徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

数学常数

指数 数学常数

一个数学常数是指一个数值不变的常量,与之相反的是变量。跟大多数物理常数不一样的地方是,数学常数的定义是独立于所有物理测量的。 数学常数通常是实数或复数域的元素。数学常数可以被称为是可定义的数字(通常都是可计算的)。 其他可选的表示方法可以在数学常数 (以连分数表示排列)中找到。.

30 关系: 埃尔德什-波温常数卡塔兰常数复数复数 (数学)孪生素数孪生素数猜想实数常数布朗常数亂數斐波那契數列代數數德布鲁因-纽曼常数圓周率勒让德常数無理數物理常數E (数学常数)變數費根鮑姆常數超越數黄金分割比Meissel-Mertens常数恩布里-特雷費森常數欧拉-马歇罗尼常数毕达哥拉斯混沌理论数学常数 (以连分数表示排列)数论拉馬努金-Soldner常數2的算術平方根

埃尔德什-波温常数

埃尔德什-波温常数是所有梅森数的倒数之和。 根据定义,它是: E.

新!!: 数学常数和埃尔德什-波温常数 · 查看更多 »

卡塔兰常数

卡塔兰常数 G,是一个偶尔出现在组合数学中的常数,定义为: 其中β是狄利克雷β函数。它的值大约为: 目前还不知道G是有理数还是无理数。.

新!!: 数学常数和卡塔兰常数 · 查看更多 »

复数

#重定向 复数 (数学).

新!!: 数学常数和复数 · 查看更多 »

复数 (数学)

複數,為實數的延伸,它使任一多項式方程式都有根。複數當中有個「虛數單位」i,它是-1的一个平方根,即i ^2.

新!!: 数学常数和复数 (数学) · 查看更多 »

孪生素数

孪生素数(也称为孪生--数、双生质数)是指一对素数,它们之间相差2。例如3和5,5和7,11和13,10016957和10016959等等都是孪生素数。 关于孪生素数有孪生素数猜想,即是否存在无穷多对孪生素数。这是数论中未解决的一个重要问题。是孪生素数猜想的一个增强形式,猜测孪生素数的分布与素数定理中描述的素数分布规律相类似。 与之相关的,两者相差为1的素数对只有 (2, 3);两者相差为3的素数对只有 (2, 5)。.

新!!: 数学常数和孪生素数 · 查看更多 »

孪生素数猜想

孪生素数猜想是数论中的著名未解決问题。 素数,就是数学家按照乘法性质把自然数分为三类:.

新!!: 数学常数和孪生素数猜想 · 查看更多 »

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

新!!: 数学常数和实数 · 查看更多 »

常数

常数又稱定數,是指一个数值固定不变的常量,例如圆周率\pi\,、自然对数的底e,与之相反的是變數。 在物理學上,很多經測量得出的數值都被稱為常數。例如萬有引力常數和地表重力加速度等。但有研究表明,部分這類常数并不是恒定不变的,因此就被稱作“不定常数”(inconstant constant)和“不恒定的常数”(not-so-constant constant)。.

新!!: 数学常数和常数 · 查看更多 »

布朗常数

1919年,挪威数学家維果·布朗(Viggo Brun)证明了所有孪生素数的倒数之和收敛于一个数学常数,称为布朗常数(Brun's constant),记为B2 : + \left(\frac + \frac\right) + \left(\frac + \frac\right) + \left(\frac + \frac\right) + \left(\frac + \frac\right) + \cdots 而所有'''素数'''的倒数之和则是发散的。假如以上的级数发散,则我们立刻就可以证明孪生素数猜想。但由于它收敛,我们就不知道是否有无穷多个孪生素数(若孪生素数之平方根的倒數和發散,則亦可知其為無限多)。类似地,如果证明了布朗常数是无理数,也立刻就可以证明孪生素数猜想。但如果它是有理数,则仍然无法知道孪生素数是不是无限的。 Thomas R. Nicely把孪生素数算到1014,估计布朗常数大约为1.902160578。目前最精确的估计是Pascal Sebah和Patrick Demichel在2002年发现的,他们把孪生素数算到了1016: 我们知道1.9 2,但不知道是否能大于2。 除此以外,还有一个四胞胎素数的布朗常数,它是所有的四胞胎素数的倒数之和,记为B4: + \left(\frac + \frac + \frac + \frac\right) + \left(\frac + \frac + \frac + \frac\right) + \cdots 它的值为.

新!!: 数学常数和布朗常数 · 查看更多 »

亂數斐波那契數列

亂數斐波那契数列是一個類似斐波那契数列的數列,由以下的遞迴關係式所定義: 其中正負號是依亂數決定,機率各是1/2,每次的正負號有統計獨立性。 依照Harry Kesten及Hillel Fürstenberg的理論,這類的亂數遞迴關係式會依某種指數增長的方式增長,但其增長的速率很難具體的計算出來,1999年時Divakar Viswanath證明亂數斐波那契数列的增長速率為1.1319882487943…,此常數後來也被命名為Viswanath常數。.

新!!: 数学常数和亂數斐波那契數列 · 查看更多 »

代數數

代數數是代数与数论中的重要概念,指任何整係數多项式的复根。 所有代数数的集合构成一个域,称为代数数域(与定义为有理数域的有限扩张的代数数域同名,但不是同一个概念),记作\mathcal或\overline,是复数域\mathbb的子域。 不是代数数的实数称为超越数,例如圆周率。.

新!!: 数学常数和代數數 · 查看更多 »

德布鲁因-纽曼常数

德布鲁因-纽曼常数(De Bruijn–Newman constant)是一個以特定函數H(λ, z)的零點特性有關的數學常數,用Λ來表示。函數表示式中的λ為實數的參數,而z為複數變數。H有實數根若且唯若λ ≥ Λ。此常數和有關黎曼ζ函數零點的黎曼猜想密切相關,簡單來說,黎曼猜想就是Λ ≤ 0的猜想。 由於 H(\lambda, z) 是 F(e^\Phi) 的傅里叶变换,有以下: 上式只在λ為正或0時有效,在極限中λ趨近於0,而 H(0,x).

新!!: 数学常数和德布鲁因-纽曼常数 · 查看更多 »

圓周率

圓周率是一个数学常数,为一个圆的周长和其直径的比率,约等於3.14159。它在18世纪中期之后一般用希腊字母π指代,有时也拼写为“pi”()。 因为π是一个无理数,所以它不能用分数完全表示出来(即它的小数部分是一个无限不循环小数)。当然,它可以用像\frac般的有理数的近似值表示。π的数字序列被認為是随机分布的,有一种统计上特别的随机性,但至今未能证明。此外,π还是一个超越数——它不是任何有理数系数多项式的根。由於π的超越性质,因此不可能用尺规作图解化圆为方的问题。 几个文明古国在很早就需要计算出π的较精确的值以便于生产中的计算。公元5世纪时,南朝宋数学家祖冲之用几何方法将圆周率计算到小数点后7位数字。大约同一时间,印度的数学家也将圆周率计算到小数点后5位。历史上首个π的精确无穷级数公式(即π的莱布尼茨公式)直到约1000年后才由印度数学家发现。在20和21世纪,由于计算机技术的快速发展,借助计算机的计算使得π的精度急速提高。截至2015年,π的十进制精度已高达1013位。当前人类计算π的值的主要原因为打破记录、测试超级计算机的计算能力和高精度乘法算法,因为几乎所有的科学研究对π的精度要求都不会超过几百位。 因为π的定义中涉及圆,所以π在三角学和几何学的许多公式,特别是在圆形、椭球形或球形相關公式中广泛应用。由于用於特征值这一特殊作用,它也在一些数学和科学领域(例如数论和统计中计算数据的几何形状)中出现,也在宇宙学,热力学,力学和电磁学中有所出现。π的广泛应用使它成为科学界内外最广为人知的常数之一。人们已经出版了几本专门介绍π的书籍,圆周率日(3月14日)和π值计算突破记录也往往会成为报纸的新闻头条。此外,背诵π值的世界记录已经达到70,000位的精度。.

新!!: 数学常数和圓周率 · 查看更多 »

勒让德常数

勒让德常数是一个出现在素数计数函数的渐近展开式中的数学常数,其值經證明為1。 勒让德在研究素数的分布情况时,发现\boldsymbol(x)满足以下等式: 其中B是一个常数,称为勒让德常数。他估计B大约为1.08366,但不管它的值是什么,只要它存在,就证明了素数定理。 后来高斯也对素数进行了研究,得出结论,B可能更小。 最终Charles Jean de la Vallée-Poussin证明了B正好等于1。.

