目录
164 关系: 加利福尼亞大學,加拿大,半人馬座α Bb,南門二,史匹哲太空望遠鏡,取樣偏差,多普勒效应,大熊座47b,大气层,天坛座,天壇座μd,天蝎座,天龙座ιb,天文單位,天文物理期刊,太空干涉測量任務,太阳,太阳系,太陽,太陽系外行星,太陽系外行星之最列表,太陽系外行星百科,外层空间,外星生命,室女座61,宗人四,密度,對流旋轉和行星橫越任務,小行星,少衛增八,巨星,巴納德星,不列颠东印度公司,不確定存在的太陽系外行星列表,中子星,主序星,亞歷山大·沃爾茲森,仙女座,仙女座υ,引力,彗星,徑向速度,土星,地球,北落师门,北方高精度徑向速度行星搜索器,國際天文聯會,利克天文台,傑佛瑞·馬西,哈佛-史密松天体物理中心,... 扩展索引 (114 更多) »
- SETI
- 系外行星學
- 行星类型
加利福尼亞大學
加利福尼亞大學(University of California),简称加州大学(UC),是美國加州的一个公立大學系统。它是组成加州公立高等教育体系的三个大学系统之一。另两部分分别是加利福尼亞州立大學系統和。相对其他两个系统,加大更注重高等研究領域,屬性上屬研究型大學。 加州大學系統總共有十個校區。加州大學也簽約管理三個美國能源部的國家實驗室。它拥有的诺贝尔奖得主不少于120位。美国国家科学院院士357位,佔美国国家科学院总院士2039位的近1/5;拥有全职学生23.8多万人,有6所加州大学为美國大學協會成员。.
加拿大
加拿大(英语、法语:Canada,IPA读音:(英)(法))为北美洲国家,西抵太平洋,东至大西洋,北滨北冰洋,东北方与丹麦领地格陵兰相望,东部与圣皮埃尔和密克隆相望,南方及西北方与美国接壤。加拿大的领土面积达998万平方公里,为全球面积第二大国家。加拿大素有「枫叶之国」的美誉,渥太华为该国首都。 加拿大在1400年前即有原住民在此生活。15世纪末,英国和法国殖民者开始探索北美洲的东岸,并在此建立殖民地。1763年,当七年战争结束后,法国被迫将其几乎所有的北美殖民地割让予英国。在随后的几十年中,英国殖民者向西探索至太平洋地区,并建立了数个新的殖民地。1867年7月1日,1867年宪法法案通过,加拿大省、新不伦瑞克、新斯科舍三个英属北美殖民地组成加拿大联邦,其中加拿大省分裂为安大略和魁北克。在随后100多年里,其它英属北美殖民地陆续加入联邦,组成现代加拿大。 加拿大是实行聯邦制、君主立憲制及議會制的國家,由十个省和三个地区组成,英国女王伊丽莎白二世為國家元首及加拿大君主,而加拿大總督為其及政府的代表。加拿大是双语国家,英语和法语为官方语言,原住民的語言被認定為第一語言。由於位於高緯度地廣人稀,该国是世界上擁有多元化種族及文化的國家,也是移民為主的国家,约五分之一的国民出生于境外,近年來移民大部分來自亞洲。 得益於豐富的自然資源和高度發達的科技,加拿大是富裕、经济发达的国家。以国际汇率计算,加拿大的人均国内生产总值在全世界排名第十六,人类发展指数排名第十。它在教育、政府的透明度、自由度、生活品质及经济自由的都名列前茅。积极参与国际事务,是联合国、北大西洋公約組織、北美空防司令部、七大工業國組織、二十国集团、英联邦、经济合作与发展组织、及太平洋岛国论坛的成员。.
查看 太陽系外行星和加拿大
半人馬座α Bb
半人馬座αBb(Alpha Centauri Bb),即南門二Bb,是環繞光譜類型 K 型主序星南門二B的一顆可能的系外行星,距離地球約4.37光年,位於半人馬座。如能证实,它是至今發現距離地球最近的系外行星,也是環繞類太陽恆星的行星中質量最低的。.
南門二
南門二(α Cen、半人馬座α)位於天空南方的半人馬座,英文名Alpha Centauri或Toliman,雖然肉眼分辨不出來,不過南門二實際上是一個三合星系統,其中一顆恆星是全天空第4明亮的恆星。不過因為其中兩顆恆星距離過近,肉眼無法分辨出來,所以它們的綜合視星等為-0.27等(超過第3亮的大角星),絕對星等為4.4等。南門二也作為南十字星座最外圍的指引而聞名,因為南十字星座的位置太過南邊,所以大部分的北半球都看不到。傳聞當年鄭和下西洋,就是用它來指引方向。 南門二是距離太陽最近的恆星系,只有4.37光年(約277,600天文單位)。比鄰星(Proxima Centauri)通常被認為是這個恆星系的成員,距離太陽只有4.24光年。因為南門二距離地球相對較近,所以在關於星際旅行的冒險小說中,理所當然將它當成「第一個停靠港口」,並預測在人口爆炸時甚至會對這個恆星系進行開發與殖民活動。這些觀點通常也在科幻小說與電子遊戲中出現。 2016年8月24日ESO(欧洲南方天文台)发布了他们的新发现——一颗位于比邻星附近的类地行星。.
查看 太陽系外行星和南門二
史匹哲太空望遠鏡
斯皮策空间望远镜(Spitzer Space Telescope,缩写为SST),是美國國家航空暨太空總署2003年发射的一颗红外天文卫星,是大型轨道天文台计划的最后一台空间望远镜。.
取樣偏差
#重定向 偏差樣本.
查看 太陽系外行星和取樣偏差
多普勒效应
多普勒效应是波源和观察者有相对运动时,观察者接受到波的频率与波源发出的频率並不相同的现象。远方急驶过来的火车鸣笛声变得尖细(即频率变高,波长变短),而离我们而去的火车鸣笛声变得低沉(即频率变低,波长变长),就是多普勒效应的现象,同樣現象也發生在私家車鳴響與火車的敲鐘聲。 这一现象最初是由奥地利物理学家多普勒1842年发现的。荷兰气象学家拜斯·巴洛特在1845年让一队喇叭手站在一辆从荷兰乌德勒支附近疾驶而过的敞篷火车上吹奏,他在站台上测到了音调的改变。这是科学史上最有趣的实验之一。 多普勒效应从19世纪下半叶起就被天文学家用来测量恒星的视向速度。现已被广泛用来佐證观测天体和人造卫星的运动。.
查看 太陽系外行星和多普勒效应
大熊座47b
大熊座47b是一颗位于大熊座、距离地球大约46光年的系外行星,其母星为大熊座47。该行星是大熊座47行星系中距离其母星最近的行星,其质量下限为2.62倍木星质量。科学家于1996年发现该行星。.
大气层
大氣層,均源自及也許是一層受到重力吸引聚攏在擁有巨大質量天體周圍的氣體,而如果重力夠大且氣體的溫度夠低,就能長期保留住。有些行星擁有許多不同的主要氣體,並且有非常深厚的大氣(參見氣體巨星)。 恆星大氣層這個名詞描述的是恆星外面的區域,典型的範圍是從不透明的光球開始向外的部份。相對來說是低溫的恆星,在它們外面的大氣層也許可以形成複合的分子。地球大氣層,不僅包含有多數有機體呼吸所使用的氧和植物與海藻和藍綠藻行光合作用所使用的二氧化碳,也保護生物的基因免於受到太陽紫外線輻射的傷害。它目前的組成是古大氣層生活在其中的有機體經過數億年的生物化學修改後的結果。.
查看 太陽系外行星和大气层
天坛座
天坛座是托勒密最早划分出的48个星座之一,这个星座面积虽然小,但它处在银河中,在天蝎座的正南方,主要是由二等和三等大星构成。其中最明亮的星是天坛座β星(+2.87)。在现代星座诞生之前,天坛座曾是半人马座和豺狼座的一部分。.
查看 太陽系外行星和天坛座
天壇座μd
天壇座μd(Mu Arae d,或稱為HD 160691 d),是環繞天壇座μ的一個太陽系外行星。.
查看 太陽系外行星和天壇座μd
天蝎座
天蝎座(Scorpius,天文符号:♏),是一个位于南天球的黄道带星座之一,面积496.78平方度,占全天面积的1.204%,在全天88个星座中,面积排行第三十三。每年6月3日子夜天蝎座中心经过上中天。天蝎座中亮于5.5等的恒星有62颗,最亮星为心宿二(天蝎座α),视星等为0.96,是全天第十五亮星。.
查看 太陽系外行星和天蝎座
天龙座ιb
天龙座ι星b是一颗位于天龙座、距离地球约102.7光年的系外行星,其母星为K型巨星天龙座ι。该行星是在2002年进行的一项对K型巨星的研究中发现的,它是被发现的首颗环绕巨星运转的行星。该行星的轨道离心率较高,这在巨星普遍具有角频率的情况下(这种情况往往会干扰对行星的观测)有助于科学家发现该行星。.
查看 太陽系外行星和天龙座ιb
天文單位
天文單位(縮寫的標準符號為AU,也寫成au、a.u.或ua)是天文學上的長度單位,曾以地球與太陽的平均距離定義。2012年8月,在中国北京举行的国际天文学大会(IAU)第28届全体会议上,天文学家以无记名投票的方式,把天文单位固定为149,597,870,700米。新的天文单位以公尺来定义,而公尺的定义来源于真空中的光速,也就是说,天文单位现在不再与地球與太阳的實際距离挂钩,而且也不再受时间变化的影响(虽然天文单位最初的来源就是日地平均距离)。 國際度量衡局建議的縮寫符號是ua,但英語系的國家最常用的仍是AU,國際天文聯合會則推薦au,同時國際標準ISO 31-1也使用AU,后来的國際標準ISO 80000-3:2006又改成了ua。通常,大寫字母僅用於使用科學家的名字命名的單位符號,而au或a.u.也可以是原子單位或是任意單位;但是AU被廣泛的地區使用作為天文單位的符號。以1天文單位距離的值為單位的天文常數的值會以符號A標示。.
查看 太陽系外行星和天文單位
天文物理期刊
天文物理期刊(The Astrophysical Journal)是在天文学及天体物理学領域重要的研究期刊,于1895年創刊,至2008年底都由美國芝加哥大學出版社發行;2009年1月起改由英國物理學會出版社發行。編輯部附屬美國天文學會之下,每月出版三冊,刊載的內容主要為最新的天文物理發展、發現、及学说。.
太空干涉測量任務
太空干涉測量任務(Space Interferometry Mission)是美國太空總署計畫中的太空望遠鏡,搜尋類似地球的系外行星是太空干涉測量任務主要的目標之一,它原本預計在2015年發射。但在數次推遲後於2010年被取消。.
太阳
太陽或日是位於太陽系中心的恆星,它幾乎是熱電漿與磁場交織著的一個理想球體。其直徑大約是1,392,000(1.392)公里,相當於地球直徑的109倍;質量大約是2千克(地球的333,000倍),約佔太陽系總質量的99.86% ,同時也是27,173,913.04347826(約2697.3萬)倍的月球質量。 从化學組成来看,太陽質量的大約四分之三是氫,剩下的幾乎都是氦,包括氧、碳、氖、鐵和其他的重元素質量少於2% 。 太陽的恆星光譜分類為G型主序星(G2V)。雖然它以肉眼來看是白色的,但因為在可见光的頻譜中以黃綠色的部分最為強烈,從地球表面觀看時,大氣層的散射使天空成為藍色,所以它呈現黃色,因而被非正式地稱為“黃矮星” 。 光譜分類標示中的G2表示其表面溫度大約是5778K(5505°C),V则表示太陽像其他大多數的恆星一樣,是一顆主序星,它的能量來自於氫融合成氦的核融合反應。太陽的核心每秒鐘聚变6.2億噸的氫。太陽一度被天文學家認為是一顆微小平凡的恆星,但因為銀河系內大部分的恆星都是紅矮星,現在認為太陽比85%的恆星都要明亮。太陽的絕對星等是 +4.83,但是由于其非常靠近地球,因此从地球上看来,它是天空中最亮的天體,視星等達到−26.74。太陽高溫的日冕持續的向太空中拓展,創造的太陽風延伸到100天文單位遠的日球層頂。這個太陽風形成的“氣泡”稱為太陽圈,是太陽系中最大的連續結構。 太陽目前正在穿越銀河系內部邊緣獵戶臂的本地泡區中的本星際雲。在距離地球17光年的距離內有50顆最鄰近的恆星系(最接近的一顆是紅矮星,被稱為比鄰星,距太阳大約4.2光年),太陽的質量在這些恆星中排在第四。 太陽在距離銀河中心24,000至26,000光年的距離上繞著銀河公轉,從銀河北極鳥瞰,太陽沿順時針軌道運行,大約2.25億至2.5億年遶行一周。由於銀河系在宇宙微波背景輻射(CMB)中以550公里/秒的速度朝向長蛇座的方向運動,这两个速度合成之后,太陽相對於CMB的速度是370公里/秒,朝向巨爵座或獅子座的方向運動。 地球圍繞太陽公轉的軌道是橢圓形的,每年1月離太陽最近(稱為近日點),7月最遠(稱為遠日點),平均距離是1.496億公里(天文学上稱這個距離為1天文單位) 。以平均距離算,光從太陽到地球大約需要经过8分19秒。太陽光中的能量通过光合作用等方式支持着地球上所有生物的生长 ,也支配了地球的氣候和天氣。人类從史前時代就一直認為太陽對地球有巨大影響,有許多文化將太陽當成神来崇拜。人类對太陽的正確科學認識進展得很慢,直到19世紀初期,傑出的科學家才對太陽的物質組成和能量來源有了一點認識。直至今日,人类对太阳的理解一直在不断进展中,还有大量有关太陽活动机制方面的未解之謎等待着人们来破解。 現今,太陽自恆星育嬰室誕生以來已經45億歲了,而現有的燃料預計還可以燃燒50億年之久。.
查看 太陽系外行星和太阳
太阳系
太陽系Capitalization of the name varies.
查看 太陽系外行星和太阳系
太陽
#重定向 太阳.
查看 太陽系外行星和太陽
太陽系外行星
太陽系外行星或系外行星,指在太陽系之外的行星。截至2018年5月5日,已經被確認的系外行星總共有3767顆(另有超過2300顆尚未被確認),當中至少有77%是透過凌日現象發現的;這些行星分屬2816個行星系,其中有628個多行星系。克卜勒任務已經檢測到18,000顆行星候選者,包括262顆位於潛在適居帶的候選者。 在銀河系,估計有數十億顆恆星(若每顆恆星都至少有一顆行星,將導致有1,000億至4,000億顆行星),不只在恆星周圍有行星,也有自由移動的行星質量天體,而已知最靠近的系外行星是比鄰星b。 幾乎所有已經發現的系外行星都在我們自己的銀河系內,但是有少量的銀河系外行星可能可以被檢測出來。哈佛-史密松天體物理中心在2013年1月提出的一份報告中提到:估計在銀河系內「至少有170億顆」地球尺度的系外行星。 數百年來,許多哲學家和科學家都認為在太陽系以外應該也有行星的存在,但是沒有辦法知道行星有多普遍,或是與太陽系行星的相似度又是如何。在19世紀,許多的偵測方法被提出來,但最終所有的天文學家得到的結果都是否定的。第一個被確認的檢測出現在1992年,發現有幾顆質量類似地球的天體環繞著脈衝星PSR B1257+12。在主序帶恆星發現行星的第一個偵測結果出現在1995年,在鄰近的飛馬座51發現了以4天週期公轉一週的巨大行星。由於觀測技術的進步,自此之後偵測到的數量與效率迅速的增加。有些系外行星被大望遠鏡直接拍攝到影像,但絕大多數的系外行星都是經由徑向速度測量檢出的。除了系外行星,「系外彗星」(在太陽系之外的彗星)也被發現,也許在銀河系內也是很普遍的。 最常見的系外行星是巨大的行星,相信是類似於木星或海王星,但這也反應了取樣偏差,因為大質量的行星比較容易被觀察到。一些相對比較輕的系外行星,質量只有地球的幾倍(現在所謂的超級地球);如眾所周知,在統計上的研究表明它們的數量應該超過巨大的行星。雖然現在已經發現一小撮包括地球大小和更小的行星,似乎表現出其它的地球類似體屬性。也存在著有這行星質量的天體環繞著棕矮星和不受到恆星拘束在太空中自由移動的行星;然而,「行星」這個名詞尚未應用在這些天體上。 發現的太陽系外行星,特別是軌道位於適居帶,極有可能有液態水存在表面的那些行星(還因此可能有生命),提高了搜尋外星生命的興趣。因此,尋找太陽系外的行星還包括適居行星,在太陽系外的行星適合承載生命的研究中,被考慮的因素相當廣泛。 在2013年1月7日,來自克卜勒任務太空天文台的天文學家宣布發現了KOI-172.02,一顆像地球的系外行星候選者,在一顆類似太陽的恆星的適居帶中環繞著,可能是「存在著外星生命的主要候選者」。.
太陽系外行星之最列表
以下是已知的太陽系外行星之最列表。此條目所列出的值都是已確定的:.
太陽系外行星百科
太陽系外行星百科是一個天文學網站,由在法國巴黎的默東天文臺任職的天文學家於1995年成立,該網站建制了完整的已知的以及尚待確認的系外行星。該網站頻繁地依據會議或期刊所發佈的最新數據更新網站資料。 在該網站中,每顆行星均以一個單獨的頁面刊載其基本數據,並附上了其母星的資料,如距離、光譜類型、視星等、質量、半徑、發現年份、半長軸、公轉週期、傾角等屬性,並註明引用來源。該網站提供了多種語言版本,包含英文、法文、德文、西班牙文、葡萄牙文、義大利文、波蘭文、波斯文。 由於天文學界對行星、棕矮星的定義尚無定論,也未能確認兩者之間的明確的分野,且天文學對遠方天體的質量計算時常存在不小的誤差,該百科遂決定將收錄的候選行星質量範圍向上擴展。截至2011年6月, 該網站的目標是收錄25倍木星質量以下的清單,而較早前的目標是收錄20倍木星質量以下。假若錄入的星體後來被證實不為系外行星,則會從清單中撤銷。 太陽系外行星百科是一個受信賴的行星清單,論文、大眾媒體以及SIMBAD皆以該百科網站作為參考來源。.
外层空间
-- --(outer space),於中國大陸稱外層空間,指的是地球大氣層及其他天體之外的虛空區域。 與真空有所不同的是,外太空含有密度很低的物質,以等離子態的氫為主。其中還有電磁輻射、磁場等。理論上,外層空間可能還包含暗物質和暗能量。 外太空與地球大气层並沒有明確的界線,因為大氣隨著海拔增加而逐漸變薄。假設大氣層温度固定,大氣壓會由海平面的大約1013毫巴,隨著高度增加而呈指數化減少至零為止。 国际航空联合会定義在100公里的高度為卡門線,為現行大氣層和太空的界線定義。美國認定到達海拔80公里的人為太空人,在太空船重返地球的過程中,120公里是空氣阻力開始發生作用的界線。.
