關注在熱機中工質(如蒸氣)的熱力學性質,後來延伸到化学过程中的能量轉移,例如在1840年科學家杰迈因·亨利·盖斯提出,有關化學反應的能量轉移的研究。化學熱力學中研究熵對化學反應的影響Gibbs, Willard, J. (1876).

新!!: 配分函数和热力学 · 查看更多 »

热力学自由能

热力学自由能(英语:Thermodynamic free energy)是指一个热力学系统的能量中可以用来对外做功的部分,是热力学态函数。自由能可以作为一个热力学过程能否自发进行的判据。 对限定条件不同的热力学过程,热力学自由能有不同表达形式。最常见的有吉布斯自由能G和亥姆霍兹自由能A(或F)。等温等容过程用亥姆霍兹自由能 A.

新!!: 配分函数和热力学自由能 · 查看更多 »

化學及热力学中所谓熵(entropy),是一種測量在動力學方面不能做功的能量總數,也就是當總體的熵增加,其做功能力也下降,熵的量度正是能量退化的指標。熵亦被用於計算一個系統中的失序現象,也就是計算該系統混亂的程度。熵是一个描述系统状态的函数,但是经常用熵的参考值和变化量进行分析比较,它在控制论、概率论、数论、天体物理、生命科学等领域都有重要应用,在不同的学科中也有引申出的更为具体的定义,是各领域十分重要的参量。.

新!!: 配分函数和熵 · 查看更多 »

路徑積分

路徑積分可能指的是:.

新!!: 配分函数和路徑積分 · 查看更多 »

正则系综

正则系综 (canonical ensemble)是统计力学中系综的一种。它代表了许多具有相同温度的体系的集合。正则系综是最普遍应用的系综。 正则系综内每个体系的粒子数和体积都是固定的。但每个体系都可以和系综内其他体系交换能量。同时系综里所有体系的能量总和,以及体系的个数是固定的。在这些条件下,当系综内所有体系被分配到不同的微观态上,我们发现:处于每个微观态的体系的个数正比于\exp(-\beta E)\,。其中\beta.

新!!: 配分函数和正则系综 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 配分函数和数学 · 查看更多 »

重定向到这里:

配分函數

传出传入
嘿!我们在Facebook上吧! »