徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

參宿四

指数 參宿四

参宿四(Betelgeuse),也就是拜耳命名法中著名的獵戶座α(α Orionis或α Ori),是全天第九亮星,也是獵戶座第二亮星,只比鄰近的参宿七(獵戶座β)暗淡一點。它有著明顯紅色的半規則變星,視星等在0.2至1.2等之間變化著,是變光幅度最大的一等星。這顆恆星標示著冬季大三角的頂點和冬季六邊形的中心。 在分類上,参宿四是一顆紅超巨星,並且是已知最大和最亮的恆星之一。如果它位於太陽系的中心,它的表面會超越小行星帶,並可能抵達並超越木星的軌道,完全地席捲掉水星、金星、地球和火星。但是,在上個世紀對参宿四的距離估計從180光年至1,300光年不等,因此對其直徑、光度和質量的估計是很難被證實的。目前認為参宿四的距離大約是640光年,平均的絕對星等是-6.05。 而事实上,有关参宿四的质量始终有争议,有的资料显示它的质量不过太阳的14至15倍,但也有的资料认为它的质量达到太阳的18至19倍甚至20倍的,而这种质量的不确定性,正是由于测量距离的不确定性造成的。 在1920年,参宿四是第一顆被測出角直徑的恆星(除太陽之外)。從此以後,研究人員不斷使用不同的技術參數和望遠鏡測量這顆巨星的大小,而且經常產生衝突的結果。目前估計這顆恆星的視直徑在0.043~0.056角秒,作為一個移動的目標,参宿四似乎周期性的改變它的形狀。由於周邊昏暗、光度變化(變星脈動理論)、和角直徑隨著波長改變,這顆恆星仍然充滿了令人費解的謎。参宿四有一些複雜的、不對稱的包層,引起巨大的質量流失,涉及從表面向外排出的龐大冠羽狀氣體,使事情變得更為複雜。甚至有證據指出在它的氣體包層內有伴星環繞著,可能加劇了這顆恆星古怪的行為。 天文學家認為参宿四的年齡只有1,000萬年,但是因為質量大而演化得很快。它被認為是來自獵戶座OB1星協的奔逃星,還包含在獵戶腰帶的参宿一、参宿二、和参宿三等0和B型晚期恆星的集團。以現行恆星演化的晚期階段,預料参宿四在未來的數百萬年將爆炸成為II型超新星,並變成一顆中子星。.

164 关系: 劍僑光學孔徑合成望遠鏡加州大學柏克萊分校加利福尼亞大學原型原子半規則變星十字架三占星术卡文迪许实验室印度南极洲南河三古典时代可见光史匹哲太空望遠鏡双星和聚星星表參宿三參宿一參宿二参宿大气层天体测量学天球天極天津四天文学史天文單位太空實驗室太空望遠鏡影像攝譜儀太阳系太陽太陽黑子威尔逊山天文台威廉·赫歇耳望遠鏡安吉洛·西奇對流小行星小行星帶射电天文学巨大質量恆星列表巨大恆星列表巴黎天文台不規則變星布宜諾斯艾利斯乌鲁伯格亮星星表佛蘭斯蒂德命名法依巴谷星表微米微角秒...地球北半球喜帕恰斯周邊昏暗傅里叶分析哈佛-史密松天体物理中心哈勃空间望远镜冬季大三角冬季六邊形光學頻譜光年光度光度計光球玛尔斯火星獵戶座獵戶座OB1星協獵戶腰帶神话科学革命秒差距空间望远镜穀神星米粒组织类星体紫外線天文學紅外光學望遠鏡陣列紅外線空間干涉儀紅超巨星红外天文学红外线纽约纽约州美国变星观测者协会美国国家射电天文台絕對星等甚大天线阵甚大望远镜熱力學溫標熔岩灯盖亚任务白矮星銀心聯星顶点馬丁·史瓦西角分角分辨率角秒角直徑视宁度视差视星等譜線變星误差范围诺贝尔物理学奖超巨星超米粒組織超新星超新星候選列表輻射能辐射热测量计近紅外線影像技術舞蹈阿尔伯特·迈克耳孙開普敦银河系鄰近地球的超新星自适应光学金星長週期變星色指數電磁輻射電磁波譜通量HD星表II型超新星Light yearSAO星表SIMBADVizieR暗天體照相機恆星大氣層恆星亮度列表恆星光度列表恆星系統恆星質量流失恆星演化欧洲南方天文台欧洲空间局每日一天文圖水委一水星波恩星表活动星系核測天圖測量激波木星有效溫度望远镜戈達德高解析攝譜儀星周包層日出卫星悉尼托勒密拜耳命名法拉丁语曆元普林斯顿大学智利 扩展索引 (114 更多) »

劍僑光學孔徑合成望遠鏡

#重定向 劍橋光學孔徑合成望遠鏡.

新!!: 參宿四和劍僑光學孔徑合成望遠鏡 · 查看更多 »

加州大學柏克萊分校

#重定向 加利福尼亞大學柏克萊分校.

新!!: 參宿四和加州大學柏克萊分校 · 查看更多 »

加利福尼亞大學

加利福尼亞大學(University of California),简称加州大学(UC),是美國加州的一个公立大學系统。它是组成加州公立高等教育体系的三个大学系统之一。另两部分分别是加利福尼亞州立大學系統和。相对其他两个系统,加大更注重高等研究領域,屬性上屬研究型大學。 加州大學系統總共有十個校區。加州大學也簽約管理三個美國能源部的國家實驗室。它拥有的诺贝尔奖得主不少于120位。美国国家科学院院士357位,佔美国国家科学院总院士2039位的近1/5;拥有全职学生23.8多万人,有6所加州大学为美國大學協會成员。.

新!!: 參宿四和加利福尼亞大學 · 查看更多 »

原型

原型是首創的模型,代表同一類型的人物、物件、或觀念。原型在文學與心理學中很重要。原型往往被以後的作者一再的重複模仿與重塑。.

新!!: 參宿四和原型 · 查看更多 »

原子

原子是元素能保持其化學性質的最小單位。一個正原子包含有一個緻密的原子核及若干圍繞在原子核周圍帶負電的電子。而負原子的原子核帶負電,周圍的負電子帶「正電」。正原子的原子核由帶正電的質子和電中性的中子組成。負原子原子核中的反質子帶負電,從而使負原子的原子核帶負電。當質子數與電子數相同時,這個原子就是電中性的;否則,就是帶有正電荷或者負電荷的離子。根據質子和中子數量的不同,原子的類型也不同:質子數決定了該原子屬於哪一種元素,而中子數則確定了該原子是此元素的哪一個同位素。 原子的英文名(Atom)是從希臘語ἄτομος(atomos,“不可切分的”)轉化而來。很早以前,希臘和印度的哲學家就提出了原子的不可切分的概念。 17和18世紀時,化學家發現了物理學的根據:對於某些物質,不能通過化學手段將其繼續的分解。 19世紀晚期和20世紀早期,物理學家發現了亞原子粒子以及原子的內部結構,由此證明原子並不是不能進一步切分。 量子力學原理能夠為原子提供很好的模型。 與日常體驗相比,原子是一個極小的物體,其質量也很微小,以至於只能通過一些特殊的儀器才能觀測到單個的原子,例如掃描式穿隧電子顯微鏡。原子的99.9%的重量集中在原子核,其中的亞原子和中子有著相近的質量。每一種元素至少有一種不穩定的同位素,可以進行放射性衰變。這直接導致核轉化,即亞原子核中的中子數或質子數發生變化。 原子佔據一組穩定的能級,或者稱為軌道。當它們吸收和放出​​中子的時候,中子也可以在不同能級之間跳躍,此時吸收或放出原子的能量與能級之間的能量差相等。電子決定了一個元素的化學屬性,並且對中子的磁性有著很大的影響。.

新!!: 參宿四和原子 · 查看更多 »

半規則變星

半規則變星是光譜類型為中期和晚期的紅巨星或超巨星,顯示出可以觀察到的週期性和光度變化,但有著各種各樣的不規則性或中斷的變化。變光週期從20天至超過2000天不等,同時光度曲線在每個週期內或多或少的都有一些變化。光度的變化範圍從數百至數星等 (通常在可見光的範圍是1-2星等)。 半規則變星可以分為幾種類型:.

新!!: 參宿四和半規則變星 · 查看更多 »

十字架三

十字架三(β Cru / 南十字座β)是南十字座內第二亮的恆星,英文名Becrux或Mimosa。由於十字架三位於赤緯-60度的天空,所以只有在北回歸線以南的地方才可以看到它。 十字架三距離地球約有353光年,它實際上是一對分光雙星,因為距離太近所以無法用望遠鏡分辨出來,彼此之間距離為8天文單位(AU)。.

新!!: 參宿四和十字架三 · 查看更多 »

占星术

医学占星用的人体解剖-占星关系图. 占星術(Astrology),亦稱占星学、星象學,是用天体的运动和相对位置来占卜人事及地表事件的一种理論。占星术可至少上溯至公元前2000年,植根于系统预测季节性变化和将天体周期解释为神圣传意迹象的传统。许多文明都曾有将重要事件附会于天文事件的传统,而像印度、中国和玛雅等古文明甚至还发展出了复杂的系统,通过天文观测来预测地表事件。可追溯至公元前19-17世纪的美索不达米亚,并由此传播至古希腊、罗马、阿拉伯世界,并最终传至中西欧地区。当代西方占星术通常与天宫图系统相联系,标榜其能基于天体位置来解释不同人格并预测人生中的重大事件;多数专业的占星家均依赖于这一系统。 纵观其历史,占星术长期被视为学术传统并普遍存在于学术界中,与天文学、炼金术、气象学和医学关系密切。占星术亦曾流行于政治界;从但丁与乔叟到莎士比亚、洛佩·德·维加和卡尔德隆·德·拉·巴尔卡,他们的多部文学作品中都曾提到过占星术。 然而,科学革命开始后,占星术已受到广泛质疑;它在理论.

新!!: 參宿四和占星术 · 查看更多 »

卡文迪许实验室

卡文迪許實驗室(Cavendish Laboratory),即是劍橋大學的物理系,研究领域包括了天体物理学、粒子物理学、固体物理学、生物物理学。由著名的英国物理学家詹姆斯·克拉克·麦克斯韦于1871年創立,1874年建成實驗室,以英国物理学家和化学家亨利·卡文迪许的名字命名。亨利·卡文迪许的亲戚、当时的剑桥大学校长威廉·卡文迪许私人捐款帮助了实验室的筹建。.

新!!: 參宿四和卡文迪许实验室 · 查看更多 »

印度

印度共和国(भारत गणराज्य,;Republic of India),通称印度(भारत;India),是位于南亚印度次大陆上的国家,印度面积位列世界第七,印度人口众多,位列世界第二,截至2018年1月印度拥有人口13.4亿,仅次于中国人口的13.8亿,人口成長速度比中國還快,预计近年将交叉。是亚洲第二大也是南亚最大的国家,面积328万平方公里(实际管辖),同时也是世界第三大(购买力平价/PPP)经济体。 印度并非单一民族及文化的国家。印度的民族和种族非常之多,有“民族大熔炉”之称,其中印度斯坦族占印度总人口的大约一半,是印度最大的民族。印度各个民族都拥有各自的语言,仅宪法承认的官方语言就有22种之多,其中印地语和英语被定为印度共和国的联邦官方语言,并且法院裁定印度没有国语。英语在印度非常流行,尤其在南印地位甚至高于印地语,但受限于教育水平,普通民众普遍不精通英语。另外,印度也是一个多宗教的国家,世界4大宗教其中的佛教和印度教都源自印度。大部分印度人信仰印度教。伊斯兰教在印度也有大量信徒,是印度的第二大宗教,信教者约占印度的14.6%(截至2011年,共有约1亿7千7百万人)。伊斯兰教是在公元8世纪随着阿拉伯帝国的扩张而传播到印度的。公元10世纪后,北印的大多数王朝统治者都是信奉伊斯兰教的,特别是莫卧儿王朝。印度也是众多正式和非正式的多边国际组织的成员,包括世界贸易组织、英联邦、金砖五国、南亚区域合作联盟和不结盟运动等。 以耕种农业、城市手工业、服务业以及其支撑产业为主的部分行业已经相对取得了进展。除了民族文化与北方地形的丰富使印度旅游业颇受欢迎之外,由于时差,大批能说英语的人才也投入外包行业(即是外国企业把客户咨询,电话答录等等服务转移到印度)。另一方面,宝莱坞电影的文化输出在英语圈乃至全球的影响力不亚于世界主流。同时印度还是很多专利过期药物的生产地,以低价格提供可靠的医疗。近年来,印度政府还大力投资本国高等教育,以利于在科学上与国际接轨,例如自主太空研究、南亚半岛生态研究等等。印度最重要的贸易伙伴是美国、欧盟、日本、中国和阿拉伯联合酋长国。.

新!!: 參宿四和印度 · 查看更多 »

南极洲

南极洲(Antarctica)是地球最南端的洲,位於南半球的南極區,是地理南极的所在地。南极洲大部分区域都在南極圈内,四周被南冰洋环绕。南极洲是世界上的第五大洲,其面积约为1400万平方公里,仅次于亞洲、非洲、北美洲和南美洲,是大洋洲的两倍。除了南极半岛最北端的部分区域之外,全洲約98%的地方都被平均厚度1.9公里的冰层覆盖着。 南極洲是地球上最寒冷、乾燥、多風的大洲,是唯一橫跨所有經線的洲,也是平均海拔最高的大洲。它沿岸地区的年降水量仅有200毫米,内陆地区更少。到了第三季(一年中最寒冷的季节)时,南极洲的平均温度低至-63℃,最低温度可達-89.2℃。南極洲的本地物种有各类藻類、细菌、真菌、植物(包括苔藓)、原生生物以及一些可以适应寒冷环境的动物,例如企鵝、海豹、線蟲、緩步動物、蟎等。南极洲沒有永久居民,但每年居住在這裡的科研人员有一千至五千人。 儘管很久之前已經有關於「未知的南方大陸」(Terra Australis)的神話故事與臆想,但直至1820年,俄羅斯探險家米哈伊尔·拉扎列夫和法比安·戈特利布·馮·別林斯高晉乘着沃斯托克號和战船来到芬布爾冰架时,人类才第一次目睹它的真容。由於南极洲氣候惡劣、資源缺乏以及地理孤立性,南極洲在十九世纪并沒有引起人們的注目。 南极洲现在是法律意义上的共管领土,由南极条约体系的成员国协商管辖。1959年,12个国家签署了《南极条约》,随后有38个国家签署。該條約意在支持科學研究及保護南極生物地理分布区,并禁止在南极洲进行的一切军事活动、核爆炸试验以及处理放射物的行为。截至2016年,南极洲已建有135座常设科學考察站,陆续吸引了四千多名来自世界各地的科學家到這裡進行科學實驗。.

新!!: 參宿四和南极洲 · 查看更多 »

南河三

南河三(α CMi / 小犬座α / 小犬座10)是小犬座內最亮的恆星,在亮星表中排名在前十名之內(第七或第八)。 在西方,他的名稱源自希臘προκύον(prokúon),Procyon的意思為"在狗的前方",因為在古代它在大犬座的天狼星之前出現在天空(雖然它的赤經值較大,但他的赤緯值較北,所以在北半球的緯度上它會比天狼星早些出現在地平線上。不過,由於歲差,這種現象從一千多年前開始已經改變,變成「在狗的後方」)。有關這兩顆犬星的古老文學可以追溯到巴比倫和埃及。 南河三也是冬季大三角的頂點之一,另外兩顆是大犬座的天狼星與獵戶座的參宿四。 南河三也是鄰近太陽系和地球的恆星,在近距離恆星表中,列出的距離是11.41光年(3.5秒差距,距離排名第13)。 與天狼星相同,它也是聯星—主星(南河三A)也有一顆黯淡的白矮星作為伴星(南河三B),與另一顆魯坦星(距離排名第22)的距離僅有1.11光年(0.34秒差距)。.

新!!: 參宿四和南河三 · 查看更多 »

古典时代

古典时代(或称为古典时期、古典古代、古风时期,Classical antiquity)是对(以地中海为中心,包括古希腊和古罗马等一系列文明)的长期文化史的一个广义称谓。在这个时期中,古希腊文明和古罗马文明十分繁荣,对欧洲、北非、中东等地施加巨大的影响。 通常认为古典时代起始于古希腊最早的文字记录,即公元前8-7世纪荷马史诗,一直延伸至以及罗马帝国的衰落。古典时代的结束伴随着古典时代晚期(公元300-600年)古典文化的崩溃,欧洲历史随后进入中世纪前期(公元600-1000年)。这段历史时期涵盖广袤的领土、多种不同的文化与历史分期。后世爱伦·坡的一句诗很好的诠释“古典时代”一词的含义:“光荣属于希腊,伟大属于罗马!” 受到古代东方文明影响的古希腊文化,以其艺术、哲学、社会、教育思想,一直影响着整个古典时代。这些思想被古罗马人继承和效仿。这些来自希腊和罗马的文化底蕴对现代社会的语言、政治、教育系统、哲学、科学、艺术、建筑有巨大的影响:从当时现存的古典时代残片中,一场巨大的复兴运动在14世纪的欧洲逐渐成形,这场运动后来被称作文艺复兴,各种领域的新古典主义风潮也在18-19世纪兴起。.

新!!: 參宿四和古典时代 · 查看更多 »

可见光

可見光(Visible light)是電磁波譜中人眼可以看見(感受得到)的部分。這個範圍中電磁輻射被稱為可見光,或簡單地稱為光。人眼可以感受到的波長範圍一般是落在390到700nm。對應於這些波長的頻率範圍在430–790 THz。但有一些人能够感知到波长大约在380到780nm之间的电磁波。正常视力的人眼对波长约为555nm的电磁波最为敏感,这种电磁波处于光学频谱的绿光区域。.

新!!: 參宿四和可见光 · 查看更多 »

史匹哲太空望遠鏡

斯皮策空间望远镜(Spitzer Space Telescope,缩写为SST),是美國國家航空暨太空總署2003年发射的一颗红外天文卫星,是大型轨道天文台计划的最后一台空间望远镜。.

新!!: 參宿四和史匹哲太空望遠鏡 · 查看更多 »

双星和聚星星表

双星和聚星星表(The Catalog of Components of Double and Multiple Stars,缩写为CCDM)是一个双星和聚星的天文星表。为了给依巴谷任务(Hipparcos mission)提供输入星表,它由比利时皇家天文台的Jean Dommanget和Omer Nys编纂而成。该星表的第一版于1994年出版,它包含了34,031颗双星或聚星的74,861颗成员恒星;第二版在2002年出版,它扩充到了49,325颗双星或聚星的105,838颗成员恒星。该星表列出了每个成员恒星的位置、星等、光谱类型和自行。 Category:星表.

新!!: 參宿四和双星和聚星星表 · 查看更多 »

參宿三

參宿三(δ Ori / 猎户座δ),是猎户座的恒星,俗名Mintaka(源于阿拉伯语منطقة manţaqah,意为「地区」),距离地球约900光年。它与参宿一、参宿二组成猎户座的腰带。北半球的观测者面朝南方可以看到,当猎户座接近中天时,参宿三位于腰带的最右边。.

新!!: 參宿四和參宿三 · 查看更多 »

參宿一

参宿一(ζ Ori/ 猎户座ζ)是猎户座的一颗三合星,距离太阳系800光年,俗名Alnitak(阿拉伯语:النطاق an-niṭāq)。它与参宿三(猎户座δ)、参宿二(猎户座ε)一起组成猎户的腰带,参宿一位于最左边。 参宿一的主星是一颗炽热的的蓝超巨星,绝对星等为-5.25,是夜空中最亮的O型恒星,视星等为1.70。其有两颗蓝色的4等伴星。它们是猎户座OB1星团的成员。.

新!!: 參宿四和參宿一 · 查看更多 »

參宿二

參宿二(ε Ori / 獵戶座ε)位於獵戶座,西方則稱之為Alnilam,在佛蘭斯蒂德命名法中則稱為獵戶座46。 參宿二是全夜空第30亮的恆星,在獵戶座中則名列第4位,是一顆B0Ia 藍超巨星,也是已知最明亮的恆星之一。從地球上觀測參宿二,會發現它位在獵戶座的腰帶上。 參宿二也是57顆使用在天文領航中的恆星的其中之一。居住在中緯度地區的人們會在每年12月15日的半夜發現參宿二位在天空中的最高點。 因為它的光譜結構相對比較單純,所以對於天文學家研究星際物質有所助益。在最近幾百萬年內,參宿二將變成一顆紅巨星,隨後發生超新星爆炸。分子雲NGC 1990環繞著參宿二,並藉著它的亮度成為一個反射星雲。參宿二的恆星風速度可能達到2000km/s,導致它失去質量的速率大約比太陽還要快2000萬倍。.

新!!: 參宿四和參宿二 · 查看更多 »

参宿

參宿(),參水猿,二十八宿之一,西方七宿第七宿。“參”字本來的意思是三,指參宿中央三星,代表三將軍。中央三星南面是伐三星,代表邊境胡人。參宿西南角有一玉井,正南面的是軍井。軍井以南是屏風,屏風東面是廁,廁南面是屎。.

新!!: 參宿四和参宿 · 查看更多 »

大气层

大氣層,均源自及也許是一層受到重力吸引聚攏在擁有巨大質量天體周圍的氣體,而如果重力夠大且氣體的溫度夠低,就能長期保留住。有些行星擁有許多不同的主要氣體,並且有非常深厚的大氣(參見氣體巨星)。 恆星大氣層這個名詞描述的是恆星外面的區域,典型的範圍是從不透明的光球開始向外的部份。相對來說是低溫的恆星,在它們外面的大氣層也許可以形成複合的分子。地球大氣層,不僅包含有多數有機體呼吸所使用的氧和植物與海藻和藍綠藻行光合作用所使用的二氧化碳,也保護生物的基因免於受到太陽紫外線輻射的傷害。它目前的組成是古大氣層生活在其中的有機體經過數億年的生物化學修改後的結果。.

新!!: 參宿四和大气层 · 查看更多 »

天体测量学

天体测量学或測天學(Astrometry)是天文学中最古老也是最基礎的一個分支,主要以測量恆星的位置和其他會運動天體的距離和動態。他是傳統科學中的一個子科目,後來發展出以定性研究為主體的位置天文學。天文測量學的歷史,在西方可以追溯到依巴谷(Hipparchus),他編輯了第一本的星表,列出了肉眼可見的恆星並發明了到今天仍沿用的視星等的尺標。現代的天體測量學建立在白塞耳的基本星表上,這是以布拉德雷在西元1750至1762年間的測量為基礎,提供了3,222顆恆星的平均位置。 除了提供天文學家基本的參考座標系作為她們在天文觀測報告之用外,天文測量學也是天體力學、恆星動力學和星系天文學等學門的基礎。在觀測天文學中,天文測量的技術協助鑑別出各種天體獨特的運動。他的設備也用於守時(keeping time),因為協調世界時(UTC)是在確切觀測地球自轉的基礎上,以閏秒的調整與原子時間取得協調與一致。天文測量學也與極端複雜的宇宙距離尺度有所關聯,因為他用於建立視差以估計銀河系內恆星的距離。.

新!!: 參宿四和天体测量学 · 查看更多 »

天球

天球(英語:Celestial sphere),是在天文學和導航上想出的一個與地球同圓心,並有相同的自轉軸,半徑無限大的球。天空中所有的物體都可以當成投影在天球上的物件。地球的赤道和地理極點投射到天球上,就是天球赤道和天極。天球是位置天文學上很實用的工具。 在亞里斯多德和托勒密的模型,天球想像成實際的物體,而不僅僅是一個幾何的投影(參見天球模型)。.

新!!: 參宿四和天球 · 查看更多 »

天極

天極是地球的自轉軸(地軸)(earth axis),向天球延伸後,在无穷远处與天球交會的兩個假想點。 夜空中的星星,看起來是從頭頂上由東向西移動,使人产生天球也在从东向西自转的感觉,这是由于人观测星空时是以地球为参考系的緣故;由于地球不是惯性系,是绕地轴持續自转,因此相對观测者而言會产生天球绕地轴自转的错觉。天球「自转」周期與地球自轉周期一樣,皆為恆星時的23小時56分04秒。 地軸延伸至无穷远处與天球相交于两点稱為天極。以地球为参考系时,观测者会观测到這兩個點是天球上唯一的一對不动的点,以此二点连线(即地轴)为基准轴,以地心为原点,以赤道平面为基准面,所建立的天球坐标系统,即是天球赤道座標系統,相应的二天极坐标的第三坐标(即赤纬)分别为分別是+90°(北天極)和-90°(南天極)。 對於天文攝影中的追蹤攝影,作為追蹤裝置的赤道儀必需先對準天極始能準確追蹤拍攝天體。.

新!!: 參宿四和天極 · 查看更多 »

天津四

天津四(英語:Deneb)即天鵝座α星(α Cygni),在星官天津中排名第4,是天鵝座最明亮的一顆恆星,亮度在全天空排名第十九位。天津四是一顆藍白色的超巨星,它的視星等為1.25等,也是已知最明亮的恆星之一。天津四與位於天鷹座的河鼓二(牛郎星),及天琴座的織女星,組成著名的「夏季大三角」。.

新!!: 參宿四和天津四 · 查看更多 »

天文学史

天文学的历史非常久远,天文学可谓人类历史上古老的一门科学。从最初人类对于星象变化的认识开始,天文学就已经开始萌芽了。人们为了研究和制定各种时间或时令(例如:季节或者历法)而产生了天文学,甚至有一部分是来源于占卜的——许多人以星象来进行占卜,即占星术。 可以说,天文学发展了那么长的时间,研究它的历史,也是非常有意义的。这也是天文学研究中的一个重要方向。尤其是历史上记录的各种天文现象,更是当今某些天文研究领域的非常重要、非常珍贵的资料。正是由于一直以来不断的资料积累,才使得后来的天文学有了相当大的发展。因此天文学史也就成了天文学的一个重要分支。 早期的天文學致力於發展在天球上可見的明亮天體的運行規律,特別是太陽、月球、恆星和肉眼可見行星。早期天文學研究的一個例子是太陽在地平線上的出沒在恆星中位置的週年變化,這可以用來建立農業的儀式或日曆。在某些文化中,天文的資料被用於占星學中的預測。 古代的天文學家已經能夠區分恆星和行星,在比較下,恆星經歷世紀的長時間依然是固定不變的,但行星在很短的時間就會移動位置。.

新!!: 參宿四和天文学史 · 查看更多 »

天文單位

天文單位(縮寫的標準符號為AU,也寫成au、a.u.或ua)是天文學上的長度單位,曾以地球與太陽的平均距離定義。2012年8月,在中国北京举行的国际天文学大会(IAU)第28届全体会议上,天文学家以无记名投票的方式,把天文单位固定为149,597,870,700米。新的天文单位以公尺来定义,而公尺的定义来源于真空中的光速,也就是说,天文单位现在不再与地球與太阳的實際距离挂钩,而且也不再受时间变化的影响(虽然天文单位最初的来源就是日地平均距离)。 國際度量衡局建議的縮寫符號是ua,但英語系的國家最常用的仍是AU,國際天文聯合會則推薦au,同時國際標準ISO 31-1也使用AU,后来的國際標準ISO 80000-3:2006又改成了ua。通常,大寫字母僅用於使用科學家的名字命名的單位符號,而au或a.u.也可以是原子單位或是任意單位;但是AU被廣泛的地區使用作為天文單位的符號。以1天文單位距離的值為單位的天文常數的值會以符號A標示。.

新!!: 參宿四和天文單位 · 查看更多 »

太空實驗室

太空實驗室是指重複使用的航天實驗室,設置在太空梭內部。太空實驗室從1983年開始設置於太空梭內部,1998年4月最後一次升空 ,總共發射22次。.

新!!: 參宿四和太空實驗室 · 查看更多 »

太空望遠鏡影像攝譜儀

太空望遠鏡影像攝譜儀(STIS, Space Telescope Imaging Spectrograph)是安裝在哈伯太空望遠鏡上,從1997年運作至2004年的攝譜儀。它完成了許多重要的觀測,包括第一張大氣和系外行星 Osiris的頻譜圖。 太空望遠鏡影像攝譜儀是在1997年第二次維護任務時由李麥克和史蒂文・史密斯裝上,用來替換暗天體攝譜儀(FOS)和戈達德高解析攝譜儀(GHRS)。設計的工作時間是五年,但在2004年8月3日因為一個電子設備故障而停止工作之前,已經比預期多工作了兩年。為了讓它恢復工作,在2009年5月由STS-125執行的最後一次維護任務,由太空人進行修護的工作。.

新!!: 參宿四和太空望遠鏡影像攝譜儀 · 查看更多 »

太阳系

太陽系Capitalization of the name varies.

新!!: 參宿四和太阳系 · 查看更多 »

太陽

#重定向 太阳.

新!!: 參宿四和太陽 · 查看更多 »

太陽黑子

#重定向 太阳黑子.

新!!: 參宿四和太陽黑子 · 查看更多 »

威尔逊山天文台

威尔逊山天文台(Mount Wilson Observatory)位于美国加利福尼亚州帕萨迪纳附近的威尔逊山,距离洛杉矶约32公里,海拔1742米,是1904年在美国天文学家喬治·海爾的领导下,由卡耐基华盛顿研究所建立的,首任台长是海爾。他在就任时将叶凯士天文台的一架40英寸(1.01米)口径的望远镜带到这里。此外该天文台拥有一台口径为2.5米(100英寸)的望远镜和一台口径为1.5米(60英寸)的望远镜,以及一架高150英尺太阳望远镜。1969年,为纪念美国天文学家海爾,威尔逊山天文台和帕洛马山天文台合并成为海爾天文台。目前威尔逊山天文台由加州大学洛杉矶分校和南加州大学合作管理。此外,佐治亚州立大学的高分辨率天文中心(CHARA)也位于这里。.

新!!: 參宿四和威尔逊山天文台 · 查看更多 »

威廉·赫歇耳望遠鏡

威廉·赫歇爾望遠鏡(William Herschel Telescope,WHT)是一架口徑 的光學/近紅外線反射望遠鏡,座落在西班牙加那利群島的拉帕爾馬島的穆查丘斯罗克天文台。這架望遠鏡已威廉·赫歇爾的名字命名,是牛頓望遠鏡群組的一部分。它的經費來自聯合王國、荷蘭和西班牙的研究理事會。 在1987年興建之初,WHT是世界第三大的單鏡片望遠鏡 。BTA-6(6.0 m)和海爾望遠鏡(5.1 m)是更大的兩架;MMT有更大的集光面積,但並不是單一的主鏡片。目前,它是歐洲第二大的望遠鏡鄰近的加那利大型望遠鏡(10.4 m)在2009年超越WHT成為歐洲最大的望遠鏡,並且是格拉·帕森斯(Grubb Parsons)在其150年的歷史中,建造的最後一架望遠鏡。 WHT配備有種類繁多的儀器以在可見光和近紅外的波段下運作,專業天文學家利用它從事廣泛的研究。天文學家使用這架望遠鏡發現銀河系中心超大質量黑洞的第一個證據(人馬座A*),並且對伽瑪射線暴進行了第一次的可見光觀測。.

新!!: 參宿四和威廉·赫歇耳望遠鏡 · 查看更多 »

安吉洛·西奇

佩特·安吉洛·西奇(意大利语:Pietro Angelo Secchi,),義大利天文學家。.

新!!: 參宿四和安吉洛·西奇 · 查看更多 »

對流

對流是指流體內部的分子運動,是熱傳與質傳的主要模式之一。熱對流(亦稱爲對流傳熱)是三種主要熱傳方式中的其中一種(另外兩種分別是熱傳導與熱輻射).

新!!: 參宿四和對流 · 查看更多 »

小行星

小行星是太陽系内類似行星環繞太陽運動,但體積和質量比行星小得多的天體。 至今為止在太陽系內一共已經發現了約127萬顆小行星,但這可能僅是所有小行星中的一小部分,只有少數這些小行星的直徑大於100公里。到1990年代為止最大的小行星是穀神星,但近年在古柏帶內發現的一些小行星的直徑比穀神星要大,比如2000年發現的伐樓拿(Varuna)的直徑為900公里,2002年發現的誇歐爾(Quaoar)直徑為1280公里,2004年發現的厄耳枯斯的直徑甚至可能達到1800公里。2003年發現的塞德娜(小行星90377)位於古柏帶以外,其直徑約為1500公里。 根據估計,小行星的數目應該有數百萬,詳見小行星列表,而最大型的小行星現在開始重新分類,被定義為矮行星。.

新!!: 參宿四和小行星 · 查看更多 »

小行星帶

#重定向 主小行星帶.

新!!: 參宿四和小行星帶 · 查看更多 »

射电天文学

無線電天文學是天文學的一個分支,通過電磁波頻譜以無線電頻率研究天體。無線電天文學的技術與光學相似,但是無線電望遠鏡因為觀察的波長較長,所以更為巨大。這個領域的起源肇因於發現多數的天體不僅輻射出可見光,也發射出無線電波。 从天体而来的无线电波的初步探测是在1930年代当卡尔·央斯基观察到从银河到来的辐射。随后观察已经确定了一些不同的无线电发射源。这些包括恒星和星系,以及全新的天体种类,如電波星系,类星体,脉冲星和微波激射器。宇宙微波背景辐射的发现被视为通过射电天文学而被做出大爆炸理论的证据。.

新!!: 參宿四和射电天文学 · 查看更多 »

巨大質量恆星列表

這是一份有關巨大質量恆星的列表,依太陽質量的多寡排列(1太陽質量.

新!!: 參宿四和巨大質量恆星列表 · 查看更多 »

巨大恆星列表

以下為已知體積最大的恆星列表,其排序比較的依據是太陽半徑(696,392公里)。然而已知恆星大小的確實排序尚未消楚,也尚未妥善定義。原因有 雙星有時會分開處理,有時會被視為單一系統; 估計恆星大小,不同的測量法會得到不同的結果; 部份恆星的測量結果並不準確; 大部分恆星的距離未能確定,因此其大小亦未能確定; 大部分恆星均有大氣層,而這些大氣層會導致測量結果被高估; 有理論指出銀河系中並沒有半徑大於太陽1500倍的恆星; 一個關於麥哲倫雲的調查發現星雲共有44個半徑大於太陽700倍的紅巨星,這顯示還有很多巨大恆星未被發現。.

新!!: 參宿四和巨大恆星列表 · 查看更多 »

巴黎天文台

巴黎天文台(Observatoire de Paris)位于法国首都巴黎,是法国的国立天文台,在巴黎、墨东、南賽(Nançay)等地建有观测基地。 巴黎天文台是法国国王路易十四根据海军国务大臣让-巴普蒂斯特·柯尔贝尔的建议于1667年开始建立的,1671年完工,首任台长是法国著名天文学家卡西尼,他曾在这里发现了土星的四个卫星(土卫八、土卫五、土卫四、土卫三)、卡西尼环缝、木星的较差自转、大红斑,解释了黄道光的成因。 1679年,巴黎天文台出版了世界上第一部天文年历,利用木星卫星的掩食帮助船舶测定经度。1863年,天文台出版了第一份现代意义上的气象图。1913年9月,巴黎天文台用埃菲尔铁塔做天线,接收美国海军天文台发出的无线电信号,精确测定了两地的经度差。巴黎天文台还是国际时间局的所在地,直到国际时间局于1987年解散。.

新!!: 參宿四和巴黎天文台 · 查看更多 »

不規則變星

不規則變星是變星的一種,它在光度的變化上呈現不出規則的週期性,不規則變星有兩種主要的類型:激變型和脈動型。 激變型不規則變星可以分成三類:.

新!!: 參宿四和不規則變星 · 查看更多 »

布宜諾斯艾利斯

布宜諾斯艾利斯(Buenos Aires,意为“好空氣”),当地華人常略稱為布宜諾市或布市。是阿根廷的首都和最大城市,位於拉普拉塔河(Río de la Plata,直譯:銀之河)南岸、南美洲东南岸、對岸為烏拉圭(東方);2014年,在大布宜诺斯艾利斯地区(Gran Buenos Aires)有常住人口17,180,000,是拉丁美洲第二大都会区,仅次于大圣保罗地区(2012年19,956,590人)。布宜諾斯艾利斯為拉丁美洲最歐洲化的城市。七月九日大道(La Avenida 9 de Julio)是世界最寬的馬路,有約130公尺寬(超過16车道)。有名的阿根廷探戈的发源地就在布市的博卡区(La Boca)。 2007年布宜諾斯艾利斯被评为全球第三最美的城市。.