查看 太陽系外行星和外层空间
外星生命
外星生命指存在于地球以外的生命体。这个概念囊括了简单的细菌到具有高度智慧的“外星人”。研究和测试关于外星生命猜想的学科被称作地外生物学或天体生物学。自从20世纪中叶以来,人类一直使用包括探测地球之外的电波、天文望远镜观测潜在的宜居行星等方法探测外星生命存在的迹象,但迄今为止并没有确切证据表明外星生命的存在。有人認為發現外星人的機率很小,也有很多人认为外星生命几乎必定存在。 世界各地一直有关于外星人的遐想,在各種史書中也留下不少疑似关于外星人的奇异記載。有人猜测古印度人、古玛雅人、古埃及人建造的發達古文明受到了外星生物科技的影響,更有人宣称曾目睹外星人或与之接触。伴随大量关于外星人的報導、科幻小說和電影的充斥,使得外星生命的传闻绘声绘色。.
查看 太陽系外行星和外星生命
室女座61
#重定向 天门增四.
查看 太陽系外行星和室女座61
宗人四
宗人四(蛇夫座70)是位於蛇夫座,距離地球16.6光年的一個聯星系統的主星,它是視星等為4等的一顆星,它不是一顆典型的亮星,要在遠離城市燈光的情況下才能被裸眼看見。.
查看 太陽系外行星和宗人四
密度
3 | symbols.
查看 太陽系外行星和密度
對流旋轉和行星橫越任務
對流旋轉和行星橫越任務(COnvection ROtation and planetary Transits, COROT)是法國國家太空研究中心與歐洲太空總署所主導的研究計畫,主要目標是研究系外行星與類地行星及星震學研究。對流旋轉和行星橫越任務衛星於2006年12月由聯盟2號運載火箭發射升空。.
小行星
小行星是太陽系内類似行星環繞太陽運動,但體積和質量比行星小得多的天體。 至今為止在太陽系內一共已經發現了約127萬顆小行星,但這可能僅是所有小行星中的一小部分,只有少數這些小行星的直徑大於100公里。到1990年代為止最大的小行星是穀神星,但近年在古柏帶內發現的一些小行星的直徑比穀神星要大,比如2000年發現的伐樓拿(Varuna)的直徑為900公里,2002年發現的誇歐爾(Quaoar)直徑為1280公里,2004年發現的厄耳枯斯的直徑甚至可能達到1800公里。2003年發現的塞德娜(小行星90377)位於古柏帶以外,其直徑約為1500公里。 根據估計,小行星的數目應該有數百萬,詳見小行星列表,而最大型的小行星現在開始重新分類,被定義為矮行星。.
查看 太陽系外行星和小行星
少衛增八
少衛增八(仙王座γ,Gamma Cephei),傳統的英文名稱是Alrai,也有時被稱為Errai或Er Rai,是在仙王座的一顆恆星。少衛增八是一對雙星,距離地球約50光年,視星等3.22,較大且較亮星的是橘色的次巨星,光譜為K1 IV,較小的是紅矮星,其質量只有太陽的0.409倍。目前對這對雙星的軌道研究尚不充足,最好的估計值是周期為70年±16年,離心率0.439 ±0.06,兩星之兼的距離在10~29天文單位間變化。 少衛增八能以肉眼直接看見,未來將成為北極星,這是由於地球的分點歲差,使地球自轉軸在天球上移動。在第30世紀,少衛增八便會因為是最接近天球北極點的恆星而成為那時代的北極星,然後這個「頭銜」在52世紀時將會轉移給天鉤八(仙王座ι)。.
查看 太陽系外行星和少衛增八
巨星
巨星在本質上是一顆半徑和亮度都比主序星大,但卻有相同的表面溫度的恆星Giant star, entry in Astronomy Encyclopedia, ed.
查看 太陽系外行星和巨星
巴納德星
巴納德星(英语:Barnard's Star)是一顆質量非常小的紅矮星,位在蛇夫座β星附近,蛇夫座66星的西北側,距離地球僅約6光年遠。美國天文學家愛德華·愛默生·巴納德在1916年測量出它的自行為每年10.3角秒,是已知相對太陽自行最大的恆星。為紀念巴納德的發現,後來稱這顆恆星為巴納德星。巴納德星距離太陽約1.8秒差距(6光年),是蛇夫座內距離我們最近、宇宙中第二接近太陽的恆星系統,也是第四接近太陽的恆星,前三接近太陽的恆星都是半人馬座α系統的成員。儘管它如此的接近地球,但是人類裸眼仍然看不見巴納德星。 由於它相當接近太陽,而且位於容易觀測的天球赤道附近,所以M型矮星巴納德星比任何恆星受到天文學家更多的研究和注意。天文學家的研究曾經聚焦在恆星的特徵、天體測量和推敲系外行星可能存在的極限。雖然這是一顆古老的恆星,天文學家仍然觀測到巴納德星發生過耀斑爆發。 天文學家曾對這顆恆星的一些研究題材發生爭議。從1960年代初至1970年代初長達十年之久,天文學家彼得·范德坎普(Peter van de Kamp)曾聲稱有一顆巨大的氣體行星環繞著巴納德星,一些天文學家也接受他的說法。天文學家後來認為恆星附近可能存在類似地球的小型行星,所以巨大行星存在的可能性就大為降低,范德坎普的主張被推翻。天文學家十分注意這顆恆星,它是無人旅行到鄰近的恆星系統可以快速前往研究的一個目標。 因為巴納德星擁有幾點與眾不同的特徵,所以它成為天文學家相當矚目的恆星。巴納德星是目前所有已知恆星中自行運動最快的恒星,因此有時候也被稱為巴納德「逃亡之星」(Runaway Star),它的自行速度比大熊座的飛行之星快一倍。恒星通常每年的自行速度還不到1角秒,牧夫座大角星自行運動算是比較明顯的,但是一年也不到2角秒,而巴納德星每年的自行運動卻高達10.31角秒。巴納德星距離太陽系只有5.96光年,除了南門二系統(半人馬座α三合星)外,它是距離地球最近的恒星。巴納德星最吸引人的地方是這顆恒星周圍很可能有兩顆大小約等於木星和土星的行星圍繞它公轉,是一個距離地球很近的恆星系。.
查看 太陽系外行星和巴納德星
不列颠东印度公司
不列颠东印度公司(British East India Company,縮寫:(EIC),通稱英國東印度公司,又稱「可敬的东印度公司」(The Honourable East India Company,縮寫:(HEIC),綽號為「约翰公司」(John Company),是一个股份公司。西元1600年12月31日,英格兰女王伊丽莎白一世授予该公司皇家特許狀,给予它在印度贸易的特权而組成。实际上此特许狀给予「可敬的东印度公司」於东印度贸易的垄断权21年。随时间的变迁,东印度公司从一个商业贸易企业变成印度的实际主宰者。在1858年被解除行政權力为止,它还获得了协助统治和军事职能。.
不確定存在的太陽系外行星列表
前有52個太陽系外行星有可能存在,但還是不確定。克卜勒太空望遠鏡於2011年列出一份太陽系外行星候選列表,包含1235顆行星候選。.
中子星
中子星(neutron star),是恒星演化到末期,經由引力坍縮發生超新星爆炸之後,可能成為的少數終點之一。恆星在核心的氫、氦、碳等元素於核聚变反應中耗盡,当它们最终轉變成鐵元素時便無法从核聚变中获得能量。失去熱輻射壓力支撐的外圍物質受重力牽引會急速向核心墜落,有可能导致外壳的動能轉化為熱能向外爆發產生超新星爆炸,或者根据恒星质量的不同,恒星的内部区域被压缩成白矮星、中子星或黑洞。白矮星被压缩成中子星的過程中恒星遭受劇烈的壓縮使其組成物質中的電子併入質子轉化成中子,直徑大約只有十餘公里,但上面一立方厘米的物質便可重達十億噸,且旋轉速度極快。由於其磁軸和自轉軸並不重合,磁場旋轉時所產生的無線電波等各种辐射可能會以一明一滅的方式傳到地球,有如人眨眼,此時稱作脈衝星。 一顆典型的中子星質量介於太陽質量的1.35到2.1倍,半徑則在10至20公里之間(質量越大半徑收縮得越小),也就是太陽半徑的30,000至70,000分之一。因此,中子星的密度在每立方公分8×1013克至2×1015克間,此密度大約是原子核的密度。 緻密恆星的質量低於1.44倍太陽質量,則可能是白矮星,但质量大於奧本海默-沃爾可夫極限(3.2倍太陽質量)的恆星会继续發生引力坍縮,則無可避免的將產生黑洞。 由於中子星保留母恆星大部分的角動量,但半徑只是母恆星極微小的量,轉動慣量的減少導致轉速迅速的增加,產生非常高的自轉速率,周期從毫秒脈衝星的700分之一秒到30秒都有。中子星的高密度也使它有強大的表面重力,強度是地球的2×1011到3×1012倍。逃逸速度是將物體由重力場移動至無窮遠的距離所需要的速度,是測量重力的一項指標。一顆中子星的逃逸速度大約在10,000至150,000公里/秒之間,也就是可以達到光速的一半。換言之,物體落至中子星表面的速度也將達到150,000公里/秒。更具體的說明,如果一個普通體重(70公斤)的人遇到中子星,他撞擊到中子星表面的能量將相當於二億噸TNT當量的威力(四倍於全球最巨大的核彈大沙皇的威力)。.
查看 太陽系外行星和中子星
主序星
主序星在可顯示恒星演化過程的赫羅圖上,是分布在由左上角至右下角,被稱為主序帶上的恆星。 主序帶是以顏色相對於光度繪圖成線的一條連續和獨特的恆星帶。這個色-光圖就是後來埃希納·赫茨普龍和亨利·諾利斯·羅素合作發展出來,著名的赫羅圖。在這條帶子上的恆星就是所謂的主序星或"矮星"。 恆星形成之後,它在高熱、高密度的核心進行核聚变反應,將氫原子轉變成氦,並且創造出能量。在這個生命期階段的恆星,座落在在主序帶上的位置主要是依據它的質量,但化學成分和其它的因素也有一些關係。所有的主序星都處於流體靜力平衡狀態,它來自炙熱核心向外膨脹的熱壓力與來自外圍包層向內擠壓的重力壓維持著平衡。在核心溫度和壓力與能量孳生率有著強烈的相關性,並有助於維持平衡。在核心孳生的能量傳遞到表面經由光球輻射出去。能量經由輻射或對流傳遞,而後著在其區域內會產生階梯狀的溫度梯度,更高的透明度,或兩者均有。 基於恆星產生能量的主要過程,主序帶有時會被分成上段和下段。質量大約在1.5太陽質量以內的恆星,將氫聚集融合成氦的一系列主要程序稱為質子-質子鏈反應。超過這個質量在主序帶的上段,核融合主要是使用碳、氮、和氧原子,經由碳氮氧循環的程序,將氫原子轉變成氦。質量超過太陽10倍的主序星在核心區域會產生對流,這樣的活動繪激發新創建的氦外移,並維持發生核融合所需要的燃料比例。當核心的對流不再發生時,發展出的富氦核心的外圍會被氫包圍著。質量較低的恆星,核心的對流區會逐步的縮小,大約在2太陽質量附近,核心的對流區就會消失。在這個質量以下,恆星的核心只有輻射,但是在接近表面會有對流。隨著恆星質量的減少,對流的包層會增加,質量低於0.4太陽質量的主序星,全部的質量都在對流。 通常,質量越大的恆星在主序帶上的生命期越短。當在核心的核燃料已被耗盡之後,恆星的發展會離開赫羅圖上的主序帶。這時恆星的發展取決於它的質量,質量低於0.23太陽質量的恆星直接成為白矮星,而質量未超過10太陽質量的恆星將經歷紅巨星的階段;質量更大的恆星可以爆炸成為超新星,或直接塌縮成為黑洞。.
查看 太陽系外行星和主序星
亞歷山大·沃爾茲森
亞歷山大·沃爾茲森(Aleksander Wolszczan,發音:,)是一位波蘭天文學家,是第一個太陽系外行星和脈衝星行星其中一位共同發現人。.
仙女座
仙女座,88個現代星座之一,也是2世紀希臘羅馬天文學家托勒密列出的48個星座之一,位於天球赤道以北。在希臘神話中,仙女座象征被拴在岩石上待海怪刻托吞噬的女神安德洛墨達。仙女座在北半球秋季夜晚最易觀賞,同時出現的還有象征珀耳修斯神話中其他神祇的星座。由於其赤緯偏北,仙女座只有在南緯40度線以北的地區能夠看到,在40度以南的地區則會位於地平線之下。仙女座是天球上最大的星座之一,面積為722平方度,即是滿月大小的1400倍,最大星座長蛇座面積的55%,亦是最小星座南十字座面積的十倍以上。 仙女座中的最亮恆星壁宿二(仙女座α)是一對聯星,同時可歸為飛馬座的一部分。天大將軍一(仙女座γ)也是一對聯星,色彩鮮艷,是受業餘天文學家青睞的觀測對象。奎宿九(仙女座β)比壁宿二少暗一些,屬於紅巨星,用肉眼能看到它呈紅色。肉眼可見的仙女座星系(梅西爾31)是仙女座內最明顯的深空天體。它是距離銀河系最近的螺旋星系,也是亮度最高的梅西爾天體之一。一些較暗的星系,包括M31的伴星系M110和M32、可用望遠鏡觀測的藍雪球星雲以及更遙遠的NGC 891,都在仙女座的範圍以內。 在中國天文學中,組成仙女座的各個恆星分別屬於四個不同的星宿;印度神話中也有對應於仙女座的星座。仙女座流星雨是每年11月發生、量度較低的流星雨,其輻射點位於仙女座之內。.
查看 太陽系外行星和仙女座
仙女座υ
#重定向 天大将军六.
查看 太陽系外行星和仙女座υ
引力
重力(Gravitation或Gravity),是指具有质量的物体之间相互吸引的作用,也是物体重量的来源。 引力与电磁力、弱相互作用力及强相互作用力一起构成自然界的四大基本相互作用。在这四种基本相互作用中,引力是最弱的一种,但同时也是一种长程有效作用力。在现代物理学中,引力一般由广义相对论来精确描述,认为引力反映了物体的惯性在弯曲时空中的表现。而经典力学中的牛顿万有引力定律则是对引力在通常物理条件下的极好的近似描述。 在地球上,地球对地面附近物体的万有引力赋予了物体的重量,并使物体落向地面。在宇宙中,引力让物质聚集而形成天体,同时也让天体之间相互吸引,形成按照轨道运转的天体系统。此外,月球以及太陽对地球上海水的引力,形成了地球上的潮汐。.
查看 太陽系外行星和引力
彗星
彗星(Comet,有時也被誤記為慧星)是由冰構成的太陽系小天體(SSSB),當他朝向太陽接近時,會被加熱並且開始釋氣,展示出可見的大氣層,也就是彗髮,有時也會有彗尾。這些現象是由太陽輻射和太陽風共同對彗核作用造成的。彗核是由鬆散的冰、塵埃、和小岩石構成的,大小從P/2007 R5的數百米至海爾博普彗星的數十公里不等,但大部分都不會超過16公里。 彗星的軌道週期範圍也很大,可以從幾年到幾百萬年。短週期彗星來自超越至海王星軌道之外的柯伊伯帶,或是與離散盤有所關聯 。長週期彗星被認為起源於歐特雲,這是在古柏帶外面,伸展至最近恆星一半距離上,由冰凍天體構成的球殼。長週期彗星受到路過恆星和銀河潮汐的引力攝動而直接朝向太陽前進。雙曲線軌道的彗星可能在進入內太陽系之前曾經被沿著雙曲線軌跡被拋射至星際空間,則只會穿越太陽系一次。來自太陽系外,在銀河系內可能是常見的系外彗星也曾經被檢測到。 彗星與小行星的區別只在於存在著包圍彗核的大氣層,未受到引力的拘束而擴散著。這些大氣層有一部分被稱為彗髮(在中央包圍著彗核的大氣層),其它的則是彗尾(受到來自太陽的太陽風電漿和光壓作用,從彗髮被剝離的氣體、塵埃、和帶電粒子,通常呈線性延展的部分)。然而,熄火彗星因為已經接近太陽許多次,幾乎已經失去了所有可揮發的氣體和塵埃,所以就顯得類似於小的小行星。小行星被認為與彗星有著不同的起源,是在木星軌道內側形成的,而不是在太陽系的外側。主帶彗星和活躍的半人馬小行星的發現,已經使得小行星和彗星之間的差異變得模糊不清。 ,已經知道的彗星有4,894顆,其中大約有1,500顆是克魯茲族彗星和大約484顆短週期彗星,而且這個數量還在穩定的增加中。然而,這只是潛在彗星族群中微不足道的數量:估計在外太陽系的儲藏所內類似的彗星體數量可能達到一兆顆。儘管大多數的彗星都是暗淡和不夠引人注目的,但平均大概每年會有一顆裸眼可見的彗星,其中特別明亮的就會被稱為"大彗星"。 在2014年1月22日,ESA科學家的報告首次明確的指出在矮行星穀神星,也是小行星帶中最大的天體,有水氣存在。這項檢測是通過赫歇爾太空望遠鏡使用遠紅外線技術完成的。此一發現是出人意料之外的,因為彗星,不是小行星,才會有這種典型的"噴流萌芽和羽流"。根據其中一位科學家的說法:"彗星和小行星之間的區隔是越來越模糊了"。 古代也有彗星出现的记录,古人一般認為彗星是凶兆。.
查看 太陽系外行星和彗星
徑向速度
视向速度是物體朝向視線方向的速度。一個物體的光線在徑向速度上會受多普勒效应的支配,退行的物體光波長將增加(紅移),而接近的物體光波長將減少(藍移)。 恆星的徑向速度,能夠經由高解析的光譜精確的測量,並且和在實驗室內測出的已知譜線波長做比較。在習慣上,正的徑向速度表示物體在退行,如果是負值,物體則是在接近。 在許多聯星中,軌道運動通常都會造成每秒數公里的徑向速度改變量。這些恆星譜線的變化肇因於都卜勒效應,因此她們被稱為光譜聯星。研究徑向速度可以估計恆星的質量和一些軌道要素,像是離心率、半長軸。同樣的方法也被用在發現環繞恆星的行星上,在這種方法下測量的運動可以確定行星的軌道週期,而位移量的大小可以用來計算行星的質量。.
查看 太陽系外行星和徑向速度
土星
土星,為太陽系八大行星之一,至太阳距离(由近到远)位於第六、体积則僅次於木星。並與木星、天王星及海王星同属氣體(類木)巨星。古代中国亦称之填星或鎮星。 土星是中国古代人根据五行学说结合肉眼观测到的土星的颜色(黄色)来命名的(按照五行学说即木青、金白、火赤、水黑、土黄)。而其他语言中土星的名称基本上来自希臘/羅馬神話传说,例如在欧美各主要语言(英语、法语、西班牙语、俄语、葡萄牙语、德语、意大利语等)中土星的名称来自于羅馬神話中的农业之神萨图尔努斯(拉丁文:Saturnus),其他的还有希臘神話中的克洛諾斯(泰坦族,宙斯的父親,一说其在罗马神话中即萨图尔努斯)、巴比倫神话中的尼努尔塔和印度神话中的沙尼。土星的天文学符號是代表农神萨图尔努斯的鐮刀(Unicode: )。 土星主要由氫組成,還有少量的氦與微痕元素,內部的核心包括岩石和冰,外圍由數層金屬氫和氣體包覆著。最外層的大氣層在外观上通常情况下都是平淡的,雖然有时会有長时间存在的特徵出現。土星的風速高達1,800公里/時,明顯的比木星上的風快速。土星的行星磁場強度介於地球和更強的木星之間。 土星有一個顯著的環系統,主要的成分是冰的微粒和較少數的岩石殘骸以及塵土。已經確認的土星的衛星有62顆。其中,土卫六是土星系統中最大和太陽系中第二大的衛星(半徑2575KM,太陽系最大的衞星是木星的木衛三,半徑2634KM),比行星中的水星還要大;並且土卫六是唯一擁有明顯大氣層的衛星。.