新!!: 数学常数和勒让德常数 · 查看更多 »

無理數

無理數是指除有理数以外的实数,當中的「理」字来自于拉丁语的rationalis,意思是「理解」,实际是拉丁文对于logos「说明」的翻译,是指无法用两个整数的比来说明一个无理数。 非有理數之實數,不能寫作兩整數之比。若將它寫成小數形式,小數點之後的數字有無限多個,並且不會循環,即无限不循环小数。常見的無理數有大部分的平方根、π和e(其中後兩者同時為超越數)等。無理數的另一特徵是無限的連分數表達式。 傳說中,无理数最早由畢達哥拉斯學派弟子希伯斯发现。他以幾何方法證明\sqrt無法用整数及分數表示。而畢達哥拉斯深信任意数均可用整数及分数表示,不相信無理數的存在。後來希伯斯触犯学派章程,将无理数透露给外人,因而被扔进海中处死,其罪名竟然等同于“渎神”。另見第一次數學危機。 無理數可以通過有理數的分划的概念進行定義。.

新!!: 数学常数和無理數 · 查看更多 »

物理常數

物理常數,或称物理定數、物理常量或自然常数,指的是物理学中数值固定不变的物理量。它與数学常数不同,數學常數指的是一个在數值上固定不變的值,但是這個值不一定與物理測量有關。 物理常数有很多,其中比较著名的有真空光速、普朗克常数、万有引力常数、玻尔兹曼常數及阿伏伽德罗常数。它们被假设在宇宙中任何地方和任何时刻都相同。物理常数的物理意义有很多表述形式,普朗克长度表征基本物理长度,真空光速是宇宙中最大的速度,精细结构常数则表征了电子和光子之间的相互作用,是一个无量纲量。 从1937年开始,狄拉克等物理学家开始意识到物理常数有可能随着宇宙年龄的增长而发生变化,但时至今日还没有明确的实验证据能够证明狄拉克提出的这种可能性。但科学家们已经探测到了一些物理量可能每年都依极小的量发生变化,并划定了这种变化幅度可能的上限(万有引力常数变化的量大约是一年10-11;精细结构常数变化的量大约是一年10-5)。 以下是部分物理常數的列表:.

新!!: 数学常数和物理常數 · 查看更多 »

E (数学常数)

-- e,作为數學常數,是自然對數函數的底數。有時被稱為歐拉數(Euler's number),以瑞士數學家歐拉命名;還有個較少見的名字納皮爾常數,用來紀念蘇格蘭數學家約翰·納皮爾引進對數。它是一个无限不循环小数,數值約是(小數點後20位,):.

新!!: 数学常数和E (数学常数) · 查看更多 »

變數

在初等數學裡,變數或變元、元是一個用來表示值的符號,該值可以是隨意的,也可能是未指定或未定的。在代數運算時,將變數當作明確的數值代入運算中,可以於單次運算時解出多個問題。一個典型的例子為一元二次公式,該公式可以解出每個一元二次方程的值,只需要將方程的系數代入公式中的變數即可。 變數這個概念在微積分中非常重要。一般,一個函數y.

新!!: 数学常数和變數 · 查看更多 »

費根鮑姆常數

費根鮑姆常數是分岔理論中重要兩個的數學常數,這兩個常數因數學家費根鮑姆而得名。.

新!!: 数学常数和費根鮑姆常數 · 查看更多 »

超越數

在數論中,超越數是指任何一個不是代數數的无理数。只要它不是任何一個有理係數代數方程的根,它即是超越數。最著名的超越數是e以及π。.

新!!: 数学常数和超越數 · 查看更多 »

黄金分割比

#重定向 黄金分割率.

新!!: 数学常数和黄金分割比 · 查看更多 »

Meissel-Mertens常数

Meissel-Mertens常数也稱為Mertens常數或質數倒數和常數,是數論中的一個常數,定義為只針對質數的调和级数和自然對數的自然對數二者差的極限: \sum_ \frac - \ln(\ln(n)) \right).

新!!: 数学常数和Meissel-Mertens常数 · 查看更多 »

恩布里-特雷費森常數

在數論中,恩布里-特雷費森常數(Embree-Trefethen constant)是一個和隨機費波那西數列有關的閾值,符號為β*,其近似值為0.70258。 針對一固定的正數β,考慮以下的遞迴關係式 遞迴關係式中的正負號部份是隨機決定,相加及相減的機率各是一半。 可證明對於任何的β,以下極限 几乎必然存在。也就是說,數列表現類似指數的機率為1。 可得以下的式子 因此當n→∞ 時,數列以指數形式遞減的機率為1 因此數列以指數形式成長 有關σ的數值,可得:.