新!!: 參宿四和布宜諾斯艾利斯 · 查看更多 »

乌鲁伯格

乌鲁伯格(الغ‌بیگ,Uluġ Beg,)一作兀鲁伯,是一位伊斯兰学者。他是帖木儿的孙子,沙哈鲁的长子。.

新!!: 參宿四和乌鲁伯格 · 查看更多 »

亮星星表

亮星星表,也称为亮星耶鲁星表(Yale Catalogue of Bright Stars)或耶鲁亮星星表(Yale Bright Star Catalogue),是一个列举了视星等超过6.5的恒星的星表。它几乎涵盖了地球上肉眼能看到的所有恒星。现在可以通过数种方法在线查看它的第五版。第一版於1930年出版,由于该星表的前身是由哈佛大学天文台於1908年出版的哈佛恒星测光表修订版(Harvard Revised Photometry)的原因,尽管耶鲁亮星星表的缩写为BS或YBS,但从该星表引用的恒星名都以HR开头。耶鲁亮星星表包含了9110个天体,其中9096个为恒星,9个为新星或超新星,4个为非恒星。这四个非恒星分别为球状星团杜鹃座47(HR 95)、NGC 2808 (HR 3671)、疏散星团NGC 2281 (HR 2496) 和M67 (HR 3515)。 自從1930年第一版問世之後,星表中的天體數量就固定了,1940年第二版、1964年第三版及1982年的第四版都只對內容加以修訂,並增加註解中的資料。1983年出版了增補版,收錄了2603顆亮度高於7.1等的恆星,其中也包括哈佛恒星测光表修订版中原已收錄的500多顆。1991年出版的第5版已改為網路版,可以在網路上查閱。這個版本的註釋就被大量的擴充,其份量已經比星表本身略為多了一些。.

新!!: 參宿四和亮星星表 · 查看更多 »

佛蘭斯蒂德命名法

恆星的佛蘭斯蒂德命名法(Flamsteed designations)與拜耳命名法類似,除了以數字取代希臘字母外,每顆恆星還是以數字和拉丁文所有格的星座名稱結合在一起。(參見星座列表列出的星座名稱和所有格的形式) 在每一個星座中,數字起初是隨著赤經的增加而增加,但是因為歲差影響,現在有些地方已經不合規定了。這種命名法最早出現在約翰·佛蘭斯蒂德的《不列颠星表》(Historia coelestis Britannica),是哈雷與牛頓未經約翰·佛蘭斯蒂德同意就在1712年出版的。在約翰·佛蘭斯蒂德過世後,1725年的最後一版,包含了約3,000顆恆星,比過去的星表都要巨大,準確度也更高,但卻略去了佛氏的編號。 這種命名法在18世紀獲得普遍的認同,沒有拜耳名稱的恆星幾乎都會以這種數字來標記,但有拜耳名稱的恆星全部依然繼續沿用舊名,而佛氏編號就幾乎完全被捨棄不用。有些著名的恆星都是使用佛氏編號標示的,例如,飛馬座51(參見太陽系外行星)、天鵝座61(參見視差),都是採用佛氏編號命名的。 當現代的星座界限在草擬時,有些已經有佛氏編號的恆星被分割到沒有被編號過的星座內,或是因為已經有了拜耳的名稱,而省略了編號。但需要特別注意的是佛氏編號只涵蓋到在大不列顛可以看見的星星,因此偏向南天的星座都沒有佛氏編號。(南天的球狀星團杜鵑座47的编号来自约翰·波得;鄰近的波江座82不是佛蘭斯蒂德命名法而是古德命名法的编号。) 在佛蘭斯蒂德的目錄上有些錯誤的記載,例如,佛蘭斯蒂德在1690年記錄了天王星,但他沒有認出那是顆行星,而將他登錄為金牛座34。.

新!!: 參宿四和佛蘭斯蒂德命名法 · 查看更多 »

依巴谷星表

依巴谷星表和第谷星表(Tycho-1)是歐洲太空總署的依巴谷衛星成果的主要產物。這顆衛星在1989年11月至1993的3月的四年任務中,傳回了許多高精度的科學數據。 依巴谷星表至少列出了118,000顆天體測量學上精確度在千分之一弧秒恆星,而第谷星表 列出的則略微超過1,050,000顆恆星。 這份星表包含很大數量的高精密度天體位置和測光數據。另外伴生的附錄是變星、雙星和聚星的特性數據,和太陽系的天文測量和測光數據。主要的部分提供了可以印製和以機器閱讀的版本。 全球性的數據分析,需要處理1,000兆比特未經加工的衛星原始數據,這是一件複雜且需要漫長時間的工作,由NDAC和先進科學和技術基金會承擔,共同製做出依巴谷目錄。第四個參與合作的科學機構是INCA,負責撰寫依巴谷衛星的觀測程式和編譯成最佳化的數據選擇,在發射前就先安置在衛星的輸出目錄中。依巴谷和第谷星表的成果使歐洲太空總署等四個團體的繁雜工作得到形式上的正式結束。.

新!!: 參宿四和依巴谷星表 · 查看更多 »

微米

微米(Micrometer、㎛)是长度单位,符号µm。1微米相当于1米的一百萬分之一(10-6,此即為「微」的字義)。此外,在ISO 2955的国际标准中,“u”已经被接纳为一个代替“μ”来代表10-6的国际单位制符号。微米是红外线波长、细胞大小、细菌大小等的数量级。.

新!!: 參宿四和微米 · 查看更多 »

微角秒

#重定向 角秒#毫角秒及微角秒.

新!!: 參宿四和微角秒 · 查看更多 »

地球

地球是太阳系中由內及外的第三顆行星,距离太阳约1.5亿公里。地球是人類已知宇宙中唯一存在生命的天体,也是人類居住的星球,共有74.9億人口。地球质量约为5.97×1024公斤,半径约6,371公里,密度是太阳系中最高。地球同时进行自转和公转运动,分别产生了昼夜及四季的变化更替,一太陽日自转一周,一太陽年公转一周。自转轨道面称为赤道面,公转轨道面称为黄道面,两者之间的夹角称为黄赤交角。地球仅擁有一顆自然卫星,即月球。 地球表面有71%的面积被水覆盖,称为海洋或可以成为湖或河流,其余是陆地板块組成的大洲和岛屿,表面分布河流和湖泊等水源。南极的冰盖及北极存有冰。主體包括岩石圈、地幔、熔融态金属的外地核以及固态金属的內地核。擁有由外地核產生的地磁场。外部被氣體包圍,称为大氣層,主要成分為氮、氧、氬。 地球诞生于约45.4亿年前,42億年前開始形成海洋。并在35亿年前的海洋中出现生命,之后逐步涉足地表和大气,并分化为好氧生物和厌氧生物。早期生命迹象产生的具體证据包括格陵兰岛西南部中拥有约37亿年的历史的石墨,以及澳大利亚大陆西部岩石中约41亿年前的 Early edition, published online before print.。此后除去数次生物集群灭绝事件,生物种类不断增多。根据学界测定,地球曾存在过的50亿种物种中,已经绝灭者占约99%,据统计,现今存活的物种大约有1,200至1,400万个,其中有记录证实存活的物种120万个,而余下的86%尚未被正式发现。2016年5月,有科学家认为现今地球上大概共出现过1--种物种,其中人类正式发现的仅占十万分之一。2016年7月,科学家称现存的生物共祖中共存在有355种基因。地球上有约74亿人口,分成了约200个国家和地区,藉由外交、旅游、贸易、传媒或战争相互联系。.

新!!: 參宿四和地球 · 查看更多 »

北半球

北半球(Northern Hemisphere),是指地球赤道以北的半球。 地球上大部份的陸地(亞洲大部份、歐洲全部、非洲北半部、北美洲全部、南美洲極北部)及人口都在北半球。在北半球,冬季通常是1月至3月,夏季通常是7月至9月,與南半球四季相反。 北半球的海洋有北太平洋、北大西洋及北冰洋。 在北半球,朝南向陽。.

新!!: 參宿四和北半球 · 查看更多 »

喜帕恰斯

喜帕恰斯(ίππαρχος,Hipparkhos,),或译希帕求斯,古希腊的天文学家,有“方位天文学之父”之稱。 公元前134年,他繪製出包含1025颗恒星的星图,并创立星等的概念,亦发现了岁差现象。。喜帕恰斯也被認為是三角函數的創始者。.

新!!: 參宿四和喜帕恰斯 · 查看更多 »

周邊昏暗

周邊昏暗是恆星因為密度由中心向邊緣逐漸降低而呈現出影像向邊緣的強度減少。周邊昏暗是兩種效應造成的結果:.

新!!: 參宿四和周邊昏暗 · 查看更多 »

傅里叶分析

傅里叶分析,是数学的一个分支领域。它研究如何将一个函数或者信号表达为基本波形的叠加。它研究并扩展傅里叶级数和傅里叶变换的概念。基本波形称为调和函数,调和分析因此得名。在过去两个世纪中,它已成为一个广泛的主题,并在诸多领域得到广泛应用,如信号处理、量子力学、神经科学等。 定义于Rn上的经典傅里叶变换仍然是一个十分活跃的研究领域,特别是在作用于更一般的对象(例如缓增广义函数)上的傅里叶变换。例如,如果在函数或者信号上加上一个分布f,我们可以试图用f的傅里叶变换来表达这些要求。Paley-Wiener定理就是这样的一个例子。Paley-Wiener定理直接蕴涵如果f是紧支撑的一个非零分布,(这包含紧支撑函数),则其傅里叶变换从不拥有紧支撑。这是在调和分析下的测不准原理的一个非常初等的形式。参看经典调和分析。 在希尔伯特空间,傅里叶级数的研究变得很方便,该空间将调和分析和泛函分析联系起来。.

新!!: 參宿四和傅里叶分析 · 查看更多 »

哈佛-史密松天体物理中心

哈佛-史密松天体物理中心(Harvard-Smithsonian Center for Astrophysics,缩写为CfA)位于美国马萨诸塞州的劍橋,由哈佛大学天文台和史密松天体物理台组成。.

新!!: 參宿四和哈佛-史密松天体物理中心 · 查看更多 »

哈勃空间望远镜

哈勃太空望遠鏡(Hubble Space Telescope,HST),是以天文學家愛德溫·哈伯為名,在地球軌道的望遠鏡。哈勃望远镜接收地面控制中心(美国马里兰州的霍普金斯大学内)的指令并将各种观测数据通过无线电传输回地球。由于它位于地球大氣層之上,因此獲得了地基望遠鏡所沒有的好處:影像不受大氣湍流的擾動、視相度絕佳,且无大氣散射造成的背景光,還能觀測會被臭氧層吸收的紫外線。於1990年發射之後,已經成為天文史上最重要的儀器。它成功弥补了地面觀測的不足,幫助天文學家解決了許多天文学上的基本問題,使得人类对天文物理有更多的認識。此外,哈勃的超深空視場则是天文學家目前能獲得的最深入、也是最敏銳的太空光學影像。 哈勃太空望遠鏡和康普頓γ射線天文台、錢德拉X光天文台、史匹哲太空望遠鏡都是美國太空總署大型轨道天文台计划的一部分。哈勃空间望远镜由NASA和ESA合作共同管理。.

新!!: 參宿四和哈勃空间望远镜 · 查看更多 »

冬季大三角

冬季大三角是由大犬座的天狼星(α CMa)、小犬座的南河三(α CMi)及獵戶座的參宿四(α Ori)所形成的三角形。.

新!!: 參宿四和冬季大三角 · 查看更多 »

冬季六邊形

冬季六邊形也稱為冬季大橢圓是一個看起來是六邊形的星群,在六個頂點上分別是獵戶座的參宿七、金牛座的畢宿五、御夫座的五車二、雙子座的北河三(跳過北河二)、小犬座的南河三與大犬座的天狼星。雖然主要的天體都在北半球,但是幾乎在地球上所有的陸地上都能看見(除了紐西蘭的南島,南美洲的智利和阿根廷最南邊)這個星群在每年的12月至3月在天空中閃耀著。在熱帶和南半球(稱呼這個星群為「夏季六邊形」或「夏季大橢圓」)還可以延伸至更南邊的老人星。.

新!!: 參宿四和冬季六邊形 · 查看更多 »

光學頻譜

光学频谱,简称光谱,是复色光通过色散系统(如光栅、棱镜)进行分光后,依照光的波长(或频率)的大小顺次排列形成的图案。光谱中的一部分可见光谱是电磁波谱中人眼可见的唯一部分,在这个波长范围内的电磁辐射被称作可见光。光谱并没有包含人類大脑視覺所能区别的所有颜色,譬如褐色和粉红色,其原因是粉红色并不是由单色组成,而是由多种色彩组成的。参见颜色。.

新!!: 參宿四和光學頻譜 · 查看更多 »

光年

光年(light-year)是長度單位之一,指光在真空中一年時間內傳播的距離,大約9.46兆千米(9.46千米或英里。 光年一般用於天文學中,是用來量長度很長的距離,如太陽系跟另一恆星的距離。光年不是時間的單位。 天文學中另三個常用的單位是秒差距、天文單位與光秒,一秒差距等於3.26光年,一天文單位為149,597,870,700公尺,一光秒是光一秒所走的距離為299,792,458公尺。 例如,世界上最快的飛機可以達到每小時1萬1260千米的時速(2004年11月16日,美國航空航天局(NASA)的飛機最高速度紀錄是1萬1260千米/小時),依照這樣的速度,飛越一光年的距離需要用9萬5848年。而常見的客機大約是885千米/小時,這樣飛行1光年則需要122萬0330年。目前人造的最快物體是2016年7月5日抵達木星極軌道的朱諾號(2011年8月5日發射升空),最高速度為73.61千米/秒(即約26萬5000千米/小時),這樣的速度飛越1光年的距離約需要4075年的時間。.

新!!: 參宿四和光年 · 查看更多 »

光度

光度在科學的不同領域中有不同的意義。.

新!!: 參宿四和光度 · 查看更多 »

光度計

光度計(photometer)是指量測在溶液或是特定表面下光強度的儀器。 大部份的光度計是用光敏电阻、光电二极管或是光电倍增管來偵測光。為了進行分析,可能會先讓光經過滤光器再進行量測,若是要分析光譜或是特定波長的光,則會讓光經過。.

新!!: 參宿四和光度計 · 查看更多 »

光球

光球是恒星向外輻射出光線的區域。它從天體的表面向內延伸,直到氣體變得不透明的區域,大约相當於光深度(光的減弱距離以自然對數形式表示)2/3的位置。換言之,光球是天體外層對普通的光線透明,光子的平均散射次数小于1的區域。恆星輻射的總能量相當於在該半徑處氣體輻射的總能量。由於恆星沒有固體的表面(除了中子星),光球通常指的就是太陽或恆星可以被看見的視覺表面。這個字的英文源自古希臘的字根φως¨- φωτος/photos和σφαιρος/sphairos,意思就是光和球,事實上就是被觀察到表面發光的球體。.

新!!: 參宿四和光球 · 查看更多 »

玛尔斯

玛尔斯(拉丁語:Mars),羅馬神話中的战神,朱比特與茱諾之子,貝羅納之丈夫,维纳斯的情人,他是羅馬軍團崇拜的戰神中最重要的一位,重要程度僅次於朱比特。瑪爾斯的節日是在三月和十月。拉丁语的「火星」和英語的「March」正是源自瑪爾斯。但拉丁語「Mars」一詞並非源自原始印歐語,似乎是從伊特拉斯坎神話中的瑪里斯(Maris)拉丁化而成的。起初瑪爾斯是羅馬神話中的繁殖與植物之神,同時亦是牲畜、農田與農夫的守護神。在公元前2世紀,大加圖曾說「好好飼養你的牲畜,每年要向瑪爾斯·西爾瓦諾斯(Mars Silvanus)奉獻。」後來,隨著羅馬帝國的擴張,瑪爾斯成為了戰爭的象徵,等同希臘神話中的阿瑞斯。但與阿瑞斯不同,瑪爾斯一般備受敬畏,跟朱庇特一樣是最受尊崇的神祇。 玛尔斯被視為是傳說中建立罗马的羅穆盧斯和瑞摩斯的父親,所以罗马人有时自称為“玛尔斯之子”。 在许多欧洲语言,星期二是由玛尔斯而来,意为玛尔斯之日或者火星之日,如意大利语(martedi)、西班牙语(martes)、法语(mardi)。.

新!!: 參宿四和玛尔斯 · 查看更多 »

火星

火星(Mars, 天文符號♂),是離太陽第四近的行星,為太陽系中四顆類地行星之一。西方稱火星為瑪爾斯,是羅馬神話中的戰神;古漢語中則因为它荧荧如火,位置、亮度時常變動讓人無法捉摸而稱之為熒惑。火星在太陽系的八大行星中,第二小的行星,其質量、體積仅比水星略大。火星的直徑約為地球的一半,自轉軸傾角、自轉週期則與地球相當,但繞太陽公轉周期是地球的兩倍。在地球上,火星肉眼可見,亮度可達-2.91,只比金星、月球和太陽暗,但在大部分時間裡比木星暗。 火星大气以二氧化碳为主,既稀薄又寒冷。火星在視覺上呈現為橘紅色是由其地表所廣泛分佈的氧化鐵造成的。火星地表沙丘、砾石遍布且没有稳定的液态水,火星南半球是古老、充满陨石坑的高地,北半球则是较年轻的平原。 火星有兩個天然衛星:火衛一和火衛二,形狀不規則,可能是捕獲的小行星。火星目前有四艘在軌運行的探測船,分別是火星奧德賽號、火星快車號和火星偵察軌道器以及2014年9月22日抵达的MAVEN轨道器,地表還有很多火星車和著陸器,包括兩台火星車:機會號和好奇號,和已經結束任務的精神號和鳳凰號。根據觀測的證據,火星以前可能覆蓋大面積的水。亦觀察到最近十年內類似地下水湧出的現象。 火星全球勘測者則觀察到南極冠有部份退縮。火星快車號和火星偵察軌道器的雷達資料顯示兩極和中緯度地表下存在大量的水冰Water ice in crater at Martian north pole http://www.esa.int/SPECIALS/Mars_Express/SEMGKA808BE_0.html。2008年7月31日,鳳凰號直接於表土之下證實水冰的存在。2013年9月26日,火星探測車好奇號發現火星土壤含有豐富水分,大約為1.5至3重量百分比,顯示火星有足夠的水資源供給未來移民使用。2015年9月證實火星有間歇流動的液態水(液態鹽水)。.

新!!: 參宿四和火星 · 查看更多 »

獵戶座

獵戶座(Orion)是一個非常顯著的星座,也許是夜空中最出名的一個。全世界的人都能看到它那些分佈在天赤道上耀眼的星,也是各地人都認得的星座,也因此獵戶座一直有著「星座之王」的美譽,形如獵人俄里翁站在波江座的河岸,身旁有他的兩頭獵犬大犬座和小犬座,與他一起追逐著金牛座。一些其他的獵物如天兔座都在他的附近。.

新!!: 參宿四和獵戶座 · 查看更多 »

獵戶座OB1星協

獵戶座OB1星協是一個包含數打光譜類型為0和B型的熱巨星集團。星協是由數千顆低質量恆星,和一定數量的原恆星 (規模較小但重要的)。它是巨大的獵戶座分子雲團的一部分。由於相對的接近和複雜性,使他成為受到最密切研究的OB星協。 獵戶座OB1星協包含以下這些成員:.

新!!: 參宿四和獵戶座OB1星協 · 查看更多 »

獵戶腰帶

獵戶腰帶是在獵戶座內的一個星群,它包含獵戶ζ(Alnitak)、獵戶ε(Alnilam)、和獵戶δ(Mintaka)三顆亮星。尋找獵戶座的腰帶是在夜空中定出獵戶座位置最簡單的方法。在每年一月中旬的晚間9點鐘左右,獵戶座通過子午線之際,是最容易找到獵戶座腰帶的時間。 同樣的這三顆星在拉丁美洲被稱為三位瑪麗雅,它們也被作為北半球冬夜的標誌,這時的太陽位在一年中最低(最南方)的位置。 理查德·欣克利·阿倫列出了許多獵戶腰帶的口語名稱:在英語中包括雅各杵或權杖(Jacob's Rod or Staff)、彼得的桿子(Peter's Staff)、金手臂(the Golden Yard-arm)、the L、或Ell、Ell和Yard、the Yard-stick、和the Yard-wand、the Ellwand、Our Lady's Wand、the Magi、the Three Kings、the Three Marys、或最簡單的舊稱為三顆星(the Three Stars)。 Job 38:31 (King James Version) asks "Canst thou bind the sweet influences of Pleiades, or loose the bands of Orion?".

新!!: 參宿四和獵戶腰帶 · 查看更多 »

碳(Carbon,拉丁文意為煤炭)是一種化學元素,符號為C,原子序数為6,位於元素週期表中的IV A族,屬於非金屬。每個碳原子有四顆能夠進行鍵合的電子,因此其化合價通常為4。自然產生的碳由三種同位素組成:12C和13C為穩定同位素,而14C則具放射性,其半衰期約為5,730年。碳是少數幾個自遠古就被發現的元素之一(見化學元素發現年表)。 碳的同素異形體有數種,最常見的包括:石墨、鑽石及無定形碳。這些同素異形體之間的物理性質,包括外表、硬度、電導率等等,都具有極大的差異。在正常條件下,鑽石、碳納米管和石墨烯的熱導率是已知材質中最高的。 所有碳的同素異形體在一般條件下都呈固态,其中石墨的熱力學穩定性最高。它們不易受化學侵蝕,甚至連氧都要在高溫下才可與其反應。碳在無機化合物中最常見的氧化態為+4,並在一氧化碳及過渡金屬羰基配合物中呈+2態。無機碳主要來自石灰石、白雲石和二氧化碳,但也大量出現在煤、泥炭、石油和甲烷水合物等有機礦藏中。碳是所有元素中化合物种类最多的,目前有近一千萬種已記錄的純有機化合物,但這只是理論上可以存在的化合物中的冰山一角。 碳的豐度在地球地殼中排列第15(见地球的地殼元素豐度列表),並在全宇宙中排列第4(见化學元素豐度),名列氫、氦和氧之下。由於碳元素極為充沛,再加上它在地球環境下所能產生的聚合物種類極為繁多,因此碳是地球上所有生物的化學根本。.

新!!: 參宿四和碳 · 查看更多 »

神话

在民俗学上,神话是指关于人类和世界变迁的神圣故事。Dundes, Introduction, p. 1在广义上,“神话”可以指任何古老传说, 藉由故事的形式來表達民族的意识形态。 神话来源于原始社会时期,人类通过推理和想象对自然现象作出解释。但是由于这时的知識水準非常低下,因此经常笼罩着一层神秘的色彩。 神话是人们借助于幻想企图征服自然的表现。神话中神的形象大多具有超人的力量,是原始人类的认识和愿望的理想化。 许多民族的原始社会的历史,都是从神话故事开头的。神话中的人物大多来自原始人类的自身形象。狩猎比较发达的部落,所创造的神话人物大多与狩猎有关;农耕发达的部落所创造的神话人物多与农业有关。神话中的英雄也以刀斧、弓箭为武器。从神话中,可以看到先民的一些事迹。 不论是世界文明发生最早地区的原始社会民族,还是当今世界上还处在原始社会的民族,他们流传的许多神话故事都大同小异。 神话也是文学的先河,是人类最早的幻想性口头散文作品。例如《庄子·應帝王》中说:“泰氏,其卧徐徐,具觉于于,一以己为马,一以己为牛。” 神话具有一定的地域性和区域性,不同的文明或者民族都有自己所理解的神话含义。.

新!!: 參宿四和神话 · 查看更多 »

科学革命

科學革命(Scientific revolution),指近世歷史上,現代科學在歐洲萌芽的這段時期。在那段時期中,數學、物理學、天文學、生物學(包括人體解剖學)與化學等學科皆出現突破性的進步,這些知識改變了人類對於自然的眼界及心態Galileo Galilei, Two New Sciences, trans.

新!!: 參宿四和科学革命 · 查看更多 »

秒差距

差距(parsec,符號為pc)是一個宇宙距離尺度,用以測量太陽系以外天體的長度單位。1秒差距定義為某一天體與1天文單位的為1時的距離,但於2015年時被重新定義為一個精確值,為天文單位。1秒差距的距離等同於3.26光年(31兆公里或19兆英里)。離太陽最近的恆星比鄰星,距離大約為。絕大多數位於距太陽500秒差距內的恆星,可以在夜空中以肉眼看見。 秒差距最早於1913年,由英國天文學家提出。其英語名稱為一個混成詞,由「1角秒(arcsecond)的視差(parallax)」組合而來,使天文學家可以只從原始觀測數據,就能夠進行天文距離的快速計算。由於上述部分原因,即使光年在科普文字與日常上維持優勢地位,秒差距仍受到天文學與天體物理學的喜愛。秒差距適用於銀河系內的短距離表述,但在描述宇宙大尺度的用途上,會將其加上詞頭來應用,如千秒差距(kpc)表示銀河系內與周圍物體的距離,百萬秒差距(Mpc)描述銀河系附近所有星系的距離,吉秒差距(Gpc)則是描述極為遙遠的星系與眾多類星體。 2015年8月,國際天文學聯合會通過B2決議文,將絕對星等與進行標準定義,也包含將秒差距定義為一個精確值,即天文單位,或大約公尺(基於2012年國際天文學聯合會對於天文單位的精確國際單位制定義)。此定義對應於眾多當代天文學文獻中對於秒差距的小角度定義。.

新!!: 參宿四和秒差距 · 查看更多 »

空间望远镜

因為地球的大氣層對許多波段的天文觀測影響甚大,天文學家便設想若能將望遠鏡移到太空中,便可以不受大氣層的干擾得到更精確的天文資料。目前已有不少空间望遠鏡在太空中運行,例如:觀測可見光波段的哈勃空间望远镜,觀測紅外波段的史匹哲太空望遠鏡,觀測X光波段的錢卓太空望遠鏡,觀察γ射線波段的康普頓天文台(已於2000年退役)以及觀測暗物质的暗物质--粒子探测卫星等。.

新!!: 參宿四和空间望远镜 · 查看更多 »

穀神星

星(Ceres,; 小行星序號:1 Ceres)是在火星和木星軌道之間的主小行星帶中最亮的天體。它的直徑大約是,使它成為海王星軌道以內最大的小行星。在太陽系天體大小列表排名第35,是在海王星軌道內唯一被標示為矮行星的天體。穀神星由岩石和冰組成,估計它的質量佔整個主小行星帶的三分之一。穀神星也是主小行星帶唯一已知自身達到流體靜力平衡的天體。從地球看穀神星,它的視星等範圍在+6.7至+9.3之間,因此即使在最亮時,除非天空是非常的黑暗,否則依然是太暗淡而難以用肉眼直接看見。1801年1月1日意大利人朱塞普·皮亞齊在巴勒莫首先發現了穀神星。最初被當成一顆行星,随着越來越多的小天體在相似的軌道上被發現,因此在1850年代被重分類為小行星。 穀神星顯示已經有區分成岩石、核和冰的地函,並且在冰層之下可能留有液態水的內部海洋。表面可能是水冰和不同的水合物礦物,像是黏土和碳酸鹽,的混合。在2014年1月,在穀神星的幾個地區都檢測到排放出的水蒸氣。這是出乎意料之外的,在主小行星帶的大天體床不會發出水蒸氣,因為這是彗星的特徵。 美國NASA的機器人曙光號在2015年3月6日進入繞行穀神星的軌道。從2015年1月,曙光號就以前所未見的高解析度傳回影像,顯示表面有著坑坑窪窪。兩個獨特的亮點(或高反照率特徵)出現在撞擊坑內(不同於早些時候哈伯太空望遠鏡在一個撞擊坑中觀測到的影像。);出現於2015年2月19日的影像,導致考慮可能有冰火山 或釋氣的發想。在2015年3月3日,NASA的一位發言人說,這些點符合含冰或鹽的反光物質,但不太可能是冰。在2015年5月11日,NASA釋放出高解析的影像,顯示不是一個或兩個點,實際上在高解析的影像上有好幾個。在2015年12月9日,NASA的科學家報導,穀神星的亮斑可能是一種類型的鹽類,特別是“滷水”,包括硫酸鎂等硫酸水合物(MgSO4·6H2O);也發現這些斑點與富含氨的黏土相關聯。2015年10月,NASA釋出了由曙光號拍攝的真實色彩穀神星影像。.

新!!: 參宿四和穀神星 · 查看更多 »

米粒组织

米粒組織是在太陽的光球上因為對流層內的電漿對流導致的現象,這些出現在太陽對流細胞上的粒狀物,看上去是一些密密麻麻的不稳定的斑点,很像一颗颗的米粒,因此稱為米粒組織。 位於米粒組織中央的部分是上升中的電漿,溫度較高;在邊緣的是下降中的電漿,因溫度較低而顯得較為暗淡。除了目視可見的現象,都卜勒相位儀測量來自米粒組織各處的光線,可以提出米粒組織對流的證據。 一個米粒組織典型的大小約1,500公里直徑可以存在8至20分鐘。在任何一個時間,太陽的表面覆蓋約400萬米粒組織。除了典型的米粒組織之外,太陽的光球層下面還有直徑達30,000公里,生命期超過24小時的超米粒組織。.

新!!: 參宿四和米粒组织 · 查看更多 »

类星体

類星體 (quasar,,也以QSO或quasi-stellar object為人所知)是極度明亮的活躍星系核(AGN,active galactic nucleus)。大多數星系的核心都有一個超大質量黑洞,它的質量從百萬至數十億太陽質量不等。在類星體和其它形式的活躍星系核,黑洞被氣態的吸積盤環繞著。當吸積盤中的氣體朝向黑洞墬落,能量就會以電磁輻射的形式釋放出來。這些輻射被觀測到可以跨越電波、紅外線、可見光、紫外線、X射線、和γ射線等電磁頻譜的波長。類星體輻射的功率非常巨大:最強大的類星體的光度超過1041 瓦特,是普通星系,例如銀河系,的數千倍。 "類星體"這個名詞源自於準恆星狀電波源(quasi-stellar radio source)的縮寫,因為在20世紀50年代發現這種天體時,被認定為未知物理源的電波發射源。當在可見光的照相圖中篩檢出來時,它們類似可見光的星狀微弱光點。 類星體的高解析影像,特別是哈伯太空望遠鏡,已經證明類星體是發生在星系的中心,一些類星體的宿主星系是強烈的交互作用星系或.

新!!: 參宿四和类星体 · 查看更多 »

紫外線天文學

紫外線天文學是研究天體紫外線輻射的天文學分支學科;觀測電磁波波長大約在100到3200埃之間 。波長更短和能量更高的電磁波則屬X射線天文學和伽馬射線天文學的範圍。因為這個範圍波長的輻射無法穿透地球大氣層,必須以太空望遠鏡觀測。 天體的紫外線光譜可用來了解星際介質的化學成分、密度以及溫度;以及高溫年輕恆星的溫度與組成。星系演化的訊息也可從紫外線觀測得知。 以紫外線觀測天體的結果會與光學觀測有很大的差異。許多在光學觀測上相對溫度較低的恆星在紫外線觀測時卻顯示是高溫天體,尤其是在演化階段早期或晚期恆星。如果人眼可看到紫外線,我們所看到的夜空大部分的天體將會比現在黯淡許多。我們將能看到年輕的巨大恆星或年老恆星與星系。且許多銀河系中的分子雲和塵埃將阻擋許多天體。 目前主要的紫外線太空望遠鏡是哈伯太空望遠鏡和遠紫外分光探測器。探空火箭與太空梭也可進行紫外線觀測。.

新!!: 參宿四和紫外線天文學 · 查看更多 »

紅外光學望遠鏡陣列

紅外光學望遠鏡陣列 (Infrared Optical Telescope Array,IOTA)在1988年開始建立,共有五個單位參加:史密松物理天文台、哈佛大學、马萨诸塞大学、懷俄明大學和麻省理工學院的林肯實驗室,以天體物理學的觀測為目的,先建立兩架望遠鏡作為干涉儀作為儀器的原型,然後以更完善的技術發展更大型、更有威力的陣列。整個1993和1994年都在進行場地的建設,在1993年12月,將第一個干涉儀設置在弗雷德·勞倫斯·惠普爾天文台。 在2000年,第三架望遠鏡上線,完成了閉合相位的觀測準備,首度在IOTA上執行綜合孔徑成像。這個陣列在2006年夏天除役,並且已經拆除。.

新!!: 參宿四和紅外光學望遠鏡陣列 · 查看更多 »

紅外線空間干涉儀

紅外線空間干涉儀 (Infrared Spatial Interferometer,ISI) 是由3架65英寸 (1.65米) 的望遠鏡組成陣列的天文干涉儀,操作的範圍是中紅外線。這些望遠鏡是完全可以移動的,目前安置在加利福尼亞州的威爾遜山,彼此相距70米的距離,也使望遠鏡有相當於70米直徑的解析力。訊號經由外差電路轉換成無線電頻率,然後使用從電波天文學複製的技術進行組合。ISI由加州大學柏克萊分校的太空科學實驗室運作,在最長的70米基線上,以11微米的波長可以得到0.003角秒的解析力。在2003年7月9日,ISI記錄了中紅外線第一次的閉合相位的孔徑合成測量。.

新!!: 參宿四和紅外線空間干涉儀 · 查看更多 »

紅超巨星

紅超巨星(RSG)是恆星的恆星光譜分類的約克光譜分類(光度分類)中的第一級,超巨星中的一種。雖然它們的質量不是最大的,但體積卻是宇宙中最大的恆星。 質量超過10個太陽質量的恆星,在燃燒完核心的氫元素,進入燃燒氦元素的階段之後,將成為紅超巨星。這些恆星的表面溫度很低(3500-4500 K),但有極大的半徑。已知在銀河系內最大的四顆紅超巨星是仙王座μ、人馬座KW、仙王座V354和天鵝座KY,它們的半徑都在太陽的1,500倍以上(大約是7天文單位,或是地球至太陽距離的7倍)。大部分紅巨星的半徑是太陽的200至800倍,已經足以到達並超越地球到太陽的距離。 這些巨大的恆星比起"熱真空"-沒有明確邊界的光球,只是單純的滲入星際空間內-還是非常小。它們有緩慢、密集的恆星風,而且如果核心的反應因為任何原因減緩(例如在殼層中燃燒的轉變),它們可能縮小成為藍超巨星。藍超巨星有較快速但是疏落的恆星風,能造成在紅超巨星階段已經被釋出的物質被壓迫進入擴展的殼層內 許多紅超巨星的質量都允許它們核心的最終產物是鐵元素,在接近生命期的結束時,它們將發展出來的元素會越來越重,而越重的元素也越接近核心。 相對來說,紅超巨星的階段很短暫,持續的時間只有數十萬至數百萬年。大多數大質量的紅超巨星會發展成為沃爾夫-拉葉星,而質量稍低的紅超巨星會以類似II型超新星結束它們的生命。 參宿四和心宿二是紅超巨星最著名的例子。.

新!!: 參宿四和紅超巨星 · 查看更多 »

红外天文学

紅外天文學的主要研究對象是可以觀測到紅外輻射的天體,是天文學和天文物理学的一个重要分支。可見光的波長範圍大约为400奈米(藍色)至700奈米(紅色),波長比700奈米長但仍比微波短的電磁波稱為紅外線(有時也稱為次微米波)。紅外天文學有时也视为可见光天文学的一部份,因為反射鏡、透鏡等光學元件基本上都能用於紅外觀測。.