查看 太陽系外行星和土星
地球
地球是太阳系中由內及外的第三顆行星,距离太阳约1.5亿公里。地球是人類已知宇宙中唯一存在生命的天体,也是人類居住的星球,共有74.9億人口。地球质量约为5.97×1024公斤,半径约6,371公里,密度是太阳系中最高。地球同时进行自转和公转运动,分别产生了昼夜及四季的变化更替,一太陽日自转一周,一太陽年公转一周。自转轨道面称为赤道面,公转轨道面称为黄道面,两者之间的夹角称为黄赤交角。地球仅擁有一顆自然卫星,即月球。 地球表面有71%的面积被水覆盖,称为海洋或可以成为湖或河流,其余是陆地板块組成的大洲和岛屿,表面分布河流和湖泊等水源。南极的冰盖及北极存有冰。主體包括岩石圈、地幔、熔融态金属的外地核以及固态金属的內地核。擁有由外地核產生的地磁场。外部被氣體包圍,称为大氣層,主要成分為氮、氧、氬。 地球诞生于约45.4亿年前,42億年前開始形成海洋。并在35亿年前的海洋中出现生命,之后逐步涉足地表和大气,并分化为好氧生物和厌氧生物。早期生命迹象产生的具體证据包括格陵兰岛西南部中拥有约37亿年的历史的石墨,以及澳大利亚大陆西部岩石中约41亿年前的 Early edition, published online before print.。此后除去数次生物集群灭绝事件,生物种类不断增多。根据学界测定,地球曾存在过的50亿种物种中,已经绝灭者占约99%,据统计,现今存活的物种大约有1,200至1,400万个,其中有记录证实存活的物种120万个,而余下的86%尚未被正式发现。2016年5月,有科学家认为现今地球上大概共出现过1--种物种,其中人类正式发现的仅占十万分之一。2016年7月,科学家称现存的生物共祖中共存在有355种基因。地球上有约74亿人口,分成了约200个国家和地区,藉由外交、旅游、贸易、传媒或战争相互联系。.
查看 太陽系外行星和地球
北落师门
北落师门(英语:Fomalhaut / α PsA / 南鱼座α)是南鱼座的主星,距離地球约25.1光年。在地球上的視星等為1.16,是除太阳外,在地球上能看到的第17位亮星。 北落师门是三合星,主星北落師門A的光譜分類為A3V,直徑約為太陽直徑的1.7倍,质量约为2.3倍,亮度15倍。它只有约2到3亿年的年龄,是非常年轻的恒星。伴星北落師門B,即南魚座TW,是一顆光譜K型恆星。另一顆伴星LP 876-10則是光譜M型恆星。 在北落师门周围,距離北落師門133至158天文單位的地方,围绕着一圈圆盘状尘埃云。1998年,人們通過觀測和推测,認為尘埃云中很可能已经产生了行星。.
查看 太陽系外行星和北落师门
北方高精度徑向速度行星搜索器
北方高精度徑向速度行星搜索器(High Accuracy Radial velocity Planet Searcher for the Northern hemisphere,縮寫:HARPS-N)是一個高精確度的徑向速度量測攝譜儀,該儀器裝設於位於西班牙加那利群島拉帕爾瑪島,由義大利所有的口徑3.58公尺。.
國際天文聯會
國際天文學聯合會(International Astronomical Union,缩写为IAU;法語:Union astronomique internationale,縮寫為UAI),由博士以上的專業天文學家所組成,積極參與天文學研究與教育。於1919年7月28日在比利時的布魯塞爾成立,由當時的國際天文星圖計畫(Carte du Ciel)、太陽天文聯合會(Solar Union)和國際時間局(Bureau International de l'Heure)等數個組織合併而成。其後,世界各國的國家級天文組織陸續加入,构成今日的規模。該會是國際科學理事會(ICSU)的國際科學聯合成員,也是國際上承認的權威机构,負責統合恆星、小行星、衛星、彗星等新天體以及天文學名詞的定義與英文命名。2014年7月10日宣布「外星世界命名」(NameExoWorlds)活動啟動,開放公眾參與系外行星的命名。 IAU下分成數個工作單位,IAU也負責天文訊息全球電報通報系統,實際工作由中央天文電報局(Central Bureau for Astronomical Telegrams,CBAT)汇总整理天文訊息的匯報及電報的發布。 總會共有90個不同國家或地區共10144位會員,其中美國最多,有2579位會員,其次为法國(700位)、日本(598位)、義大利(568位)、德國(532位)和英國(523位)。.
利克天文台
利克天文台(Lick Observatory)位于美国加利福尼亚州圣荷西市的东部,汉密尔顿山的山顶上,海拔4209英呎,由聖塔克魯茲加利福尼亞大學管理。 利克天文台是世界上首个建于山顶的永久性台址,使用美国富豪詹姆斯·利克的遗产,建造于1876年至1887年间。1887年,利克的遗体安葬在口径36英寸(91厘米)的折射望远镜的基座下面,这台望远镜被命名为詹姆斯·利克望远镜。1888年1月3日,利克望远镜开光,是当时世界上最大的折射望远镜。直到1897年这一纪录才被叶凯士天文台打破。1888年4月,利克天文台移交给加利福尼亚大学董事会管辖,成为世界上首个建于山顶的永久天文台。首任台长是爱德华·霍顿。1898年,詹姆斯·基勒担任天文台的第二任台长。 随着圣荷西的日益繁华,光污染逐渐开始对天文台的观测工作造成影响。1980年代,圣荷西的路灯全部改用低压钠灯,这种灯的灯光容易用望远镜上的滤光片去除。为了感谢圣荷西在降低光害方面所做的努力,利克天文台发现的第6216号小行星命名为“圣荷西”。 利克天文台的主要观测设备有:.
查看 太陽系外行星和利克天文台
傑佛瑞·馬西
傑佛瑞·馬西(Geoffrey W. Marcy,),美國天文學家,曾任教於柏克萊加州大學。他以太陽系外行星發現數量最多者聞名。前100顆太陽系外行星的其中70顆是他和和共同發現。2015年因性騷擾辭職。.
哈佛-史密松天体物理中心
#重定向 哈佛-史密松天体物理中心.
哈勃空间望远镜
哈勃太空望遠鏡(Hubble Space Telescope,HST),是以天文學家愛德溫·哈伯為名,在地球軌道的望遠鏡。哈勃望远镜接收地面控制中心(美国马里兰州的霍普金斯大学内)的指令并将各种观测数据通过无线电传输回地球。由于它位于地球大氣層之上,因此獲得了地基望遠鏡所沒有的好處:影像不受大氣湍流的擾動、視相度絕佳,且无大氣散射造成的背景光,還能觀測會被臭氧層吸收的紫外線。於1990年發射之後,已經成為天文史上最重要的儀器。它成功弥补了地面觀測的不足,幫助天文學家解決了許多天文学上的基本問題,使得人类对天文物理有更多的認識。此外,哈勃的超深空視場则是天文學家目前能獲得的最深入、也是最敏銳的太空光學影像。 哈勃太空望遠鏡和康普頓γ射線天文台、錢德拉X光天文台、史匹哲太空望遠鏡都是美國太空總署大型轨道天文台计划的一部分。哈勃空间望远镜由NASA和ESA合作共同管理。.
冥王星
冥王星(小行星序号:134340 Pluto。天文代號:♇,Unicode編碼U+2647)是柯伊伯带中的矮行星。冥王星是第一颗被发现的柯伊伯带天体。冥王星是太阳系内已知体积最大、质量第二大的矮行星。在直接围绕太阳运行的天体中,冥王星体积排名第九,质量排名第十。冥王星是体积最大的海王星外天体,其质量仅次于位于离散盘中的阋神星。与其他柯伊伯带天体一样,冥王星主要由岩石和冰组成。冥王星相对较小,仅有月球质量的六分之一、月球体积的三分之一。冥王星的轨道离心率及倾角皆较高,近日点为30天文单位(44亿公里),远日点为49天文单位(74亿公里)。冥王星因此周期性进入海王星轨道内侧。海王星与冥王星因相互的轨道共振而不会碰撞。在冥王星距太阳的平均距离上阳光需要5.5小时到达冥王星。 1930年克莱德·汤博发现冥王星,并将其视为第九大行星。1992年后在柯伊伯带发现的一些质量与冥王星相若的冰制天体挑战冥王星的行星地位。2005年发现的阋神星质量甚至比冥王星质量多出27%,国际天文联合会(IAU)因此在翌年正式定义行星概念。新定义将冥王星排除行星范围,将其划为矮行星(類冥矮行星)。 冥王星目前已知的卫星总共有五颗:冥卫一、冥卫二、冥卫三、冥卫四、冥卫五。冥王星与冥卫一的共同质心不在任何一天体内部,因此有时被视为一联星系统。IAU并没有正式定义矮行星联星,因此冥卫一仍被定义为于冥王星的卫星。 2015年7月14日新视野号探测器成为首架飞掠冥王星的宇宙飞船。在飞掠的过程中,新视野号对冥王星及其卫星进行细致的观测。.
查看 太陽系外行星和冥王星
冰七
冰七(Ice VII)是一種冰的立方晶系結晶。可以由30亿帕液態水降至室溫後製備,或是將冰六(D2O)在低於95開氏度的條件下減壓製備。 科學家认为泰坦及絕大由水組成的系外行星(如葛利斯436b和GJ 1214 b)的海底即由冰七組成。 當有大量水的時候,水底會形成極大的壓力,壓力通常超過百萬大氣壓。那樣的壓力會將液態海水,壓縮成我們說的冰七。 位於天秤座,距離地球20光年有一顆叫做葛利斯581c的星球,這顆行星是由米歇梅耶發現,我們稱它為水天體或海洋行星。它與另外兩顆行星繞著一顆很小的恆星運行,這顆表面完全被水所覆蓋。看不到陸地,連行星表面底下也沒有,只見水。 這種冰與自然界或冰箱裡的冰不同,這種冰雹的特徵在於,自然界或冰箱裡的冰不水分子排列是亂七八糟,但在極大壓力下形成的冰,水分子會整齊排列或排成一列。與冰7很相似的一種物質是岩鹽晶體,是一種鹵化物。 太陽系中可能有冰7存在,即木星的衛星木衛二。可能有一層為厚冰所包括的液態水,冰層產生的壓力極大,大到這些未知海域深處可能有冰7。 分類:冰.
查看 太陽系外行星和冰七
凱克天文台
凱克天文台位於美國夏威夷州毛納基山的頂峰,海拔4145米(13600英尺),拥有两座世界上口径第二大的光學/近紅外線望遠鏡——凯克望远镜(口径10米),仅次于西班牙口径10.4米的加那利大型望远镜。两台凯克望远镜可组成光学干涉仪进行观测。.
查看 太陽系外行星和凱克天文台
凌日
凌日(Transit)是一種天文現象,通常指有地內行星(金星或水星)從地球與太陽之間經過,在地球上的觀察者會發現有一個黑點從太陽通過,持續一個多小時,稱為凌日。而在地球之外的其他行星,除了水星之外,同樣也可觀測到其內側行星的凌日。 目前在地球上可觀測到的凌日現象有金星凌日和水星凌日,德國天文學家開普勒在1629年預言:“1631年11月7日將發生水星凌日。”是人類天文史上第一次預言成功的例子。 太陽系外行星也有些是以觀測母恆星光度變化,確認凌日發生,光度降低而被發現。.
查看 太陽系外行星和凌日
凌日時間變分法
凌日時間變分法是通過觀察凌日時間變化以檢測系外行星的一種方法。這提供了一種極其靈敏,可以用來檢測地球大小系外行星的方法。"時間變異"需要精確的測量凌發生的時刻,才可以可測量出週期的改變。 第一顆以凌日時間變異檢測出的非凌日行星是由NASA的克卜勒任務衛星完成的。凌日的克卜勒-19b顯示在300天的週期中有著5分鐘的振幅變異,顯示有另一顆行星克卜勒-19c存在著,它的合理週期可能接近這顆凌日行星的數倍。 在2010年,研究人員依據凌日時間變分法建議WASP-3也有第二顆的行星存在,但是在2012年這項建議被否定了。 凌日時間變分法的技術在2012年被用來發現克卜勒-9d,並被普遍的用於驗證系外行星的發現。.
光年
光年(light-year)是長度單位之一,指光在真空中一年時間內傳播的距離,大約9.46兆千米(9.46千米或英里。 光年一般用於天文學中,是用來量長度很長的距離,如太陽系跟另一恆星的距離。光年不是時間的單位。 天文學中另三個常用的單位是秒差距、天文單位與光秒,一秒差距等於3.26光年,一天文單位為149,597,870,700公尺,一光秒是光一秒所走的距離為299,792,458公尺。 例如,世界上最快的飛機可以達到每小時1萬1260千米的時速(2004年11月16日,美國航空航天局(NASA)的飛機最高速度紀錄是1萬1260千米/小時),依照這樣的速度,飛越一光年的距離需要用9萬5848年。而常見的客機大約是885千米/小時,這樣飛行1光年則需要122萬0330年。目前人造的最快物體是2016年7月5日抵達木星極軌道的朱諾號(2011年8月5日發射升空),最高速度為73.61千米/秒(即約26萬5000千米/小時),這樣的速度飛越1光年的距離約需要4075年的時間。.
查看 太陽系外行星和光年
克卜勒20
克卜勒20(Kepler-20)是一個距離地球950光年的恆星,位於天琴座,它的行星系統有5顆行星,其中兩顆為類地行星。.
查看 太陽系外行星和克卜勒20
克卜勒20e
克卜勒20e(Kepler-20e)是一顆圍繞著恆星克卜勒20公轉的太陽系外行星。它距離太陽大約950光年,位於天琴座。克卜勒20e的半徑略小於地球和金星。 它和另一顆類似地球體積的行星克卜勒20f一同被發現,這項成果於2011年12月20日公佈。從熱木星到熱海王星,再到超級地球,一些體積近似於地球的天體已被證實存在於類似太陽的恆星周圍。這是首顆被發現體積比地球小的太陽系外行星 。.
克卜勒20f
克卜勒20f(Kepler-20f)是一個環繞位於天琴座,距離地球950光年的恆星克卜勒20的太陽系外行星。該行星是克卜勒太空望遠鏡確認第一個環繞類太陽恆星的體積與地球相若的行星。該行星的半徑是地球的1.03倍,表面溫度大約是427°C。該行星距離母恆星1600萬公里,相當於水星環繞太陽軌道範圍內。這個發現首次印證了克卜勒太空望遠鏡可以觀測到體積與地球相若的太陽系外行星。.
克卜勒22b
开普勒22b(Kepler-22b)是NASA开普勒太空望遠鏡所發現第一個位於類太陽恆星適居帶的太陽系外行星。克卜勒22b位於天鵝座內,距離地球600光年,環繞著類太陽恆星克卜勒22公轉。.
克卜勒47
克卜勒47(Kepler-47)是一個周圍有至少兩顆系外行星環繞的聯星系統,距離地球約4900光年,位於天鵝座。.
查看 太陽系外行星和克卜勒47
克卜勒9
克卜勒9(Kepler-9)是一個位於天琴座,克卜勒太空望遠鏡視野內的類太陽恆星。克卜勒9已確定發現三顆系外行星,都是以凌日法發現。前兩顆行星於2010年8月26日宣布發現,第三顆則於2011年1月1日宣布發現。這是首次以凌日法發現多顆行星的行星系。克卜勒9的其中兩顆行星互為軌道共振。.
查看 太陽系外行星和克卜勒9
克卜勒太空望遠鏡
克卜勒任務(Kepler Mission)是美國國家航空暨太空總署設計來發現環繞著其他恆星之類地行星的太空望遠鏡。使用NASA發展的太空光度計,預計將花3.5年的時間,在繞行太陽的軌道上,觀測10萬顆恆星的光度,檢測是否有行星凌星的現象(以凌日的方法檢測行星)。為了尊崇德國天文學家-zh-cn:开普勒; zh-tw:克卜勒; zh-hk:開普勒-,這個任務被稱為克卜勒任務。 克卜勒是NASA低成本的發現計畫聚焦在科學上的任務。NASA的是這個任務的主管機關,提供主要的研究人員並負責地面系統的開發、任務的執行和科學資料的分析。克卜勒任務進度的處理是由噴射推進實驗室執行,負責克卜勒任務飛行系統的開發。 克卜勒太空船於2009年3月6日22:49:57UTC-5發射,已确认了130多个系外行星和发现了超过2700颗候选行星。 2013年5月15日,克卜勒太空望遠鏡由於反應輪故障,無法設定望遠鏡方向,因此被迫停止其搜尋系外行星任務。 同年8月15日,NASA宣布放棄兩個故障的反應輪,以替代計畫使用剩下兩個正常的反應輪重新開始工作。.
確定存在的太陽系外行星列表
#重定向 太陽系外行星列表.
福雷斯特·雷·莫尔顿
#重定向 弗雷斯·雷·莫爾頓.
空间望远镜
因為地球的大氣層對許多波段的天文觀測影響甚大,天文學家便設想若能將望遠鏡移到太空中,便可以不受大氣層的干擾得到更精確的天文資料。目前已有不少空间望遠鏡在太空中運行,例如:觀測可見光波段的哈勃空间望远镜,觀測紅外波段的史匹哲太空望遠鏡,觀測X光波段的錢卓太空望遠鏡,觀察γ射線波段的康普頓天文台(已於2000年退役)以及觀測暗物质的暗物质--粒子探测卫星等。.
查看 太陽系外行星和空间望远镜
米歇爾·麥耶
米歇爾·麥耶(Michel G. E. Mayor,),瑞士天文學家,任教於日內瓦大學天文學系的,已於2007年退休,但仍以榮譽退休教授身分持續進行研究。.
类地行星
類地行星(terrestrial planet),又稱地球型行星(telluric planet)或岩石行星(rocky planet)都是指以硅酸鹽岩石為主要成分的行星。這個項目的英文字根源自拉丁文的「Terra」,意思就是地球或土地。由於大眾媒體的流行,加上對象是行星,因此在二合一下採用「類地」行星這個譯名。類地行星與氣體巨星有極大的不同,氣體巨星可能沒有固體的表面,而主要的成分是氫、氦和存在不同物理狀態下的水。 截至2013年11月4日,根據開普勒太空任務的數據,銀河系估計共有逾400億圍繞著類太陽恆星或紅矮星公轉,位於適居帶內,且接近地球大小的类地行星存在。其中約110億顆是圍繞著類太陽恆星公轉。而最近的一個距離地球12光年。.
查看 太陽系外行星和类地行星
系外彗星
系外彗星或太陽系外彗星是在太陽系之外,環繞著其它恆星的彗星。第一個系外彗星系是在1987年發現的,它環繞著繪架座β (老人增四),一顆非常年輕的A型主序星。迄2013年1月7日,總共已經發現了10個這樣的系統。 天文學家使用德州麥克唐納天文台2.1米的望遠鏡發現了最後的6個彗星系統。在檢測用的望遠鏡中,發現暗淡的吸收線,被發現夜復一夜的變化著,因此天文學家認為這是"起源於撒向母恆星的彗星,因為被加熱而產生大量氣體雲造成的"。所有的系外彗星都是最近才檢測到的 - 換句話說,"鯨魚座49 (HD 9672)"、"狐狸座5 (HD 182919)"、"仙女座2"、"HD 21620"、 "HD 42111"和"HD 110411" - 被環繞的都是非常年輕的A型恆星。 系外彗星連結了研究人員對行星形成理解的重要環結。天文學家巴里·威爾士 (Barry Welsh) 對這種連結做了如下的描述: “星際塵埃在重力的影響下成為小滴,這些小滴繼續成長成為岩石,岩石結合在一起成為更大的個體 -星子 (微星) 和彗星- 並且在最後,會成長為行星”。.
查看 太陽系外行星和系外彗星
系外行星偵測法
任何行星相對於其母恆星都是極其微弱的光源。要在母恆星耀眼的光輝內同時檢測出這種微弱的光源,都有其內在的困難。因為這種緣故,只有很少的太陽系外行星被直接觀測到。 取而代之的,天文學家通常都訴諸間接的方法來偵測太陽系外的行星。目前,有好幾種間接的方法都取得了成功。.
紅矮星
紅矮星,也就是M型主序星(MV),根據赫羅圖,「紅矮星」在眾多處於主序階段的恆星當中,其大小及溫度均相對較小和低,在光譜分類方面屬於M型。它們在恆星中的數量較多,大多數紅矮星的直徑及質量均低於太陽的三分一,表面溫度也低於3,500 K。釋出的光也比太陽弱得多,有時更可低於太陽光度的萬分之一。又由於內部的氫元素核聚變的速度緩慢,因此它們也擁有較長的壽命。质量低于0.35太阳质量的红矮星会有充分的对流,氦元素会在恒星内部均匀分布,而不会在核心累积,紅矮星不會膨脹成紅巨星,而逐步收縮,直至氫氣耗盡。 它们会保持稳定的光度和光谱持续数千亿年,由于现在宇宙的年龄有限,还没有红矮星发展到之后的阶段。 此外人們又發現,不含「金屬」的紅矮星只佔很少(在天文學裡,「金屬」是指氫和氦以外的重元素),而根據「大爆炸」理論的預測,第一代恆星應只擁有氫、氦及鋰元素,如果這些早期恆星包括紅矮星,這些「純正」的紅矮星至今天定能繼續觀測得到,而事實卻不然,含有「金屬」的恆星佔了紅矮星的大多數。因此在宇宙形成時,能發光的第一代恆星定擁有超高質量,它們擁有極短壽命,在經過超新星爆發後,重元素得以產生,成為形成低質量恆星的所需物質。 宇宙眾多恆星中,紅矮星佔了大多數,大約73%左右。, 科学网, 2014-03-06 09:39:11 离太阳最近的65颗恒星中有50颗是红矮星。例如離太陽最近的恆星,半人馬座的南門二比鄰星,便是一顆紅矮星,其光譜分類為M5,視星等11.0。 至2005年,人們首度在紅矮星身上,發現有太陽系外行星圍繞旋轉,第一顆行星的質量與海王星差不多,日距約為600萬公里(0.04天文單位),其表面度約為攝氏150°C。2006年,人們又發現一顆與土星差不多的行星繞著另一顆紅矮星旋轉,這顆行星的日距為3.9億公里(2.6天文單位),表面溫度為攝氏零下220°C。.
查看 太陽系外行星和紅矮星
繪架座AB
繪架座AB(AB Pictoris、AB Pic、HD 44627)是一個光譜類型K型主序星,距離地球約148光年,位於绘架座。.
查看 太陽系外行星和繪架座AB
红外线
红外线(Infrared,简称IR)是波长介乎微波与可见光之间的电磁波,其波長在760奈米(nm)至1毫米(mm)之間,是波長比紅光長的非可見光,對應頻率約是在430 THz到300 GHz的範圍內。室溫下物體所發出的熱輻射多都在此波段。 红外线是在1800年由天文學家威廉·赫歇爾發現,他發現有一種頻率低于紅色光的輻射,雖然用肉眼看不見,但仍能使被照射物體表面的溫度上昇。太陽的能量中約有超過一半的能量是以红外线的方式進入地球,地球吸收及發射紅外線輻射的平衡對其氣候有關鍵性的影響。 當分子改變其旋轉或振動的運動方式時,就會吸收或發射紅外線。由紅外線的能量可以找出分子的振動模態及其偶極矩的變化,因此在研究分子對稱性及其能態時,紅外線是理想的頻率範圍。紅外線光譜學研究在紅外線範圍內的光子吸收及發射。 红外线可用在軍事、工業、科學及醫學的應用中。紅外線夜視裝置利用即時的近紅外線影像,可以在不被查覺的情形下在夜間觀察人或是動物。紅外線天文學利用有感測器的望遠鏡穿透太空的星塵(例如分子雲),檢測像是行星等星體,以及檢測早期宇宙留下的紅移星體。紅外線熱顯像相機可以檢測隔絕系統的熱損失,觀查皮膚中血液流動的變化,以及電子設備的過熱。红外线穿透云雾的能力比可见光强,像紅外線導引常用在飛彈的導航、熱成像儀及夜視鏡可以用在不同的應用上、红外天文学及遠紅外線天文學可在天文學中應用红外线的技術。.
查看 太陽系外行星和红外线
纽约时报
纽约时报(The New York Times,缩写作 NYT)是一家美國日報,由紐約時報公司於1851年9月18日在美國紐約創辦和持續出版。和《华尔街日报》的保守派旗舰报纸地位相对应,《纽约时报》是美国親自由派的第一大报。 它最初被称作《纽约每日时报》(The New-York Daily Times),创始人为亨利·J·雷蒙德和。.
查看 太陽系外行星和纽约时报
统计学
统计学是在資料分析的基础上,研究测定、收集、整理、归纳和分析反映數據資料,以便给出正确訊息的科學。這一门学科自17世纪中叶产生并逐步发展起来,它廣泛地應用在各門學科,從自然科学、社會科學到人文學科,甚至被用於工商業及政府的情報決策。隨著大数据(Big Data)時代來臨,統計的面貌也逐漸改變,與資訊、計算等領域密切結合,是資料科學(Data Science)中的重要主軸之一。 譬如自一組數據中,可以摘要並且描述這份數據的集中和離散情形,這個用法稱作為描述統計學。另外,觀察者以數據的形態,建立出一個用以解釋其隨機性和不確定性的數學模型,以之來推論研究中的步驟及母體,這種用法被稱做推論統計學。這兩種用法都可以被稱作為應用統計學。數理統計學则是討論背後的理論基礎的學科。.
查看 太陽系外行星和统计学
美国
美利堅合眾國(United States of America,簡稱为 United States、America、The States,縮寫为 U.S.A.、U.S.),通稱美國,是由其下轄50个州、華盛頓哥倫比亞特區、五个自治领土及外岛共同組成的聯邦共和国。美國本土48州和联邦特区位於北美洲中部,東臨大西洋,西臨太平洋,北面是加拿大,南部和墨西哥及墨西哥灣接壤,本土位於溫帶、副熱帶地區。阿拉斯加州位於北美大陸西北方,東部為加拿大,西隔白令海峽和俄羅斯相望;夏威夷州則是太平洋中部的群島。美國在加勒比海和太平洋還擁有多處境外領土和島嶼地區。此外,美國还在全球140多個國家和地區擁有着374個海外軍事基地。 美国拥有982萬平方公里国土面积,位居世界第三(依陆地面積定義为第四大国);同时拥有接近超过3.3億人口,為世界第三人口大国。因为有着來自世界各地的大量移民,它是世界上民族和文化最多元的國家之一Adams, J.Q.; Strother-Adams, Pearlie (2001).
查看 太陽系外行星和美国
美国国家航空航天局
美國國家航空暨太空總署(National Aeronautics and Space Administration,縮寫为NASA)是美国联邦政府的一个独立机构,负责制定、实施美国的民用太空计划、與开展航空科學暨太空科學的研究。1958年7月29日,美国总统艾森豪威尔签署了《美国公共法案85-568》,创立了國家NASA航空和太空管理局,取代了其前身美國國家航空諮詢委員會(NACA)。於1958年10月開始運作。自此,美國國家航空暨太空總署負責了美國的太空探索,例如登月的阿波羅計劃,太空實驗室,以及隨後的航天飞机。自2006年2月,美国国家航空航天局的愿景是“開拓未來的太空探索,科學發現及航空研究”。美国国家航空航天局的使命是“理解并保护我们依賴生存的行星;探索宇宙,找到地球外的生命;启示我们的下一代去探索宇宙”。在太空计划之外,美国国家航空航天局还进行长期的民用以及军用航空航天研究。美国国家航空航天局被广泛认为是世界范围内太空机构中執牛耳者。美國國家航空暨太空總署透過地球觀測系統提升對地球的了解,透過太陽科學研究計劃精進太陽科學。美國國家航空暨太空總署注重於利用先進的機械任務探索太陽系中的的所有天體並利用天文觀測台及相關計劃研究天體物理學中的主題,例如大爆炸理論。美國國家航空暨太空總署與許多美國國內及國際的組織分享其研究數據。.
