我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

歸一化常數和贝叶斯定理

快捷方式: 差异相似杰卡德相似系数参考

歸一化常數和贝叶斯定理之间的区别

歸一化常數 vs. 贝叶斯定理

歸一化常數的概念主要來自於數學上的機率論及其他分支。. 贝叶斯定理(Bayes' theorem)是概率论中的一个定理,它跟随机变量的条件概率以及边缘概率分布有关。在有些关于概率的解释中,贝叶斯定理(贝叶斯公式)能够告知我们如何利用新证据修改已有的看法。這個名稱來自於托马斯·贝叶斯。 通常,事件A在事件B(发生)的条件下的概率,与事件B在事件A(发生)的条件下的概率是不一样的。然而,这两者是有确定的关系的,贝叶斯定理就是这种关系的陈述。贝叶斯公式的一个用途在于通过已知的三个概率函数推出第四个。 作为一个普遍的原理,贝叶斯定理对于所有概率的解释是有效的。然而,频率主义者和贝叶斯主义者对于“在应用中,某个随机事件的概率该如何被赋值?”这个问题有着不同的看法:频率主义者根据随机事件发生的频率,或者总体样本裡面的发生的个数来赋值概率;贝叶斯主义者则根据未知的命题来赋值概率。这样的理念导致贝叶斯主义者有更多的机会使用贝叶斯定理。.

之间歸一化常數和贝叶斯定理相似

歸一化常數和贝叶斯定理有(在联盟百科)3共同点: 条件概率概率论機率密度函數

条件概率

本文定义了表征两个或者多个随机变量概率分布特点的术语。 条件概率(conditional probability)就是事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”。 联合概率表示两个事件共同发生的概率。A与B的联合概率表示为P(A \cap B)或者P(A, B)或者P(AB)。 边缘概率是某个事件发生的概率。边缘概率是這樣得到的:在聯合概率中,把最終結果中不需要的那些事件合并成其事件的全概率而消失(對离散隨机變量用求和得全概率,對連續隨机變量用積分得全概率)。這稱為邊緣化(marginalization)。A的边缘概率表示为P(A),B的边缘概率表示为P(B)。 需要注意的是,在这些定义中A与B之间不一定有因果或者时间顺序关系。A可能会先于B发生,也可能相反,也可能二者同时发生。A可能会导致B的发生,也可能相反,也可能二者之间根本就没有因果关系。 例如考虑一些可能是新的信息的概率条件性可以通过贝叶斯定理实现。.

条件概率和歸一化常數 · 条件概率和贝叶斯定理 · 查看更多 »

概率论

概率论(Probability theory)是集中研究概率及随机现象的数学分支,是研究隨機性或不確定性等現象的數學。概率论主要研究对象为随机事件、随机变量以及随机过程。对于随机事件是不可能准确预测其结果的,然而对于一系列的独立随机事件——例如掷骰子、扔硬币、抽扑克牌以及輪盤等,会呈现出一定的、可以被用于研究及预测的规律,两个用来描述这些规律的最具代表性的数学结论分别是大数定律和中心极限定理。 作为统计学的数学基础,概率论对诸多涉及大量数据定量分析的人类活动极为重要,概率论的方法同样适用于其他方面,例如是对只知道系统部分状态的复杂系统的描述——统计力学,而二十世纪物理学的重大发现是以量子力学所描述的原子尺度上物理现象的概率本质。 數學家和精算師認為概率是在0至1閉區間内的數字,指定給一發生與失敗是隨機的「事件」。概率P(A)根據概率公理來指定給事件A。 一事件A在一事件B確定發生後會發生的概率稱為B給之A的條件概率;其數值為。若B給之A的條件概率和A的概率相同時,則稱A和B為獨立事件。且A和B的此一關係為對稱的,這可以由一同價敘述:「當A和B為獨立事件時,P(A \cap B).

概率论和歸一化常數 · 概率论和贝叶斯定理 · 查看更多 »

機率密度函數

在数学中,连续型随机变量的概率密度函數(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。圖中,橫軸為隨機變量的取值,縱軸為概率密度函數的值,而随机变量的取值落在某个区域内的概率為概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累積分佈函數是概率密度函数的积分。概率密度函数一般以大写“PDF”(Probability Density Function)標记。 概率密度函数有时也被称为概率分布函数,但这种称法可能会和累积分布函数或概率质量函数混淆。.

機率密度函數和歸一化常數 · 機率密度函數和贝叶斯定理 · 查看更多 »

上面的列表回答下列问题

歸一化常數和贝叶斯定理之间的比较

歸一化常數有12个关系,而贝叶斯定理有13个。由于它们的共同之处3,杰卡德指数为12.00% = 3 / (12 + 13)。

参考

本文介绍歸一化常數和贝叶斯定理之间的关系。要访问该信息提取每篇文章,请访问: