我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

度分布

指数 度分布

度分布是图论和中的概念。一个图(或网络)由一些顶点(节点)和连接它们的边(连结)构成。每个顶点(节点)连出的所有边(连结)的数量就是这个顶点(节点)的度。度分布指的是对一个图(网络)中顶点(节点)度数的总体描述。对于随机图,度分布指的是图中顶点度数的概率分布。.

目录

  1. 10 关系: 复杂网络函数图论随机变量随机图连通图集聚系数概率分布泊松分佈无尺度网络

  2. 图常量
  3. 图论
  4. 网络理论

复杂网络

在网络理论的研究中,复杂网络是由数量巨大的节点和节点之间错综复杂的关系共同构成的网络结构。用数学的语言来说,就是一个有着足够复杂的拓扑结构特征的图。复杂网络具有简单网络,如晶格网络、随机图等结构所不具备的特性,而这些特性往往出现在真实世界的网络结构中。复杂网络的研究是现今科学研究中的一个热点,与现实中各类高复杂性系统,如的網際網路、神经网络和社会网络的研究有密切关系。.

查看 度分布和复杂网络

函数

函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).

查看 度分布和函数

图论

图论(Graph theory)是组合数学的一个分支,和其他数学分支,如群论、矩阵论、拓扑学有着密切关系。图是图论的主要研究对象。图是由若干给定的顶点及连接两顶点的边所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系。顶点用于代表事物,连接两顶点的边则用于表示两个事物间具有这种关系。 图论起源于著名的柯尼斯堡七桥问题。该问题于1736年被欧拉解决,因此普遍认为欧拉是图论的创始人。 图论的研究对象相当于一维的单纯复形。.

查看 度分布和图论

随机变量

給定樣本空间(S, \mathbb),如果其上的實值函數 X:S \to \mathbb是\mathbb (實值)可測函數,则稱X為(實值)随机变量。初等概率論中通常不涉及到可測性的概念,而直接把任何X:S \to \mathbb的函數稱為随机变量。 如果X指定给概率空间S中每一个事件e有一个实数X(e),同时针对每一个实数r都有一个事件集合A_r与其相对应,其中A_r.

查看 度分布和随机变量

随机图

在數學中,随机图是指由随机过程产生的图。随机图的理论处于图论和概率论的交叉地带,主要研究各种经典随机图的性质。第一批关于随机图的结果是保罗·埃尔德什和阿尔弗雷德·雷尼在1959年至1966年的一系列论文中提出.

查看 度分布和随机图

连通图

在图论中,连通图基于连通的概念。在一个无向图G中,若从顶点v_i到顶点v_j有路径相连(当然从v_j到v_i也一定有路径),则称v_i和v_j是连通的。如果G是有向图,那么连接v_i和v_j的路径中所有的边都必须同向。如果图中任意两点都是连通的,那么图被称作连通图。图的连通性是图的基本性质。.

查看 度分布和连通图

集聚系数

在图论中,集聚系数(也称群聚系数、集群系数)是用来描述一个图中的顶点之间结集成团的程度的系数。具体来说,是一个点的邻接点之间相互连接的程度。例如生活社交网络中,你的朋友之间相互认识的程度。有证据表明,在各类反映真实世界的网络结构,特别是社交网络结构中,各个结点之间倾向于形成密度相对较高的网群。也就是说,相对于在两个节点之间随机连接而得到的网络,真实世界网络的集聚系数更高。 集聚系数分为整体与局部两种。整体集聚系数可以给出一个图中整体的集聚程度的评估,而局部集聚系数则可以测量图中每一个结点附近的集聚程度。.

查看 度分布和集聚系数

概率分布

概率分布(Wahrscheinlichkeitsverteilung,probability distribution)或簡稱分布,是概率論的一個概念。使用時可以有以下兩種含義:.

查看 度分布和概率分布

泊松分佈

Poisson分布(法語:loi de Poisson,英語:Poisson distribution),译名有--分布、--分布、--分佈、--分佈、--分佈、--分佈、卜氏分配等,又稱帕松小數法則(Poisson law of small numbers),是一種統計與概率學裡常見到的離散機率分佈,由法國數學家西莫恩·德尼·泊松(Siméon-Denis Poisson)在1838年時發表。 泊松分布适合于描述单位时间内随机事件发生的次数的概率分布。如某一服务设施在一定时间内受到的服务请求的次数,电话交换机接到呼叫的次数、汽车站台的候客人数、机器出现的故障数、自然灾害发生的次数、DNA序列的变异数、放射性原子核的衰变数、雷射的光子數分布等等。 泊松分布的概率質量函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。 根据泰勒展开式可得:e^.

查看 度分布和泊松分佈

无尺度网络

在网络理论中,无尺度网络(或称无标度网络)是带有一类特性的复杂网络,其典型特征是在网络中的大部分节点只和很少节点连接,而有极少的节点与非常多的节点连接。这种关键的节点(称为“枢纽”或“集散节点”)的存在使得无尺度网络对意外故障有强大的承受能力,但面对协同性攻击时则显得脆弱。现实中的许多网络都带有无尺度的特性,例如因特网、金融系统网络、社会人际网络等等。.

查看 度分布和无尺度网络

另见

图常量

图论

网络理论