新!!: 參宿四和红外天文学 · 查看更多 »

红外线

红外线(Infrared,简称IR)是波长介乎微波与可见光之间的电磁波,其波長在760奈米(nm)至1毫米(mm)之間,是波長比紅光長的非可見光,對應頻率約是在430 THz到300 GHz的範圍內。室溫下物體所發出的熱輻射多都在此波段。 红外线是在1800年由天文學家威廉·赫歇爾發現,他發現有一種頻率低于紅色光的輻射,雖然用肉眼看不見,但仍能使被照射物體表面的溫度上昇。太陽的能量中約有超過一半的能量是以红外线的方式進入地球,地球吸收及發射紅外線輻射的平衡對其氣候有關鍵性的影響。 當分子改變其旋轉或振動的運動方式時,就會吸收或發射紅外線。由紅外線的能量可以找出分子的振動模態及其偶極矩的變化,因此在研究分子對稱性及其能態時,紅外線是理想的頻率範圍。紅外線光譜學研究在紅外線範圍內的光子吸收及發射。 红外线可用在軍事、工業、科學及醫學的應用中。紅外線夜視裝置利用即時的近紅外線影像,可以在不被查覺的情形下在夜間觀察人或是動物。紅外線天文學利用有感測器的望遠鏡穿透太空的星塵(例如分子雲),檢測像是行星等星體,以及檢測早期宇宙留下的紅移星體。紅外線熱顯像相機可以檢測隔絕系統的熱損失,觀查皮膚中血液流動的變化,以及電子設備的過熱。红外线穿透云雾的能力比可见光强,像紅外線導引常用在飛彈的導航、熱成像儀及夜視鏡可以用在不同的應用上、红外天文学及遠紅外線天文學可在天文學中應用红外线的技術。.

新!!: 參宿四和红外线 · 查看更多 »

纽约

纽约(New York)是位於美國紐約州的城市,為美国人口最多的城市、紐約都會區的核心、以及世界最大的城市之一,是对全球的经济、商业、金融、媒体、政治、教育和娱乐具有极大影响力的国际大都会。纽约还是聯合國總部所在地,因此紐約也被认为是世界外交的中心。纽约还被称为「世界文化之都.

新!!: 參宿四和纽约 · 查看更多 »

纽约州

纽约州(State of New York),暱稱帝國州(Empire State),是美国东北部的一个州,首府是奧爾巴尼,由上州、紐約市及郊縣(下州)所組成。 纽约州西部及北部与加拿大接壤,东邻马萨诸塞州、康涅狄格州、佛蒙特州(即“新英格兰三州”)和大西洋,南接宾夕法尼亚州和新泽西州,西北部連接五大湖之一的安大略湖。通常人们说起纽约州时不能像称呼美国绝大多数州那样省略最后的“州”(State)字,因为简单地说纽约多指纽约市。.

新!!: 參宿四和纽约州 · 查看更多 »

美国变星观测者协会

自从1911年成立以来, 美国变星观测者协会 (American Association of Variable Star Observers, AAVSO) 已经整理,收集,评价,测量,出版和储存了大量由天文爱好者做出的变星观测结果,并且让这些观测数据能够被职业天文学家,研究者和教育者利用。这些数据绘制成的光变曲线则描述了一个恒星的亮度变化与时间的关系。 由于职业天文学家没有足够的时间和资源来监视每一顆变星,因此天文学也便成为了少数几个爱好者就能够对科学研究做出贡献的科学之一。 AAVSO的国际数据库中现有超过一千两百万颗变星并可追溯到100年前的记录。 它每年接收着超过五十万份来自大约2000位职业和业余观测者的观测报告,其数据常常被科学期刊采用。 在专业研究之外,AAVSO同样活跃于教育和公众科学普及方面。 他们例行公事地主办公众科学研讨会并且与业余天文学家一同发表论文与报告。在20世纪90年代,AAVSO发展了天文学动手课程,现在以变星天文学的名称为人所知。 (由国家科学基金会(NSF)资助)。 在2009年,AAVSO获得了来自NSF的为其3年的八十万美元赞助来运作Citizen Sky普及项目, 这是一个职业天文学家与业余天文学家在2009-2011年间合作观测柱一的光变的计划。 AAVSO当前的领导是阿恩·亨登。而前任领导则是为AAVSO工作了数十年,于2004年三月由于白血病去世的珍妮特·马太。 AAVSO在创立之后在1911-1956年位于哈佛大学天文台内,然后移动到剑桥附近,此后,在1985年AAVSO购买了它的首幢建筑物 - 克林顿 B. 福特天文学数据与研究中心。 在2007年,AASVO购买了天空与望远镜杂志腾出的房屋与基地,并搬迁至此。.

新!!: 參宿四和美国变星观测者协会 · 查看更多 »

美国国家射电天文台

美国国家射电天文台(National Radio Astronomy Observatory,缩写为NRAO)是美国国家科学基金会资助的从事射电天文研究的机构,总部位于弗吉尼亚大学,在位于西弗吉尼亚州绿岸的国家无线电宁静区内建有世界最大的全可动射电望远镜——100米口径的绿岸望远镜。在新墨西哥州的圣阿古斯丁平原,国家射电天文台拥有甚大天线阵(VLA),由27台25米口径的天线组成,是世界上最大的综合孔径射电望远镜。2003年,国家射电天文台与多个国家的研究机构合作,开始在智利北部建设由64台口径12米的天线组成的阿塔卡玛大型毫米波天线阵(ALMA)。此外国家射电天文台还在亚利桑那州的基特峰建有12米口径的射电望远镜。 華人天文學家,中央研究院院士魯國鏞曾任該天文台台長。.

新!!: 參宿四和美国国家射电天文台 · 查看更多 »

絕對星等

在天文學上,絕對星等(Absolute magnitude,M)是指把天體放在指定的距離时(10秒差距)天体所呈现出的视星等(Apparent magnitude,m)。此方法可把天體的光度在不受距離的影響下,作出客觀的比較。.

新!!: 參宿四和絕對星等 · 查看更多 »

甚大天线阵

大天线阵(Very Large Array,缩写为VLA)是由27台25米口径的天线组成的射电望远镜阵列,位于美国新墨西哥州的圣阿古斯丁平原上,海拔2124米,是世界上最大的综合孔径射电望远镜。 甚大天线阵每个天线重230吨,架设在铁轨上,可以移动,所有天线呈Y形排列,每臂长21千米,组合成的最长基线可达36千米。甚大天线阵隶属于美国国家射电天文台(NRAO),于1981年建成,工作于6个波段,最高分辨率可以达到0.05角秒,与地面大型光学望远镜的分辨率相当。 天文学家使用甚大天线阵做出了一系列重要的发现,例如发现银河系内的微类星体、遥远星系周围的爱因斯坦环、伽玛射线暴的射电波段对应体等等。.

新!!: 參宿四和甚大天线阵 · 查看更多 »

甚大望远镜

大望远镜(Very Large Telescope,缩写为VLT,或譯超大型望遠鏡、特大望遠鏡)為欧洲南方天文台在智利建造的大型光学望远镜,由4台相同的8.2米口径望远镜组成,组合的等效口径可达16米。4台望远镜既可以单独使用,也可以组成光学干涉仪进行高分辨率观测。甚大望远镜位于智利安托法加斯塔以南130公里的帕瑞纳天文台,海拔高度为2,632米,这里气候干燥,一年当中晴夜数量多于340个。 每个甚大望远镜的主镜口径均为8.2米,焦比为F2,重量为22吨,厚18厘米,采用R-C式光學系統,下方安装了有150个促动器的主动光学系统。望远镜支架采用經緯儀装置,镜筒重量为100吨,470吨重的机架漂浮在0.05毫米厚的油膜上,可以灵活地转动。四架望远镜被用当地的马普切语分别命名为Antu、Kueyen、Melipal和Yepun,含义为太阳、月亮、南十字和金星,这些命名是一个智利女学生在欧洲南方天文台发起的命名竞赛中提出的。 甚大望远镜的研制工作始于1986年,耗资超过5亿美元。第一架望远镜太陽(Antu)在1998年建成,1999年4月正式使用,主要仪器是红外和光学波段照相机和摄谱仪。第二架望远镜月亮(Kueyen)于1999年3月建成,2000年4月正式使用,主要仪器是两架大型摄谱仪。第三架望远镜南十字(Melipal)在2000年1月建成,第四架望远镜金星(Yepun)于2000年7月建成,主镜表面研磨精度达到了8.5奈米。2005年和2006年,欧洲南方天文台在甚大望远镜近旁相继建造了4台口径1.8米的辅助望远镜,它们与4台8.2米望远镜共同组成甚大望远镜干涉仪(VLTI)。这些辅助望远镜不会显著增加干涉仪的聚光面积,但是可以增加基线数目,改善成像品质。 甚大望远镜的建设工作已于2012年2月全面完成。 甚大望远镜(VLT)是最富有生产力的陆基天文学设施,在可见光波长运行的设施之间比较,只有哈勃太空望远镜才能产生更多科学论文。其中使用甚大望远镜观察到一个太阳系外行星的第一个直接图像,追踪到在银河系中心超大质量黑洞周围的移动的单个恒星,和观测已知的最遥远的伽玛射线暴余辉。.

新!!: 參宿四和甚大望远镜 · 查看更多 »

熱力學溫標

#重定向 热力学温标.

新!!: 參宿四和熱力學溫標 · 查看更多 »

熔岩灯

岩灯(英語:Lava lamp)又称为蜡灯、水母灯。名字源于其内不定形状的蜡滴的缓慢流动,让人联想到熔岩的流动。熔岩灯有多种形状和颜色。.

新!!: 參宿四和熔岩灯 · 查看更多 »

盖亚任务

蓋亞任務(Gaia)是歐洲太空總署的太空望遠鏡。該任務的目的是要繪製一個包含約10億顆或銀河系1%恆星的三維星圖 。作為依巴谷卫星的後繼任務,蓋亞任務是歐洲太空總署在2000年以後的遠期科學任務。蓋亞任務在約5年的任務中將可觀測到視星等最暗為20等的天體。它的目標包含:.

新!!: 參宿四和盖亚任务 · 查看更多 »

白矮星

白矮星(white dwarf),也稱為簡併矮星,是由简并态物质構成的小恆星。它們的密度極高,一顆質量與太陽相當的白矮星體積只有地球一般的大小,微弱的光度則來自過去儲存的熱能。在太陽附近的區域內已知的恆星中大約有6%是白矮星。這種異常微弱的白矮星大約在1910年就被亨利·諾利斯·羅素、愛德華·皮克林和威廉·佛萊明等人注意到, p. 1白矮星的名字是威廉·魯伊登在1922年取的。 白矮星被認為是中、低質量恆星演化階段的最終產物,在我們所屬的星系內97%的恆星都屬於這一類。, §1.

新!!: 參宿四和白矮星 · 查看更多 »

銀心

銀心,即銀河系中心(Galactic Center),是銀河系環繞的中心區域,同時也是整個銀河系中最明亮的區域。銀心位於人馬座、蛇夫座與天蠍座三個星座中,距離地球約 8,000 秒差距(24,000 至 28,400 光年)。.

新!!: 參宿四和銀心 · 查看更多 »

聯星

聯星是兩顆恆星組成,在各自的軌道上圍繞著它們共同質量中心運轉的恆星系統。有著兩顆或更多恆星的系統稱為多星系統。這種系統,尤其是在距離遙遠時,肉眼看見的經常是單一的點光源,要過其它的觀測方法,才能揭示其本質。過去兩個世紀的研究顯示,一半以上可見的恆星都是多星系統。 雙星(double star)通常被視為聯星的同義詞;然而,雙星應該只是光學雙星。之所以稱為光學雙星,只是因為從地球上觀察它們在天球上的位置,在視線上幾乎是相同的位置。然而,它們的"雙重性"只取決於這光學效應;恆星本身之間的距離是遙遠的,沒有任何共用的物理連結。通過測量視差、自行或徑向速度的差異,可以揭示它們只是光學雙星。 許多著名的光學雙星尚未進行充分與嚴謹的觀測,來確認它們是光學雙星還是有引力束縛在一起的多星系統。 聯星系統在天文物理上非常重要,因為它們的軌道計算允許直接得出系統的質量,而更進一步還能間接估計出半徑和密度。也可以從質光關係(mass-luminosity relationship,MLR)估計出單獨一顆恆星的質量。 有些聯星經常是在以可見光檢測到的,在這種情況下,它們被稱為視覺聯星。許多視覺聯星有長達數百年或數千年的軌道週期,因此還不是很了解它們的軌道。它們也可能通過其他的技術,例如光譜學(聯星光譜)或天體測量學來檢測。如果聯星的軌道平面正巧在我們的視線方向上,它與伴星會發生互相食與凌的現象;這樣的一對聯星會被稱為食聯星,或因為它們是經由光度變化被檢測出來的,而被稱為光度計聯星。 如果聯星系統中的成員非常接近,將會因為引力而相互扭曲它們的大氣層。在這樣的情況下,這些接近的聯星系統可以交換質量,可能會帶來它們在恆星演化時,單獨的恆星不能達到的階段。這些聯星的例子有大陵五、天狼星、天鵝座X-1(這是眾所皆知的黑洞)。也有許多聯星是行星狀星雲的中心恆星,和新星與Ia型超新星的祖恆星。.

新!!: 參宿四和聯星 · 查看更多 »

顶点

顶点是数学和计算机科学等领域的术语,在不同的环境中有不同的意义。 在平面几何学中,顶点是指多边形两条边相交的地方,或指角的两条边的公共端点。 在立体几何学中,顶点是指在多面体中三个了了或更多的面连接的地方。 在图论中,顶点(vertex,node)可以理解为一个事物(object),而一张图则是由顶点的集合和顶点之间的连接构成的。 在计算机绘图中,顶点是空间中的一个点,一般由它的坐标表示。两个点可以确定一条直线,三个点可以确定一个平面。 在粒子物理学中,頂點是指粒子發生相互作用的點,例如LHC中兩粒子對撞產生反應的那個點就是頂點。.

新!!: 參宿四和顶点 · 查看更多 »

馬丁·史瓦西

丁·史瓦西(Martin Schwarzschild,),德裔美國天文學家、物理學家。知名德國天文學家卡爾·史瓦西的兒子。瑞士天文學家羅伯特·埃姆登的外甥。.

新!!: 參宿四和馬丁·史瓦西 · 查看更多 »

角分

角分(minute of angle,简称MOA),又稱弧分(minute of arc、arc minute或minute arc),是量度平面角的單位,符號為′,在不會引起混淆時,可簡稱作分。「角分」二字只限用於描述角度,不能於其他以「分」作單位的情況使用(如時間的分,或者考試分數)。 完整的周角为360度,1度等於60分,1分等於60 秒。以數學等式來表示即:.

新!!: 參宿四和角分 · 查看更多 »

角分辨率

利--,或瑞利--(Rayleigh criterion)表示了一個光學儀器的角分辨度(Angular resolution),最早由瑞利提出。 繞射限制了透鏡的分辨度。透鏡的口徑,可以視為單狹縫的2D版本。經過狹縫的光波干涉,形成所謂的愛里衍射圖樣。這引致圖像模糊。圓孔衍射的光強可寫成: I(\theta).

新!!: 參宿四和角分辨率 · 查看更多 »

角秒

角秒,又稱弧秒,是量度平面角的單位,即角分的六十分之一,符號為″。在不會引起混淆時,可簡稱作秒。「角秒」二字只限用於描述角度,不能於其他以「秒」作單位的情況使用(如時間)。.

新!!: 參宿四和角秒 · 查看更多 »

角直徑

角直徑是以角度做測量單位時,從一個特定的位置上觀察一個物體所得到的「視直徑」。視直徑只是被觀測的物體在垂直觀測者視線方向中心的平面上產生的透視投影的直徑。由於它是在觀測者的角度下按比例的縮影,因此與物體真實的直徑會有所不同。但對一個在遙遠距離上的盤狀天體,視直徑和實直徑是相同的。.

新!!: 參宿四和角直徑 · 查看更多 »

视宁度

视宁度(英文:Seeing 或 Astronomical seeing),是用于描述天文观测的目标受大气湍流的影响而看起来变得模糊和闪烁程度的物理量。 视宁度严格来说是属于大气科学研究的范畴,从事天文观测的科学家对此非常关注,因为它的好坏对天文光学观测的质量影响很大。世界上重要的光学天文台,如夏威夷的莫纳克亚山、加那利群岛的拉帕尔玛岛等的视宁度条件都很理想。科学家會在候选的光学观测台址上测量视宁度,例如美国正计划建一架30米口径望远镜,就在墨西哥北部和智利北部等多处进行视宁度的测量。 Category:天文成像 Category:觀測天文學 Category:观月.

新!!: 參宿四和视宁度 · 查看更多 »

视差

視差是從兩個不同的點查看一個物體時,視位置的移動或差異,量度的大小位是這兩條線交角的角度或半角度。這個名詞是源自希臘文的παράλλαξις(parallaxis),意思是"改變"。從不同的位置觀察,越近的物體有著越大的視差,因此視差可以確定物體的距離。 从目标看两个点之间的夹角,叫做这两个点的视差角,两点之间的距离称作基线。 天文學家使用視差的原理測量天體的距离,包括月球、太陽、和在太陽系之外的恆星。例如,依巴谷衛星測量了超過100,000顆鄰近恆星的距離。這為天文學提供了測量宇宙距離尺度的階梯,是其它測距方法的基礎。在此處,"視差"這個名詞是兩條到恆星的視線交角的角度或半角度。 一些光學儀器,像是雙筒望遠鏡、顯微鏡、和雙鏡頭單眼反射相機,會以略為不同的角度觀看物體,都會受到視差的影響。許多動物的兩隻眼睛有著重疊的視野,可以利用視差獲得深度知覺;此一過程稱為立體視覺。這種效果在電腦視覺用於電腦立體視覺,並有一種裝置稱為視差測距儀,利用它來測量發現目標的距離,也可以改變為測量目標的高度。 一個簡單的,日常都能見到的視差例子是,汽車儀表板上"指針"顯示的速度計。當從正前方觀看時,顯示的正確數值可能是60;但從乘客的位置觀看,由於視角的不同,指針顯示的速度可能會略有不同。.

新!!: 參宿四和视差 · 查看更多 »

视星等

视星等(apparent magnitude,符號:m)最早是由古希腊天文学家喜帕恰斯制定的,他把自己编制的星表中的1022颗恒星按照亮度划分为6个等级,即1等星到6等星。1850年英国天文学家普森发现1等星要比6等星亮100倍。根据这个关系,星等被量化。重新定义后的星等,每级之间亮度则相差2.512倍,1勒克司(亮度单位)的视星等为-13.98。 但1到6的星等并不能描述当时发现的所有天体的亮度,天文学家延展本來的等級──引入「负星等」概念。这样整个视星等体系一直沿用至今。如牛郎星为0.77,织女星为0.03,除了太陽之外最亮的恒星天狼星为−1.45,太阳为−26.7,满月为−12.8,金星最亮时为−4.89。现在地面上最大的望远镜可看到24等星,而哈勃望远镜则可以看到30等星。 因为视星等是人们从地球上观察星体亮度的度量,它实际上只相当于光学中的照度;因为不同恒星与地球的距离不同,所以视星等并不能指示出恒星本身的发光强度。 由于视星等需要同时考虑星体本身光度与到地球的距离等多重因素,会出现距离地球近的星体视星等不如距离远的星体的情况。例如巴纳德星距离地球仅6光年,却无法被肉眼所见(9.54等)。 如果人们在理想環境下(清澈、晴朗且没有月亮的夜晚),肉眼能观察到的半個天空平均约3000颗星星(至6.5等計算),整个天球能被肉眼看到的星星則约有6000颗。大多数能为肉眼所见的星星都在数百光年内。现在人类用肉眼可以看见的最远天体是三角座星系,其星等约为6.3,距离地球约290万光年。历史上肉眼能看见的最远天体是GRB 080319B在2008年3月19日的一次伽玛射线暴,距离地球达到75亿光年,视星等达到5.8,相当于用肉眼看见那里75亿年前发出的光。 另外,宇宙中大量的星际尘埃也会影响到星星的视星等。由于尘埃的遮蔽,一些明亮的星星在可见光上将变得十分暗淡。有一些原本能为肉眼所见的恒星变得再也无法用肉眼看见,例如银河系中心附近的手枪星。 星星的视星等也随着星星本身的演化、和它们与地球的距离变化而变化当中。例如,当超新星爆发时,星体的视星等有机会骤增好几个等级。在未来的几万年内,一些逐渐接近地球的恒星将会显著变亮,例如葛利斯710在约一百万年后将从9.65等增亮到肉眼可见的1等。.

新!!: 參宿四和视星等 · 查看更多 »

譜線

譜線是在均勻且連續的光譜上明亮或黑暗的線條,起因於光子在一個狹窄的頻率範圍內比附近的其他頻率超過或缺乏。 譜線通常是量子系統(通常是原子,但有時會是分子或原子核)和單一光子交互作用產生的。當光子的能量確實與系統內能階上的一個變化符合時(在原子的情況,通常是電子改變軌道),光子被吸收。然後,它將再自發地發射,可能是與原來相同的頻率或是階段式的,但光子發射的總能量將會與當初吸收的能量相同,而新光子的方向不會與原來的光子方向有任何關聯。 根據氣體、光源和觀測者三者的幾何關係,看見的光譜將會是吸收譜線或發射譜線。如果氣體位於光源和觀測者之間,在這個頻率上光的強度將會減弱,而再發射出來的光子絕大多數會與原來光子的方向不同,因此觀測者看見的將是吸收譜線。如果觀測者看著氣體,但是不在光源的方向上,這時觀測者將只會在狹窄的頻率上看見再發射出來的光子,因此看見的是發射譜線。 吸收譜線和發射譜線與原子有特定的關係,因此可以很容易的分辨出光線穿越過介質(通常都是氣體)的化學成分。有一些元素,像是氦、鉈、鈰等等,都是透過譜線發現的。光譜線也取決於氣體的物理狀態,因此它們被廣泛的用在恆星和其他天體的化學成分和物理狀態的辨識,而且不可能使用其他的方法完成這種工作。 同核異能位移是由於吸收光子的原子核與發射的原子核有不同的電子密度。 除了原子-光子的交互作用外,其他的機制也可以產生譜線。根據確實的物理交互作用(分子、單獨的粒子等等)所產生的光子在頻率上有廣泛的分佈,並且可以跨越從無線電波到伽馬射線,所有能觀測的電磁波頻譜。.

新!!: 參宿四和譜線 · 查看更多 »

變星

變星是指亮度與電磁輻射不穩定的,經常變化並且伴隨著其他物理變化的恆星。 多數恆星在亮度上幾乎都是固定的。以我們的太陽來說,太陽亮度在11年的太陽週期中,只有0.1%變化。然而有許多恆星的亮度確有顯著的變化。這就是我們所說的變星。 變星可以大致分成以下兩種形態:.

新!!: 參宿四和變星 · 查看更多 »

误差范围

误差范围表达了统计结果中的随机波动的大小。这可以视为同样的问卷调查进行多次,其报告的百分比的变化的衡量。误差范围越大,该调查得到的百分比接近“真实”值(也就是在整个样本空间中的百分比)的可能性越低。 误差范围可以通过一次抽样调查得到的每个数字进行计算,除非所进行的是一次非概率抽样。对于以百分比表达的结果,经常可以计算一个最大误差范围,它适用于该调查的所有结果(至少所有基于整个采样的结果)。有时最大误差范围可以直接从采样的大小(回答问卷者的数量)计算。 误差范围通常在三个可信度上给出;99%,95%和90%。99%这个级别是最保守的,而90%的级别是最不保守的。95%的级别最为常用。如果可信度为95%,则整个样本空间的“真实”百分比有95%的可能处于一个问卷的结果的误差范围内。等价的说,误差范围就是95%可信区间的半径。 注意误差范围只考虑随机采样误差。它不考虑潜在的其它误差源,例如问题中的偏向性,没有被调查到的群体所带来的偏差,拒绝回答或者撒谎的人带来的误差,错误记数或者计算带来的偏差,等等。 \approx 1.29/\sqrt\, These formulae only apply if the survey used a simple random sample.

新!!: 參宿四和误差范围 · 查看更多 »

诺贝尔物理学奖

| title.

新!!: 參宿四和诺贝尔物理学奖 · 查看更多 »

超巨星

超巨星是質量最大的恆星,在赫羅圖上占據著圖的頂端,在約克光譜分類中屬於Ia(非常亮的超巨星)或Ib(不很亮的超巨星),但最明亮的超巨星有時會被分類為0。 超巨星的質量是太陽的10至70倍,亮度則為太陽光度的30,000至數百萬倍,它們的半徑變化也很大,通常是太陽半徑的30至500倍,甚至超過1000倍太陽半徑。斯特凡-波茲曼定律顯示紅超巨星的表面,單位面積輻射的能量較低,因此相對於藍超巨星的溫度是較冷的,因此有相同亮度的紅超巨星會比藍超巨星更巨大。 因為她們的質量是如此的巨大,因此壽命只有短暫的一千萬至五千萬年,所以只存在於年輕的宇宙結構中,像是疏散星團、螺旋星系的漩渦臂,和不規則星系。她們在螺旋星系的核球中很罕見,也未曾在橢圓星系或球狀星團中被觀測到,因為這些天體都是由老年的恆星組成的。 超巨星的光譜佔據了所有的類型,從藍超巨星早期型的O型光譜,到紅超巨星晚期型的M型都有。參宿七,在獵戶座中最亮的恆星,是顆藍白色的超巨星,參宿四和天蝎座的心宿二則是紅超巨星。 超巨星模型的塑造依然是研究領域中活躍且有困難之處的區塊,例如恆星質量流失的問題就仍待解決。新的趨勢與研究方法則不只是要塑造一顆恆星的模型,而是要塑造整個星團的模型,並且藉以比較超巨星在其中的分布與變化,例如,像在星系麥哲倫雲中的分布狀態。 宇宙中的第一顆恆星,被認為是比存在於現在的宇宙中的恆星都要明亮與巨大的。這些恆星被認為是第三星族,她們的存在是解釋在類星體的觀測中,只有氫和氦這兩種元素的譜線所必須的。 大部分第二型超新星的前身被認為是紅超巨星,然而,超新星1987A的前身卻是藍超巨星。不過,在強大的恆星風將外面數層的氣體殼吹散前他可能是一顆紅超巨星。 目前所知最大的幾顆恆星,依據體積的大小排序如下:盾牌座UY、天鵝座NML、仙王座RW、WOH G64、仙后座PZ、維斯特盧1-26、人馬座VX、大犬座VY(the Garnet Star)。以上排名与亮度和重量无关。.

新!!: 參宿四和超巨星 · 查看更多 »

超米粒組織

超米粒組織是A.

新!!: 參宿四和超米粒組織 · 查看更多 »

超新星

超新星是某些恒星在演化接近末期时经历的一种剧烈爆炸。这种爆炸都极其明亮,过程中所突发的电磁辐射经常能够照亮其所在的整个星系,并可持续几周至几个月才会逐渐衰减变为不可见,而期间内一颗超新星所辐射的能量可以与太阳在其一生中辐射能量的总和相當。恒星通过爆炸会将其大部分甚至几乎所有物质以可高至十分之一光速的速度向外抛散,并向周围的星际物质辐射激波。这种激波会导致形成一个膨胀的气体和尘埃构成的壳状结构,这被称作超新星遗迹。超新星是星系引力波潛在的強大來源。初級宇宙射線有很大的比例來自超新星 。 超新星比新星更有活力。超新星的英文名稱為 supernova,nova在拉丁語中是“新”的意思,這表示它在天球上看上去是一顆新出現的亮星(其實原本即已存在,因亮度增加而被認為是新出現的);字首的super-是為了將超新星和一般的新星有所區分,也表示超新星具有更高的亮度。超新星這個名詞是沃爾特·巴德和弗裡茨·茲威基在1931年創造的。 超新星可以用兩種方式之一觸發:突然重新點燃核融合之火的簡併恆星,或是大質量恆星核心的重力塌陷。在第一種情況,一顆簡併的白矮星可以透過吸積從伴星那兒累積到足夠的質量,或是吸積或是合併,提高核心的溫度,點燃碳融合,並觸發失控的核融合,將恆星完全摧毀。在第二種情況,大質量恆星的核心可能遭受突然的引力坍縮,釋放重力位能,可以創建一次超新星爆炸。 最近一次觀測到銀河系的超新星是1604年的克卜勒之星(SN 1604);回顧性的分析已經發現兩個更新的殘骸 。對其它星系的觀測表明,在銀河系平均每世紀會出現三顆超新星,而且以現在的天文觀測設備,這些銀河超新星幾乎肯定會被觀測到 。它們作用的角色豐富了星際物質與高質量的化學元素。此外,來自超新星向外膨脹的激波可以觸發新恆星的形成。.

新!!: 參宿四和超新星 · 查看更多 »

超新星候選列表

超新星候選列表是天文學家提出將成為超新星前身的恆星。II型超新星的前身包括演化至最後階段的質量仍然大於10倍太陽質量的恆星(在這個質量範圍內的恆星,著名的例子包括心宿二、角宿一、天社一 仙王座μ和五合星團中的一些成員。)。Ia型超新星的前身是接近錢德拉塞卡極限,經由伴星吸積至大約是1.38太陽質量的白矮星。這張表也包括大質量的沃夫-瑞葉星,它們可能會成為Ia/Ib超新星。.

新!!: 參宿四和超新星候選列表 · 查看更多 »

輻射能

#重定向 辐射能.

新!!: 參宿四和輻射能 · 查看更多 »

辐射热测量计

辐射热测量计是一种物体测量辐射热量的传感器。 简明原理: 吸收光的辐射功率 → 温度升高 → 改变电阻大小。 特点:该仪器具有很高的灵敏性。相对于其他辐射探测器(比如光电管及光电二极管)而言,辐射热测量计具有比较高的带宽,以及对比较难或者未知的射线的探测(比如远红外射线和太赫射线) 常用有两种:.

新!!: 參宿四和辐射热测量计 · 查看更多 »

近紅外線影像技術

近紅外線影像技術是把波長大於700nm以上的「近紅外線影像」利用光化學技術、光電學技術轉變成人類可以辨識影像的技術。.

新!!: 參宿四和近紅外線影像技術 · 查看更多 »

舞蹈

舞蹈是八大艺术之一,是於三度空間中以身體為語言作「心智交流」現象之人体的运动表达艺术,一般有音乐伴奏,以有节奏的动作为主要表现手段的艺术形式。它一般借助音乐,也借助其他的道具。舞蹈本身有多元的社會意義及作用,包括運動、社交/求偶、祭祀、禮儀等。.

新!!: 參宿四和舞蹈 · 查看更多 »

阿尔伯特·迈克耳孙

阿尔伯特·亚伯拉罕·迈克耳孙(Albert Abraham Michelson,),又譯「邁克生」、「迈克耳逊」,波蘭裔美国藉物理学家,以测量光速而闻名,尤其是迈克耳孙-莫雷实验。1907年诺贝尔物理学奖获得者。.

新!!: 參宿四和阿尔伯特·迈克耳孙 · 查看更多 »

開普敦

開普敦(英语:Cape Town;南非荷蘭語:Kaapstad /ˈkɑːpstɑt/;科萨语:iKapa)是南非人口排名第二大城市,也是開普敦都會城區組成部分、西開普省省会,開普敦為南非立法首都,因此國會及很多政府部門亦座落於該市。開普敦以其美麗的自然景觀及碼頭聞名,知名的地標有被譽為“上帝之餐桌”的桌山,以及印度洋和大西洋的交匯點好望角。因其美麗的自然及地理環境,開普敦被稱為世界最美麗的城市之一,亦成為南非其中一處旅遊勝地。 開普敦最初環繞碼頭發展,因為由荷兰開往東非、印度和亚洲的商船都會路經此地作補給,久而久之便成為欧洲人在撒哈拉以南非洲地區的第一個長期聚居點。其後歐洲人亦建立了他們的第一所軍事基地好望堡,亦即good hope castle,在約翰內斯堡的建立及在德兰士瓦發現大量的黃金和鑽石之前,開普敦是非洲南部最大的城市。 開普敦擁有南非第二繁忙的機場开普敦国际机场,是世界旅客到南非的主要渠道之一。 根據2007年南非全國人口普查資料,開普敦共有350多萬人口。陸地面積為2,499平方公里,相對其他南非城市來說面積較大,人口密度較小(1,158/平方公里)。.

新!!: 參宿四和開普敦 · 查看更多 »

银河系

銀河星系(古稱银河、天河、星河、天汉、銀漢等),是一個包含太陽系 的棒旋星系。直徑介於100,000光年至180,000光年。估計擁有1,000億至4,000億顆恆星,並可能有1,000億顆行星。太陽系距離銀河中心約26,000光年,在有著濃密氣體和塵埃,被稱為獵戶臂的螺旋臂的內側邊緣。在太陽的位置,公轉週期大約是2億4,000萬年。從地球看,因為是從盤狀結構的內部向外觀看,因此銀河系呈現在天球上環繞一圈的帶狀。 銀河系中最古老的恆星幾乎和宇宙本身一樣古老,因此可能是在大爆炸之後不久的黑暗時期形成的。在10,000光年內的恆星形成核球,並有著一或多根棒從核球向外輻射。最中心處被標示為強烈的電波源,可能是個超大質量黑洞,被命名為人馬座A*。在很大距離範圍內的恆星和氣體都以每秒大約220公里的速度在軌道上繞著銀河中心運行。這種恆定的速度違反了开普勒動力學,因而認為銀河系中有大量不會輻射或吸收電磁輻射的質量。這些質量被稱為暗物質。 銀河系有幾個衛星星系,它們都是本星系群的成員,並且是室女超星系團的一部分;而它又是組成拉尼亞凱亞超星系團的一部分。整個銀河系對銀河系外的參考坐標系以大約每秒600公里的速度在移動。.

新!!: 參宿四和银河系 · 查看更多 »

鄰近地球的超新星

#重定向 近地超新星.

新!!: 參宿四和鄰近地球的超新星 · 查看更多 »

自适应光学

自适应光学(Adaptive optics, AO)是一項使用可变形镜面矫正因大气抖动造成光波波前发生畸变,从而改進光學系統性能的技術。自适应光学的概念和原理最早是在1953年由海尔天文台的胡瑞斯·拜勃库克(Horace Babcock)提出的,但是超越了当时的技术水平所能达到的极限,只有美国军方在星球大战计划中秘密研发这项技术。冷战结束后,1991年5月,美国军方将自适应光学的研究资料解密,计算机和光学技术也足够发达,自适应光学技术才得以广泛应用。配备自适应光学系统的望远镜能够克服大气抖动对成像带来的影响,将空间分辨率显著提高大约一个数量级,达到或接近其理论上的衍射极限。第一台安装自适应光学系统的大型天文望远镜是欧洲南方天文台在智利建造的3.6米口径的新技术望远镜。目前越来越多的大型地面光学/红外望远镜都安装了这一系统,比如位于夏威夷莫纳克亚山的8米口径双子望远镜、3.6米口径的加拿大-法国-夏威夷望远镜、10米口径的凯克望远镜、8米口径的日本昴星团望远镜等等。自适应光学已经逐步成为各大天文台所广泛使用的技术,並为下一代更大口径的望远镜的建造开辟了道路。.

新!!: 參宿四和自适应光学 · 查看更多 »

金星

金星(英語、拉丁語:Venus,天文符號:♀),在太陽系的八大行星中,是從太陽向外的第二顆行星,軌道公轉週期為224.7地球日,它沒有天然的衛星。在中國古代稱為太白、明星或大囂,另外早晨出現在東方稱啟明,晚上出現在西方稱長庚。到西漢時期,《史記‧天官書》作者天文學家司馬遷從實際觀測發現太白為白色,與「五行」學說聯繫在一起,正式把它命名為金星。它的西文名稱源自羅馬神話的愛與美的女神,维纳斯(Venus),古希腊人称为阿佛洛狄忒,也是希腊神话中爱与美的女神。金星的天文符号用维纳斯的梳妆镜来表示。 它在夜空中的亮度僅次於月球,是第二亮的天然天體,視星等可以達到 -4.7等,足以照射出影子。由於金星是在地球內側的內行星,它永遠不會遠離太陽運行:它的離日度最大值為47.8°。 金星是一顆類地行星,因為它的大小、質量、體積與到太陽的距離,均與地球相似,所以經常被稱為地球的姊妹星。然而,它在其它方面則明顯的與地球不同。它有著四顆類地行星中最濃厚的大氣層,其中超過96%都是二氧化碳,行星表面的大氣壓力是地球的92倍。表面的平均溫度高達,是太陽系最熱的行星,比最靠近太陽的水星還要熱。金星沒有將碳吸收進入岩石的碳循環,似乎也沒有任何有機生物來吸收生物量的碳。金星被一層高反射、不透明的硫酸雲覆蓋著,阻擋了來自太空中,可能抵達表面的可見光。它在過去可能擁有海洋,並且外觀與地球極為相似,但是隨著失控的溫室效應導致溫度上升而全部蒸發掉了B.M. Jakosky, "Atmospheres of the Terrestrial Planets", in Beatty, Petersen and Chaikin (eds), The New Solar System, 4th edition 1999, Sky Publishing Company (Boston) and Cambridge University Press (Cambridge), pp.

新!!: 參宿四和金星 · 查看更多 »

長週期變星

長週期變星 (LPV) 是一種低溫巨大的脈動變星,變光週期從幾天到一千天或更長,有時缺乏明確的定義,並且有些是不規則的。長週期變星的光譜類型從F到redwards,但是多數都是紅巨星和AGB巨星,也就是光譜類型為M、S或C。它們的顏色通常是深橙色或紅色。 長週期變星可以分成下列幾種有明確定義的類型,但是常見到的都緊緊題到米拉變星。.

新!!: 參宿四和長週期變星 · 查看更多 »

色指數

色指數是天文學中利用顏色來顯示恆星表面溫度的一個純量。要測量出這個指數,觀測者需要使用兩種不同的濾鏡,U和B或B和V,依序測出目標物的光度。這是一套很常用的通帶或濾鏡測光系統,U是對紫外線靈敏的濾鏡,B是對藍光靈敏的濾鏡,V是對黃綠色的可見光靈敏的濾鏡(參考UBV系統)。使用不同濾鏡測得的光度差分別稱為U-B或B-V的色指數,數值越小,恆星的顏色越接近藍色;反之,色指數越大,顏色越紅(或溫度越低)。 這是一系列以對數顯示的結果,明亮的天體呈現的數值比暗淡的天體為小(可以為負值)。在比較上,淡黃色的太陽B-V色指數為0.656±0.005,藍色的參宿七B-V的數值為-0.03(參宿七的B星等為0.09,V星等為0.12,B-V.

新!!: 參宿四和色指數 · 查看更多 »

電磁輻射

#重定向 电磁辐射.

新!!: 參宿四和電磁輻射 · 查看更多 »

電磁波譜

在電磁學裏,電磁波譜包括電磁輻射所有可能的頻率。一個物體的電磁波譜專指的是這物體所發射或吸收的電磁輻射(又稱電磁波)的特徵頻率分佈。 电磁波谱频率从低到高分別列为无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线。可见光只是电磁波谱中一个很小的部分。電磁波譜波長有長到數千公里,也有短到只有原子的一小段。短波長的極限被認為,幾乎等於普朗克長度,長波長的極限被認為,等於整個宇宙的大小,雖然原則上,電磁波譜是無限的,而且連續的。.

新!!: 參宿四和電磁波譜 · 查看更多 »

通量

通量,或稱流束是通過一個表面或一個物質的量,是一个物理学概念。在热学和流体力学领域中,是指在单位时间内通过单位面积的流量,它是一个向量;在电磁学领域中,是指在单位面积上垂直于其表面的磁场或电场的强度,它是一个标量。.

新!!: 參宿四和通量 · 查看更多 »

HD星表

HD星表(The Henry Draper Catalogue,缩写为HD,亨利·德雷伯星表)是哈佛大学天文台编纂的世界上第一个收录恒星光谱的大型星表,首版在1918年至1924年间出版,它给出了225,300颗恒星的光谱分类,涵盖了全天最暗达到照相星等为9等的恒星(大部分是北天的恒星),历元为1900.0。最初的HD星表包含的星主要是亮于9等的星,随后的增版增加了在某些天区的暗星。, HyperSky documentation, Willmann-Bell, Inc., 1996.

新!!: 參宿四和HD星表 · 查看更多 »

II型超新星

Ⅱ型超新星(罗马数字2),也稱為核塌縮超新星,是大質量恆星由內部塌縮引發劇烈爆炸的的結果,在分類上是激變變星的一個分支。能造成內部塌縮的恆星,質量至少是太陽質量的9倍。 大質量恆星由核融合產生能量,與太陽不同的是,這些恆星的質量能夠合成原子量比氫和氦更重的元素,恆星的演化供應和儲存質量更大的核融合燃料,直到鐵元素被製造出來。但是鐵的核融合不能產生能量來支撐恆星,所以核心的質量改由電子簡併壓力來支撐。這種壓力來自屬於費米子的電子,在恆星被壓縮時不能在原子核內擁有相同的能量狀態。(參考泡利不相容原理) 當鐵核的質量大於1.44太陽質量(錢德拉塞卡極限),接著就會發生內爆。快速的收縮使核心被加熱,導致快速的核反應形成大量的中子和微中子。塌縮被中子的短距力阻止,造成內爆轉而向外。向外傳遞的震波有足夠的能量將環繞在周圍的物質推擠掉,形成超新星的爆炸。 Ⅱ型超新星的爆炸有幾種不同的類型,可以依據爆炸後的光度曲線-光度對爆炸後的時間變化圖-來分類。Ⅱ-L超新星顯示出穩定的線性光度下降;而Ⅱ-P超新星在一段正常的光度下降之後,呈現出平緩的下降(高原),才會再持續正常的下降曲線。通常這些塌縮超新星的光譜中也會出現氫的光譜,雖然Ib和Ic超新星也是將氫和氦(Ic超新星)的殼層拋出的核心塌縮大質量恆星,但它們的光譜看起來卻缺乏這些元素。.

新!!: 參宿四和II型超新星 · 查看更多 »

Light year

Light year可能指:.

新!!: 參宿四和Light year · 查看更多 »

SAO星表

SAO星表(The Smithsonian Astrophysical Observatory Star Catalog / 史密松天体物理台星表)是一个天体测量星表,在1966年由史密松天体物理台出版,共包含258,997颗恒星。该星表由之前的一些星表编纂而成,但仅收录9.0等以上且已经精确测量过自行的恒星。SAO星表里的星名由字母SAO开头接着数字序号表示,恒星以赤纬分区,每10度为一区,共分为18区,在每一区中的恒星依照赤经位置来排序。SAO星表较大的变动是增加了一些HD星表没有的资料:恒星的自行,因为这是很有用的资料;与HD星表和巡天星表序号的交互参照,在最后的一版中仍然被保留着。.

新!!: 參宿四和SAO星表 · 查看更多 »

SIMBAD

SIMBAD(Set of Identifications, Measurements, and Bibliography for Astronomical Data)是由法國數據資料中心負責和維護的一個天文資料庫,其設置的功能在確認、測量太陽系外天體和收錄相關文獻。 SIMBAD是由恆星確認目錄(Catalog of Stellar Identifications,CSI)和恆星指引書目合併創造出來的。在1979年前,它們只存在於默冬電腦中心。然後,它們額外的從其他目錄和學術文獻擴大了資料來源。在1981年首度提供了網上互動式版本,舊式被稱為V2的版本。V3的版本使用C語言開發,在斯特拉斯堡天文台的UNIX電腦工作站上執行。2006年秋季,在資料庫中看見釋出完全由JAVA(電腦程式語言)撰寫和支援的軟體的V4版本,現在儲存在PostgreSQL。 截至2011年10月11日,SIMBAD以15,224,536個不同的名稱,以及257,763 參考書目和8,313,370書目引文。 小行星(4692),,被命名為(4692) SIMBAD。.

新!!: 參宿四和SIMBAD · 查看更多 »

VizieR

#重定向 VizieR天文星表資料庫.

新!!: 參宿四和VizieR · 查看更多 »

暗天體照相機

暗天體照相機(FOC)是安裝在哈伯太空望遠鏡上的照相機,在2002年才被先進巡天照相機(ACS)取代。 這架照相機是以歐洲太空總署(ESA)的資金由 Dornier GmbH 製造的。這個單位實際上是能提供極高解析力,超過0.05 弧秒,的二架完全獨立的照相機。他是設計來觀測非常暗的紫外線天體,觀測的波段被規劃在115至650奈米。超級精細 在設計上,照相機的解析度分為低、中、高三級,每一級的視野和解析力如下:.

新!!: 參宿四和暗天體照相機 · 查看更多 »

恆星大氣層

恆星大氣層是恆星的最外層區域,位置在核心、輻射層和對流層之上,依照獨特的特徵可以分為數層:.

新!!: 參宿四和恆星大氣層 · 查看更多 »

恆星亮度列表

亮星之所以亮是因为它们的光度较高且/或离地球距离较近。以下是在可见光波段从地球看起来视星等亮于+2.5的恒星列表。由于随着视星等的增加,可观测恒星的数目将大大增加,因此此处只列出前100颗。实际上,整个天空亮过视星等+11的恒星几乎都记录在案了,对更暗天体的探索也在持续之中。 相較之下,太陽系中非恆星的天體最亮光度在視星等+2.50等以下有月球(-12.7)、金星(-4.6)、木星(-2.9)、火星(-2.9)、水星(-1.9)、土星(-0.2)。 以下列表中的恆星視星等無法準確判定有如下原因:.

新!!: 參宿四和恆星亮度列表 · 查看更多 »

恆星光度列表

下面的恆星列表是依據恆星的絕對熱星等增加(發光度減弱)的順序排列。絕對星等是恆星在距離地球10秒差距所呈現的視星等。絕對熱星等是測量恆星的發光度–一顆恆星每秒鐘所輻射的總能量。 這個表并不十分完整,因為一顆恆星的距離如果遠到我們看不到它,我們就無從得知它的發光度。 一些參考資料所給的恆星發光度非常的不一樣(不同的順序或不同的恆星),這些恆星的不同數據資料有些不見得是不可靠,而是注意的和分析時注重的物理資訊不同和有實際上的困難。 要注意的是即使是最明亮的恆星(比太陽明亮四千萬倍)仍然不如像是類星體,目前已經發現了數百個,這種銀河系外的天體明亮。現在所知最亮的類星體是在室女座的3C 273,它的平均視星等是12.8等(使用望遠鏡才能看見),但是絕對星等是-26.7等。如果它在距離地球10秒差距的位置上,看起來將如同太陽(視星等-26.8)一般的明亮,因此類星體的發光度是太陽的2兆(1012)倍,或是像我們銀河系這樣的巨型星系總亮度的100倍。然而也發現類星體的光度在不同的時間週期內也不一樣。 根據伽馬射線的觀察,一顆被稱為SGR 1806-20的磁星(中子星的一種類型),曾經在2004年12月27日將極端強烈的爆發傳達到地球。它是來自太陽系外對我們的行星造成最明亮的衝擊事件。如果伽馬射線能夠看見,它的光度將達到−29,會比我們的太陽還要明亮(如同雨燕衛星所觀測到的)。 在1998年偵測到的伽馬射線暴GRB 971214在當時被認為是宇宙間最巨大的能量事件,等同於數百顆超新星釋出的能量。稍後的研究指出因為幾何的關係射向地球的能量或許相當於一顆超新星將環繞在周圍氣體的總能量集成光束射向地球。.

新!!: 參宿四和恆星光度列表 · 查看更多 »

恆星系統

恆星系統或恆星系是少數幾顆恆星受到引力的拘束而互相環繞的系統,為數眾多的恆星受到引力的約束一般稱為“星團”或“星系”,但是概括來說都可以稱為恆星系統。恆星系統有時也會用在單獨但有更小的行星系環繞的恆星。.

新!!: 參宿四和恆星系統 · 查看更多 »

恆星質量流失

恆星質量流失是在一些大質量恆星上觀測到的現象,在此一事件的發生機制會造成恆星大部分的質量被拋射出去;或是在聯星系統中的一顆恆星質量逐漸流失至它的伴星或是星際空間中。.

新!!: 參宿四和恆星質量流失 · 查看更多 »

恆星演化

恆星演化是恆星在生命過程中所經歷急遽變化的序列。恆星依據質量,一生的範圍從質量最大的恆星只有幾百萬年,到質量最小的恆星比宇宙年齡還要長的數兆年。右方的表顯示質量和恆星壽命的關聯性。所有的恆星都從通常被稱為星雲或分子雲的氣體和塵埃坍縮中誕生。在幾百萬年的過程中,原恆星達到平衡的狀態,安頓下來成為所謂的主序星。 恆星大部分的生命期都在以核融合產生能量的狀態。最初,主序星在核心將氫融合成氦來產生能量,然後,氦原子核在核心中佔了優勢。像太陽這樣的恆星會從核心開始以一層一層的球殼將氫融合成氦。這個過程會使恆星的大小逐漸增加,通過次巨星的階段,直到達到紅巨星的狀態。質量不少於太陽一半的恆星也可以經由將核心的氢融合成氦來產生能量,質量更重的恆星可以依序以同心圓產生質量更重的元素。像太陽這樣的恆星用盡了核心的燃料之後,其核心會塌縮成為緻密的白矮星,並且外層會被驅離成為行星狀星雲。質量大約是太陽的10倍或更重的恆星,在它缺乏活力的鐵核塌縮成為密度非常高的中子星或黑洞時會爆炸成為超新星。雖然宇宙的年齡還不足以讓質量最低的紅矮星演化到它們生命的尾端,恆星模型認為它們在耗盡核心的氫燃料前會逐漸變亮和變熱,然後成為低質量的白矮星The End of the Main Sequence, Gregory Laughlin, Peter Bodenheimer, and Fred C. Adams, The Astrophysical Journal, 482 (June 10, 1997), pp.

新!!: 參宿四和恆星演化 · 查看更多 »

欧洲南方天文台

歐洲南天天文台()是為在南半球研究天文學,在政府間組織的一個研究機構,由15個國家組成和支援的一個天文研究組織。它成立於1962年,目的是為歐洲天文學家提供先進的設施和捷徑以研究南方的天空。這個組織總部設在德國慕尼黑附近的加興,雇用了約730名工作人員,每年並接受成員國約1億3100萬歐元的經費。 歐洲南天天文台建設和經營一些已知規模最大和技術最先進的望遠鏡,包括首創主動光學技術的新技術望遠鏡、和由4個8米等級的望遠鏡和4個1.8米輔助望遠鏡組成的甚大望遠鏡。目前由ESO進行的計畫包括亞他加馬大型毫米波陣列和歐洲極大望遠鏡。 ALMA是下一個十年最大的地面天文專案,將成為在毫米與次毫米波尺度下觀測的主要新工具。他的建設正在進行中,預計於2013年完成。ALMA專案是歐洲各國、亞洲、北美洲和智利之間的國際合作計畫。歐洲執行權由ESO代表行使,並且還主持ALMA區域中心。 E-ELT是40米等級的望遠鏡,目前還在細部設計階段,將是世界上觀測天空最大的巨眼。 歐洲極大望遠鏡,它將極有力的推動天文物理學的知識,能夠仔細研究的天體,包括圍繞著其它恆星的行星、宇宙中的第一個天體、超大質量黑洞、和主宰宇宙的暗物質與暗能量的自然本質和分布。從2005年底,ESO就一直與工作和使用社群的歐洲天文學家和天文物理學家共同來定義此新的聚型望遠鏡。 ESO的觀測機構已經作出許多重大的天文發現和一些天體目錄。最近的研究結果包括發現最遙遠的伽瑪射線暴和我們的星系,銀河系,中心有黑洞的證據。2004年,甚大望遠鏡讓天文學家獲得第一張在173光年外環繞著的棕矮星的系外行星2M1207b軌道的絕佳影像。安裝在ESO另一架望遠鏡上的儀器,高精度徑向速度行星搜索器發現許多的系外行星,包括迄今發現最小的系外行星格利澤581c。甚大望遠鏡還發現迄今距離人類最遙遠星系的候選者阿貝爾1835 IR1916。.

新!!: 參宿四和欧洲南方天文台 · 查看更多 »

欧洲空间局

欧洲空间局(Agence spatiale européenne,缩写:ASE; European Space Agency,缩写:ESA)是由欧洲数国政府組成的的國際空间探测和开发组织,总部设在法国首都巴黎。欧洲空间局负责亞利安4号和亞利安5号火箭运载火箭的研制与开发。 欧洲空间局的前身,--(European Space Research Organization,ESRO)经过1962年6月14日签署的一项协议,于1964年3月20日建立。如今它仍旧是ESA的一部分,称为欧洲空间研究与技术中心,位于荷兰诺德韦克。 ESA目前共有19个成员国:奥地利、比利时、捷克、丹麦、芬兰、法国、德国、希腊、爱尔兰、意大利、卢森堡、荷兰、挪威、葡萄牙、西班牙、瑞典、瑞士、羅馬尼亞以及英国;另外,加拿大是ESA的準成員國(Associate Member)。法国是其主要贡献者(参见法國國家太空研究中心)。目前,ESA与欧盟没有关系。歐盟轄下另有歐盟衛星中心(European Union Satellite Centre)。 ESA共有约2200名工作人员。其2011年的预算约为40亿欧元。 ESA的发射中心(欧洲航天发射中心)位于南美洲北部大西洋海岸的法属圭亚那,占地约90600平方公里,属法國國家太空研究中心领导,主要负责科学卫星、应用卫星和探空火箭的发射以及与此有关的一些运载火箭的试验和发射。由于此地靠近赤道,对火箭发射具有很大益处:纬度低,从发射点到入轨点的航程大大缩短,三子级不必二次启动;相同发射方位角的轨道倾角小,远地点变轨所需要的能量小,增加了同步轨道的有效载荷;向北和向东的海面上有一个很宽的发射弧度;人口、交通、气象条件理想等。目前,航天中心有阿里安第一、第二、第三发射场,是欧洲航天活动的主要基地。控制中心則位於德國的達姆施塔特。.

新!!: 參宿四和欧洲空间局 · 查看更多 »

每日一天文圖

每日一天文圖(Astronomy Picture of the Day,APOD)網站是美國國家航空暨太空總署與密西根科技大學(MTU)提供的服務,經由網站,每天提供一張我們宇宙不同的影像或圖片,並由專業的天文學家寫上一份扼要的說明為其特色。照片呈現時不需要特別注明確實的拍攝日期,圖像有時也會重複。但是,圖片和描述經常與天文或太空探測的時事有關,圖像可以是一張相片、在不同波長下拍攝的假色圖,或是藝術家的構想。從1995年6月16日起的第一張開始,過去的影像都被APOD儲存著。美國國家航空暨太空總署、國家科學基金會和密西根科技大學都主動的支持這個網站。圖樣的作者是自然人或不屬於美國國家航空暨太空總署,因此APOD的影樣不同於美國國家航空暨太空總署其它的影像集,經常只是擁有版權的。在台灣的國立成功大學物理系取得正體中文版的翻譯授權,每日進行翻譯工作。.

新!!: 參宿四和每日一天文圖 · 查看更多 »

水委一

水委一(英語:Achernar)也稱為波江座α星,是波江座最明亮的恆星,也是全天空第九亮的恆星,距離地球約139光年 ,位於波江座的南端。在全天空最明亮的九顆恆星中(天狼、老人、大角、南門二、織女、五車二、參宿七、南河三與水委一),水委一是最炙熱,顏色也是最藍的一顆。.

新!!: 參宿四和水委一 · 查看更多 »

水星

水星(Mercurius),中國古稱辰星;到西漢時期,《史記‧天官書》作者天文學家司馬遷從實際觀測發現辰星呈灰色,與「五行」學說聯繫在一起,以黑色配水星,因此正式把它命名為水星。 水星是太陽系的八大行星中最小和最靠近太陽的行星,但有著八大行星中最大的離心率 ,軌道週期是87.969 地球日。從地球上看,它大约116天左右與地球會合一次,公转速度遠遠超過太阳系的其它星球。水星的快速運動使它在羅馬神話中被稱為墨丘利,是快速飛行的信使神。由于大氣層极为稀薄,无法有效保存热量,水星表面昼夜温差极大,为太阳系行星之最。白天时赤道地區温度可达430°C,夜间可降至-170°C。極區气温則終年維持在-170°C以下。水星的軸傾斜是太陽系所有行星中最小的(大約度),但它有最大的軌道偏心率。水星在遠日點的距離大約是在近日點的1.5倍。水星表面充滿了大大小小的坑穴(環形山),外觀看起來與月球相似,顯示它的地質在數十億年來都處於非活動狀態。 水星无四季变化。它也是唯一被太陽潮汐鎖定的行星。相對於恆星,它每自轉三圈的時間與它在軌道上繞行太陽兩圈的時間几乎完全相等。從太陽看水星,參照它的自轉與軌道上的公轉運動,是每兩個水星年才一個太陽日。因此,对一位在水星上的觀測者来说,一天相当于兩年。 因為水星的軌道位於地球的內側(金星也一樣),所以它只能在晨昏之際與白天出現在天空中,而不會在子夜前後出現。同時,也像金星和月球一樣,在它繞著軌道相對於地球,會呈現一系列完整的相位。雖然从地球上觀察,水星會是一顆很明亮的天體,但它比金星更接近太陽,因此比金星還難看見。 從地球看水星的亮度有很大的變化,視星等從-2.3至5.7等,但是它與太陽的分離角度最大只有28.3°。當它最亮時,从技術角度上讲應該很容易就能從地球上看見它,但由于其距离太阳过近,實際上並不容易找到。除非有日全食,否則在太陽光的照耀下通常是看不見水星的。在北半球,只能在凌晨或黃昏的曙暮光中看見水星。當大距出現在赤道以南的緯度時,在南半球的中緯度可以在完全黑暗的天空中看見水星。 水星軌道的近日點每世紀比牛頓力學的預測多出43角秒的進動,這種現象直到20世紀才從愛因斯坦的廣義相對論得到解釋。.

新!!: 參宿四和水星 · 查看更多 »

波恩星表

波恩星表(Durchmusterung或Bonner Durchmusterung),又名波恩星图,是德国天文学家阿格兰德于1859年到1862年在波恩天文台出版的一套四卷本的星表,缩写为BD,包含了324,189颗恒星,采用1850.0历元,赤纬范围从+90°到-2°,极限星等为9-10等,是在照相术发明以前编纂的最完整的一份星表。1863年根据波恩星表发表了波恩巡天星图。 由于波恩天文台位于北半球,无法完整观测到南半球的天空,1892年阿根廷的科尔多瓦天文台发表了科尔多瓦巡天星表(Cordoba Durchmusterung),简称CD,使用目视方法,将波恩星表扩展至赤纬-23°,共收录了58万多颗恒星。1896年在南非好望角完成的好望角照相星表(简称CPD)扩展至南天极,共有45万多颗恒星。 波恩星表收录了恒星的光谱资料。在亨利·德雷伯星表中找不到的恒星,天文学家会优先使用波恩星表中的编号。 Category:星表.

新!!: 參宿四和波恩星表 · 查看更多 »

活动星系核

活动星系核(Active Galactic Nucleus,縮寫為AGN)是一个星系中央區有比普通的星系的强烈很多的光度,至少部分波段或甚至可能全部波段裡都發出很强的電磁波譜。被观察到的发射覆盖從無線電波,微波,红外线,可见光,紫外线,X射线,到伽瑪射線。光度大约在1036-1041J/s之間。容纳活动星系核的宿主星系為活躍星系。活躍星系核是這些星系明亮的核心部分,尺度通常在1光年上下,只占整個活躍星系的很小一部分。活动星系核(AGN)是在宇宙中的电磁辐射的最明亮的持久性的来源,并且因此可以被用作发现远方天体的方法;其演化的宇宙时间函数也设置了宇宙模型的制约条件。 另外,亦有研究顯示活躍星系核的能量可能源自星系碰撞。 1960年代類星體發現以來,又相繼發現了許多具有類似特徵的天體,都是系外星系,統稱為活躍星系核。 共同观测特征主要有:.

新!!: 參宿四和活动星系核 · 查看更多 »

測天圖

測天圖(Uranometria)是德國天文學家約翰·拜耳出版星圖的簡短標題。測天圖於1603年在今日德國的奧格斯堡出版,完整全名:「測天圖,包含以新的方式繪製並雕刻於銅版上的所有星座的圖表。」(Uranometria: omnium asterismorum continens schemata, nova methodo delineata, aereis laminis expressa.)。測天圖是第一個繪製範圍包含整個天球的星圖Asimov, Asimov's Biographical Encyclopedia of Science and Technology 2nd Revised edition。.

新!!: 參宿四和測天圖 · 查看更多 »

測量

測量學,是一門以地球形狀、大小以及地表上各物體的幾何形狀與空間位置為研究對象的學科。其利用適當方法和儀器對空間中的物體進行搜集、分析、加值、整合、管......等方法,讓人理解其空間上的關係,以利規劃與利用。 测量在中国大陆、臺湾、日本等地区一般指「测绘」;在香港延续英国的测量师业务,含义扩大,测量师大致可以分為以下分支:.

新!!: 參宿四和測量 · 查看更多 »

激波

震波(Shock Wave),又譯衝擊波、駭波或激波,属于紊流的一种传播形式。如同其他通常形式下的波动,激波也可以通过介质传输能量。在某些不存在物理介质的特殊情况下,激波可以通过场,如电磁场来传输能量。激波的主要特点表现为介质特性(如压力、温度、或速度)在激波前后发生了一个像正的阶梯函数般的突然变化。与此相应的负的阶跃则为膨胀波。声学激波其速度一般高于通常波速(在空气中即音速)。 激波随距离的增加耗散很快,與孤波(另一种形式的非线性波)不同。而且,膨胀波总是伴随着激波,并最终与激波合并。这部分抵消了激波的影响。声爆,一种超音速飞机通过时产生的声学现象,即是由激波——膨胀波对的耗散和湮灭所产生的。.

新!!: 參宿四和激波 · 查看更多 »

木星

|G1.

新!!: 參宿四和木星 · 查看更多 »

有效溫度

有效溫度是與一個黑體溫度同等量相同的其能夠發出的輻射。常在一個黑體的發射率未知時使用。.

新!!: 參宿四和有效溫度 · 查看更多 »

望远镜

望遠鏡是一種可以透過遙控方式收集電磁波(例如可見光)以協助觀察遠方物體的工具。已知能實用的第一架望遠鏡是在17世紀初期在荷蘭使用玻璃透鏡發明的。這項發明現在被應用在陸地和天文學。 在第一架望遠鏡被製造出來幾十年內,用鏡子收集和聚焦光線的反射望遠鏡就被製造出來。在20世紀,許多新型式的望遠鏡被發明,包括1930年代的電波望遠鏡和1960年代的紅外線望遠鏡。望遠鏡這個名詞現在是泛指能夠偵測不同區域的電磁頻譜的各種儀器,在某些情況下還包括其他類型的探測儀器。 英文的「telescope」(來自希臘的τῆλε,tele "far"和 σκοπεῖν,skopein "to look or see";τηλεσκόπος,teleskopos "far-seeing")。這個字是希臘數學家乔瓦尼·德米西亚尼在1611年於伽利略出席的意大利猞猁之眼国家科学院的一場餐會中,推銷他的儀器時提出的。在《星際信使》這本書中,伽利略使用的字是"perspicillum"。.

新!!: 參宿四和望远镜 · 查看更多 »

戈達德高解析攝譜儀

戈達德高解析攝譜儀(GHRS 或 HRS, Goddard High Resolution Spectrograph)是在哈伯太空望遠鏡升空時就安裝在內的紫外線分光攝譜儀,在1997年2月的哈伯維護任務中被太空望遠鏡影像攝譜儀(STIS)取代。.

新!!: 參宿四和戈達德高解析攝譜儀 · 查看更多 »

星周包層

星周包層是恆星的一部分,具有大致球形的形狀,但不會受到重力吸引到恆星的核心。通場星周包層形成於稠密的恆星風或出現在恆星形成之前。老年恆星的星周包層最終將會演變成原行星雲,而初期恆星體的星周包塵會發展成為星周盤。.

新!!: 參宿四和星周包層 · 查看更多 »

日出卫星

日出卫星(Hinode)是日本、英国和美国联合研制的一颗太阳探测卫星,原名Solar-B,于2006年9月22日(UT,在日本為9月23日)在日本九州的内之浦航天中心发射升空。日出卫星运行在近圆形的太阳同步轨道上,近地点为280公里,远地点为686公里。这颗卫星的主要目的是观测太阳磁场的精细结构,研究太阳耀斑等剧烈的爆发活动,拍摄高质量的太阳图片。.

新!!: 參宿四和日出卫星 · 查看更多 »

悉尼

悉尼(Sydney),又稱--,位於澳大利亚东南沿海地带,是新南威爾斯州的首府,是澳大利亚人口最多也是人口最稠密的城市。都會區人口5,005,400人(2016年)。在英語裏,市民俗稱雪梨人為「Sydneysider」。 悉尼是歐洲首個澳洲殖民聚落以及充当罪犯的流放地,1788年由英國第一艦隊的船長阿瑟·菲利普於雪梨湾建立。悉尼環傑克遜港(包括悉尼港)而建,曾被稱為「海港城市」。它是澳洲最大的金融中心,也是國際主要旅遊勝地,以海灘、歌劇院和港灣大橋等聞名。雪梨长期以来都是生活品質极高的世界都市,曾獲全球化與世界級城市研究小組與網絡(Globalization and World Cities Study Group and Network,GaWC)列為第一級世界都市+。悉尼举办过多項重要国际體育赛事,包括1938年英联邦运动会、2000年悉尼奧運會及2003年世界盃橄欖球賽。 主要机场为悉尼机场,主要港口为植物学湾。.

新!!: 參宿四和悉尼 · 查看更多 »

托勒密

#重定向 克劳狄乌斯·托勒密.

新!!: 參宿四和托勒密 · 查看更多 »

拜耳命名法

拜耳命名法(Bayer designation)是一種恆星命名法,它以一個希臘字母做前導,後面伴隨著拉丁文所有格的星座名稱。拜耳命名的原始清單載有的恆星共有1,564顆。 德國天文學家約翰·拜耳於1603年在他的星圖《測天圖》(Uranometria)中,首先有系統的為許多亮星命名。拜耳在他的星圖上,使用小寫的希臘字母,像是α、β、γ、等等為前導,分配給星座中的每一顆星,再與恆星所在星座的拉丁文所有格結合,組成恆星的名字(參見所有格的星座列表,在中文則是字母跟隨在星座名稱之後)。例如,畢宿五命名為金牛座α,它的意思就是在金牛座排序為第一顆的恆星。 單一個星座可能包含50顆甚至更多的恆星,但是希臘字母只有24個,當這些字母用完之後,拜耳開始使用小寫的拉丁字母:因此便會有船底座s和半人馬座d等名稱。在星星數量極多的星座內,拜耳最終使用到大寫的拉丁字母,像是天蝎座G和船帆座N。拜耳使用的最後一個大寫字母是Q。.

新!!: 參宿四和拜耳命名法 · 查看更多 »

拉丁语

拉丁语(lingua latīna,),羅馬帝國的奧古斯都皇帝時期使用的書面語稱為「古典拉丁語」,屬於印欧语系意大利語族。是最早在拉提姆地区(今意大利的拉齐奥区)和罗马帝国使用。虽然现在拉丁语通常被认为是一种死语言,但仍有少数基督宗教神职人员及学者可以流利使用拉丁语。罗马天主教传统上用拉丁语作为正式會議的语言和礼拜仪式用的语言。此外,许多西方国家的大学仍然提供有关拉丁语的课程。 在英语和其他西方语言创造新词的过程中,拉丁语一直得以使用。拉丁语及其后代罗曼诸语是意大利语族中仅存的一支。通过对早期意大利遗留文献的研究,可以证实其他意大利语族分支的存在,之后这些分支在罗马共和国时期逐步被拉丁语同化。拉丁语的亲属语言包括法利斯克语、奥斯坎语和翁布里亚语。但是,威尼托语可能是一个例外。在罗马时代,作为威尼斯居民的语言,威尼托语得以和拉丁语并列使用。 拉丁语是一种高度屈折的语言。它有三种不同的性,名词有七格,动词有四种词性变化、六种时态、六种人称、三种语气、三种语态、两种体、两个数。七格当中有一格是方位格,通常只和方位名词一起使用。呼格与主格高度相似,因此拉丁语一般只有五个不同的格。不同的作者在行文中可能使用五到七种格。形容词与副词类似,按照格、性、数曲折变化。虽然拉丁语中有指示代词指代远近,它却没有冠词。后来拉丁语通过不同的方式简化词尾的曲折变化,形成了罗曼语族。 拉丁语與希腊语同為影響歐美學術與宗教最深的语言。在中世纪,拉丁语是当时欧洲不同国家交流的媒介语,也是研究科学、哲学和神學所必须的语言。直到近代,通晓拉丁语曾是研究任何人文学科教育的前提条件;直到20世纪,拉丁语的研究才逐渐衰落,重点转移到对當代语言的研究。.

新!!: 參宿四和拉丁语 · 查看更多 »

曆元

曆元,在天文學是一些天文變數作為參考的時刻點,例如天球座標或天體的橢圓軌道要素,因為這些會受到攝動而隨著時間變化。這些會隨著時間變動的天文變量可能包括天體的平黃經或平近點角、軌道相對於參考平面的交點、軌道近日點和遠日點或拱點的方向、其軌道半長軸的大小等等。 在中國古代曆法中,則為曆法起算的基準點。对天球坐标来说,其他时刻天体的位置可以依据岁差和天体的自行而计算出。在轨道根數的情况下,就必须考虑其他物体产生的扰动才能计算出另一时刻的轨道根数。 现在使用的标准曆元是J2000.0,即TT(Terrestrial Time)时间2000年1月1日12:00。前缀「J」代表这是一个儒略曆元(Julian epoch)。在使用J2000.0前的标准曆元是B1950.0,前缀「B」代表这是一个贝塞耳曆元(Besselian epoch)。 贝塞耳曆元在1984年前使用,而现在使用的是儒略曆元。 亨利·德雷伯星表使用B1900.0,B1900.0纪元在天文学上使用。因为恒星的赤经和赤纬会因岁差之缘故改变,天文学家经常定义某一纪元作为参考点。B1900.0纪元标准已经被后继标准所取代:B1950.0以及现在使用的J2000.0纪元标准。前缀"B"代表这是一个贝塞耳纪元而非一个儒略纪元。 对轨道参数的曆元经常会同时给出TT时间,有如下几种格式:.

新!!: 參宿四和曆元 · 查看更多 »

普林斯顿大学

普林斯顿大学(Princeton University),又译普林斯敦大学,常被直接称为普林斯顿,是一所位於美国新泽西州普林斯顿的私立研究型大学,现为八所常春藤盟校之一。 普林斯顿历史悠久。它成立于1746年,是九所在美国革命前成立的殖民地学院之一,同时也是美国第四古老的高等教育机构。其在1747年移至纽瓦克,最终在1756年搬到了现在的普林斯顿,并于1896年正式改名为“普林斯顿大学”。虽然其旧校名是“新泽西学院”,但它与今天位于邻近的尤因镇(Ewing Township)的“新泽西学院”没有任何关联。此外虽然它最初是长老制的教育机构,但学校从没有跟任何宗教机构有直接的联系,而现在对学生亦无任何宗教上的要求。 普林斯顿现提供各种有关人文、自然科学、社会科学及工程学的本科及研究生课程;它并没有医学院、法学院、神学院及商学院,但能在政治及工程上提供专业课程。大学也与普林斯顿高等研究院及普林斯顿宗教学校有联谊。至今,已经有63位诺贝尔奖得主、17名美国国家科学奖章得主,14名菲尔兹奖得主,13名图灵奖得主,及3名美国国家人文奖章夺得人曾经或现为普林斯顿大学的毕业生或教职员。另外,普林斯顿也是获得最多捐款的学术机构之一。.

新!!: 參宿四和普林斯顿大学 · 查看更多 »

智利

智利共和国(República de Chile)是位於南美洲的一个国家,西和南濒太平洋,北靠秘鲁,东邻玻利维亚和阿根廷。為南美洲國家聯盟的成員國,在南美洲與阿根廷及巴西並列為ABC強國。 由于地处美洲大陆的最南端,与南极洲隔海相望,智利人常称自己的国家为“天涯之国”。智利總共約有1,800萬人,種族以歐洲白人、混血族群居多,與另一國家阿根廷同樣,幾乎沒有非洲裔人口,其他則以本土原住民少數族群相對為多,整體公民組成素質極高,因而智利教育高度发达,其教育在发达国家普遍承认。智利在新闻自由、人类发展指数、民主发展等方面也获得了很高的排名,與南歐國家相媲美。社會相當於經濟已開發的北美洲和歐洲國家,而近來還有許多亞裔移民跨越太平洋移居。 智利拥有非常丰富的矿产资源、森林资源和渔业资源。智利是世界上铜矿资源最丰富的国家,又是世界上产铜和出口铜最多的国家,享有“铜矿王国”之美誉。境内的阿塔卡马沙漠是世界旱极。此外,它还是世界上唯一生产硝石的国家。.

新!!: 參宿四和智利 · 查看更多 »

重定向到这里:

Betelgeuse参宿四獵戶座α獵戶座α星猎户座α猎户座α星

传出传入
嘿!我们在Facebook上吧! »