新!!: 数学常数和恩布里-特雷費森常數 · 查看更多 »

欧拉-马歇罗尼常数

#重定向 歐拉-馬斯刻若尼常數.

新!!: 数学常数和欧拉-马歇罗尼常数 · 查看更多 »

毕达哥拉斯

毕达哥拉斯(Πυθαγόρας,约)是一名古希腊哲学家、数学家和音乐理论家,毕达哥拉斯主义的创立者。 他認為數學可以解釋世界上的一切事物,對數字癡迷到幾近崇拜;同時認為一切真理都可以用比例、平方及直角三角形去反映和證實:譬如主張平方數"100"意味「公正」。.

新!!: 数学常数和毕达哥拉斯 · 查看更多 »

混沌理论

混沌理论(Chaos theory)是关于非线性系统在一定参数条件下展现分岔(bifurcation)、周期运动与非周期运动相互纠缠,以至于通向某种非周期有序运动的理论。在耗散系统和保守系统中,混沌运动有不同表现,前者有吸引子,后者无(也称含混吸引子)。 从20世纪80年代中期到20世纪末,混沌理论迅速吸引了数学、物理、工程、生态学、经济学、气象学、情报学等诸多领域学者有关注,引发了全球混沌热。混沌,也写作浑沌(比如《庄子》)。自然科学中讲的混沌运动指确定性系统中展示的一种類似随机的行为或性态。确定性(deterministic)是指方程不含随机项的系统,也称动力系统(dynamical system)。典型的模型有單峰映象(logistic map)迭代系统,洛伦兹微分方程系统,若斯叻吸引子,杜芬方程,蔡氏电路,陳氏吸引子等。为浑沌理论做出重要贡献的学者有庞加莱、洛伦兹、(Y.

新!!: 数学常数和混沌理论 · 查看更多 »

数学常数 (以连分数表示排列)

這是以連分數表示排列的數學常數列表。 (無理數的常數有無限長的連分數:其最後面項為...。).

新!!: 数学常数和数学常数 (以连分数表示排列) · 查看更多 »

数论

數論是纯粹数学的分支之一,主要研究整数的性質。被譽為「最純」的數學領域。 正整数按乘法性质划分,可以分成質数,合数,1,質数產生了很多一般人也能理解而又懸而未解的問題,如哥德巴赫猜想,孿生質數猜想等,即。很多問題虽然形式上十分初等,事实上却要用到许多艰深的数学知识。这一领域的研究从某种意义上推动了数学的发展,催生了大量的新思想和新方法。數論除了研究整數及質數外,也研究一些由整數衍生的數(如有理數)或是一些廣義的整數(如代數整數)。 整数可以是方程式的解(丟番圖方程)。有些解析函數(像黎曼ζ函數)中包括了一些整數、質數的性質,透過這些函數也可以了解一些數論的問題。透過數論也可以建立實數和有理數之間的關係,並且用有理數來逼近實數(丟番圖逼近)。 數論早期稱為算術。到20世紀初,才開始使用數論的名稱,而算術一詞則表示「基本運算」,不過在20世紀的後半,有部份數學家仍會用「算術」一詞來表示數論。1952年時數學家Harold Davenport仍用「高等算術」一詞來表示數論,戈弗雷·哈羅德·哈代和愛德華·梅特蘭·賴特在1938年寫《數論介紹》簡介時曾提到「我們曾考慮過將書名改為《算術介紹》,某方面而言是更合適的書名,但也容易讓讀者誤會其中的內容」。 卡尔·弗里德里希·高斯曾說:「數學是科學的皇后,數論是數學的皇后。.

新!!: 数学常数和数论 · 查看更多 »

拉馬努金-Soldner常數

#重定向 拉馬努金-索德納常數.

新!!: 数学常数和拉馬努金-Soldner常數 · 查看更多 »

2的算術平方根

2的算術平方根,俗称“根号2”,记作\sqrt,可能是最早被发现的无理数。相传毕达哥拉斯学派的希帕索斯首先提出了“\sqrt不是有理数”的命题:若一个直角三角形的两个直角边都是1,那么它的斜边长,无法用整数或分数表示。 \sqrt其最初65位.

新!!: 数学常数和2的算術平方根 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »