目录
二面體群
在數學中,二面體群 D_ 是正 n 邊形的對稱群,具有 2n 個元素。某些書上則記為 D_n。除了 n.
查看 小群列表和二面體群
循環群
在群論中,循環群(英文:cyclic group),是指能由單個元素所生成的群。有限循环群同构于整数同余加法群 Z/nZ,无限循环群则同构于整数加法群。每個循環群都是阿贝尔群,亦即其運算是可交換的。在群论中,循环群的性质已经被研究的较为透彻,是更为复杂的代数研究中常用到的基础工具。.
查看 小群列表和循環群
四元群
在群論裡,四元群是指一個8目的不可換群。它常被標示為Q,且被寫成乘法的形式,以下列的8個元素 這裡,1是單位元素,(−1)2.
查看 小群列表和四元群
簡單群
#重定向 单群.
查看 小群列表和簡單群
置換
排列(Permutation)是將相異物件或符號根據確定的順序重排。每個順序都稱作一個排列對於不排序的情形,請見條目組合。。例如,從一到六的數字有720種排列,對應於由這些數字組成的所有不重複亦不闕漏的序列,例如"4, 5, 6, 1, 2, 3" 與1, 3, 5, 2, 4, 6。 置換的廣義概念在不同語境下有不同的形式定義:.
查看 小群列表和置換
群同構
在抽象代數中,群同構是在兩個群之間的函數,它以關照到了群運算的方式架設了在群的元素之間的一一對應。如果兩個群之間存在一個同構,則這兩個群叫做同構的。從群論的立場看,同構的群有相同的性質而不要區分。.
查看 小群列表和群同構
環圖
在抽象代數子領域群論中,群的環圖展示了一個群的各種循環,并在小有限群的可視化中特別有用。對少於 16 個元素的群,環圖確定了群(在同構的意義下)。 環是給定群元素 a 的冪的集合;這里的 an 是元素 a 的 n 次冪,被定義為 a 乘以自身 n 次的乘積。稱元素 a 生成了這個環。在有限群中,某個 a 的冪必定是單位元 e;最小的這種冪是環的階,即其中的不同元素的數目。在環圖中,環被表示為一系列的多邊形,頂點表示群元素,而連線指示在這個多邊形中所有元素都是同一個環的成員。.
查看 小群列表和環圖
當然群
在數學裡,當然群是指一個只包含單一元素e的群,其群運算只有e + e.
查看 小群列表和當然群
階 (群論)
在群論這一數學的分支裡,階這一詞被使用在兩個相關連的意義上:.
查看 小群列表和階 (群論)
階乘
一个正整数的階乘(factorial)是所有小於及等於該數的正整數的積,并且有0的阶乘为1。自然數n的階乘寫作n!。1808年,基斯頓·卡曼引進這個表示法。 亦即n!.
查看 小群列表和階乘
計算機代數系統
計算機代數系統(computer algebra system,縮寫作:CAS)是進行符號運算的軟件。這種系統的要件是數學表示式的符號運算。.
查看 小群列表和計算機代數系統
阿贝尔群
阿貝爾群(Abelian group)也稱爲交換群(commutative group)或可交換群,它是滿足其元素的運算不依賴於它們的次序(交換律公理)的群。阿貝爾群推廣了整數集合的加法運算。阿貝爾群以挪威數學家尼尔斯·阿貝爾命名。 阿貝爾群的概念是抽象代數的基本概念之一。其基本研究對象是模和向量空間。阿貝爾群的理論比其他非阿貝爾群簡單。有限阿貝爾群已經被徹底地研究了。無限阿貝爾群理論則是目前正在研究的領域。.
查看 小群列表和阿贝尔群
Gap
Gap可以指:.
查看 小群列表和Gap
有限群
在數學裡,有限群是有著有限多個元素的群。有限群理論中的某些部份在20世紀有著很深的研究,尤其是在局部分析和可解群與冪零群的理論中。期望有個完整的理論是太過火了:其複雜性會隨著群變得越大時而變得壓倒性地巨大。 較少壓倒性地,但仍然很有趣的是在有限域上的一些較小一般線性群。群論學家曾寫過:「有限群的典型例子為GL(n,q)-在q個元素的域上的n維一般線性群。學生在學此領域時,若以其他的例子來做介紹,則可能會被完全地誤導。(Bulletin (New Series) of the American Mathematical Society, 10 (1984) 121)此類型最小的群GL(2,3)的討論,見。 有限群和對稱有直接地關接,當其被限制在有限個轉變時。 其證明為,連續對稱,如李群中的,也會導致有限群,如外爾群。在此一方面,有限群和其性質將能夠用在如理論物理問題的重要地方,即使其用途在一開始並不顯著。 每一質數階的有限群都是循環群。.
查看 小群列表和有限群
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
查看 小群列表和数学
另见
数学列表
- ZFC系統無法確定的命題列表
- 三角恒等式
- 不可判定问题列表
- 不可能謎題列表
- 不等式列表
- 代数数论主题列表
- 公理列表
- 函数列表
- 半正鑲嵌圖
- 卡普的二十一個NP-完全問題
- 可替代的集合论
- 向量恆等式列表
- 含圆周率的公式列表
- 导数列表
- 小群列表
- 布尔代数主题列表
- 幂和
- 弦理论课题列表
- 微积分学主题列表
- 数值分析软件
- 数学学会列表
- 数学定理列表
- 数学猜想列表
- 数据结构与算法列表
- 整除规则
- 數學理論列表
- 數學研究生教材
- 數論主題列表
- 正圖形列表
- 溫尼爾多面體模型列表
- 級數列表
- 素因子表
- 複雜度類列表
- 计算机代数系统列表
- 質數列表
- 高合成数