美国海军天文台
美国海军天文台(英語:United States Naval Observatory,縮寫:USNO),位于美国首都华盛顿的西北部,主要工作是为美国海军、国防部等部门提供高精度的天文数据,测量地球自转、天体的运动和位置,发布美国的标准时间。.
生命
生命泛指一类具有稳定的物质和能量代谢现象并且能回应刺激、能进行自我复制(繁殖)的半开放物质系统。簡單來說,也就是具有生命機制的物体The American Heritage Dictionary of the English Language, 4th edition, published by Houghton Mifflin Company, via.
查看 太陽系外行星和生命
电磁波
#重定向 电磁辐射.
查看 太陽系外行星和电磁波
熱木星
熱木星(Hot Jupiters),亦稱為焙燒爐行星(roaster planets)、超級木星(epistellar jovians)和pegasids是一種系外氣體巨行星。它們的質量接近或超過木星(1.9 × 1027 kg),但与太陽系中的情况不同:木星的軌道半徑是5天文單位,成為熱木星的行星軌道與母恆星距离在0.5至0.015天文單位以內,大約只是太陽系內水星到太阳距離的八分之一至金星到太阳距離。.
查看 太陽系外行星和熱木星
白矮星
白矮星(white dwarf),也稱為簡併矮星,是由简并态物质構成的小恆星。它們的密度極高,一顆質量與太陽相當的白矮星體積只有地球一般的大小,微弱的光度則來自過去儲存的熱能。在太陽附近的區域內已知的恆星中大約有6%是白矮星。這種異常微弱的白矮星大約在1910年就被亨利·諾利斯·羅素、愛德華·皮克林和威廉·佛萊明等人注意到, p.
查看 太陽系外行星和白矮星
芝加哥大学
芝加哥大学(University of Chicago),简称芝大(UChicago),位于美国伊利诺伊州芝加哥,是世界著名私立研究型大学,常年位列各大学排行榜世界前十。 芝加哥大学1890年由石油大王约翰·洛克菲勒创办,是美国大学协会的创始会员之一。芝加哥大学包括本科学院以及由4个系、6所职业学院和1所继续教育学院组成的各种研究生项目和跨学科委员会,并拥有约5000名本科生和10,000名研究生。 芝加哥大学的学者和研究人员在众多人文社科领域均开创了“芝加哥学派”,其中包括著名的“芝加哥经济学派”和“芝加哥社会学派” ;芝加哥大学还是法律经济学的诞生地,是经济学、社会学、法学、人类学等学科全球最重要的研究教学中心之一。 而从曼哈顿计划开始,大批科学家汇集于芝大,在“原子能之父”恩里科·费米的领导下建立了世界上第一台可控核反应堆(”芝加哥一号堆”)、成功开启了人类的原子能时代,并创立了美国第一所国家实验室阿贡国家实验室和之后著名的费米实验室,进而奠定了芝大在自然科学界的重要地位。 截止至2017年,芝加哥大学有97位教师和校友曾获得诺贝尔奖,位列世界第四。另有9位菲尔兹奖得主 、4位图灵奖得主、22位普利策奖得主在芝大工作或学习过,还有15位教授荣获过美国国家科学奖章,现任教授中有近70位美国国家科学院(44位)、美国国家工程院(9位)和美国国家医学院院士(14位)。美国第44任总统奥巴马曾长期在芝大法学院任教(1992-2004年)。 芝加哥大学是培养华人精英的两个摇篮和聚集地之一(另一个是柏克萊加州大學)。芝加哥大学培养了李政道、杨振宁和崔琦三个华人诺贝尔奖得主(其中,李政道和杨振宁实现华人诺奖零的突破),著名华裔政治家、中华民国前副总统、中國國民黨前主席连战,著名法学家梅汝璈,著名医学家吴阶平,著名物理学家叶企孙,著名气象学家郭晓岚,保釣運動健將林孝信教授,世界银行前高级副总裁林毅夫等等亦毕业于芝加哥大学或曾在芝大学习。诺贝尔化学奖得主李远哲、数学家陈省身等也曾长期在芝加哥大学任教。.
查看 太陽系外行星和芝加哥大学
銀河系外行星
銀河系外行星(英語:extragalactic planet)是指來自銀河系外的行星。有些文獻將該種行星稱為 Extragalactic extrasolar planet 或是 Extragalactic exoplanet。.
適居帶
適居帶(circumstellar habitable zone, CHZ,或稱宜居帶),是天文學上給一種空間的名稱,指的是行星系中適合生命存在的區域。適居帶中的情況有利於生命的發展,並且可能像地球般出現高等生命。。有兩種區域是有可能的,一個是在行星系內,另一個則存在于星系之中。在適合的區域內的行星和天然衛星是最佳的候選者,這些地球外的生命有能力生活在類似我們的環境下。天文學家相信生命最可能發生在像太陽系這樣的星周盤適居帶(CHZ)和大星系的星系適居帶(GHZ) 內(雖然天文學家對後者的研究才剛開始)。適居帶也許是指「生命帶」、「綠帶」或「古迪洛克帶」(Goldilocks)。在我們的太陽系中,適居帶為距離恆星0.99至1.70天文單位之間的區域。 格利泽581g是人類在紅矮星格利泽 581 (距離地球大約20光年)旁發現的第六颗行星。格利泽581g是至今在天文學家發現系外行星中,軌道理論上位於適居帶中的著名例子。目前天文學家僅發現了十幾顆行星位於適居帶中,而克卜勒太空望遠鏡則確認了54顆行星位於適居帶中。天文學家目前估計銀河系至少有500,000,000顆行星位於適居帶中。.
查看 太陽系外行星和適居帶
聯星
聯星是兩顆恆星組成,在各自的軌道上圍繞著它們共同質量中心運轉的恆星系統。有著兩顆或更多恆星的系統稱為多星系統。這種系統,尤其是在距離遙遠時,肉眼看見的經常是單一的點光源,要過其它的觀測方法,才能揭示其本質。過去兩個世紀的研究顯示,一半以上可見的恆星都是多星系統。 雙星(double star)通常被視為聯星的同義詞;然而,雙星應該只是光學雙星。之所以稱為光學雙星,只是因為從地球上觀察它們在天球上的位置,在視線上幾乎是相同的位置。然而,它們的"雙重性"只取決於這光學效應;恆星本身之間的距離是遙遠的,沒有任何共用的物理連結。通過測量視差、自行或徑向速度的差異,可以揭示它們只是光學雙星。 許多著名的光學雙星尚未進行充分與嚴謹的觀測,來確認它們是光學雙星還是有引力束縛在一起的多星系統。 聯星系統在天文物理上非常重要,因為它們的軌道計算允許直接得出系統的質量,而更進一步還能間接估計出半徑和密度。也可以從質光關係(mass-luminosity relationship,MLR)估計出單獨一顆恆星的質量。 有些聯星經常是在以可見光檢測到的,在這種情況下,它們被稱為視覺聯星。許多視覺聯星有長達數百年或數千年的軌道週期,因此還不是很了解它們的軌道。它們也可能通過其他的技術,例如光譜學(聯星光譜)或天體測量學來檢測。如果聯星的軌道平面正巧在我們的視線方向上,它與伴星會發生互相食與凌的現象;這樣的一對聯星會被稱為食聯星,或因為它們是經由光度變化被檢測出來的,而被稱為光度計聯星。 如果聯星系統中的成員非常接近,將會因為引力而相互扭曲它們的大氣層。在這樣的情況下,這些接近的聯星系統可以交換質量,可能會帶來它們在恆星演化時,單獨的恆星不能達到的階段。這些聯星的例子有大陵五、天狼星、天鵝座X-1(這是眾所皆知的黑洞)。也有許多聯星是行星狀星雲的中心恆星,和新星與Ia型超新星的祖恆星。.
查看 太陽系外行星和聯星
聯星系統
聯星系統是天文學的術語,指在空間中的兩個天體(通常是恆星、星系或小行星)彼此間有引力上的交互作用存在,因而繞著共同的質心運轉。有些定義(像是雙行星,但不是聯星)需要質心不在兩個天體的任何一個內部。聚星系統像雙星系統一樣,只是有三個或更多的天體。.
查看 太陽系外行星和聯星系統
類地行星發現者
類地行星發現者,或翻譯為類地行星搜尋者(Terrestrial Planet Finder,TPF),是一個由NASA提出的太空探測計畫。該計畫預計建立一個太空望遠鏡系統以搜尋太陽系外行星中的類地行星。該計畫被推遲數次,最後遭到取消。該計畫預計使用兩組太空望遠鏡系統,分別是數個小望遠鏡組成的 TPF-I 和另一個使用單一大望遠鏡的 TPF-C。.
行星
行星(planet;planeta),通常指自身不發光,環繞著恆星的天體。其公轉方向常與所繞恆星的自轉方向相同(由西向東)。一般來說行星需具有一定質量,行星的質量要足夠的大(相對於月球)且近似於圓球狀,自身不能像恆星那樣發生核聚變反應。2007年5月,麻省理工學院一組空间科學研究隊發現了已知最熱的行星(2040攝氏度)。 隨著一些具有冥王星大小的天體被發現,「行星」一詞的科學定義似乎更形迫切。歷史上行星名字來自於它們的位置(与恒星的相对位置)在天空中不固定,就好像它們在星空中行走一般。太陽系内肉眼可見的5顆行星水星、金星、火星、木星和土星早在史前就已經被人類發現了。16世紀後日心说取代了地心说,人類瞭解到地球本身也是一顆行星。望遠鏡被發明和萬有引力被發現後,人類又發現了天王星、海王星,冥王星(2006年后被排除出行星行列,2008年被重分類為类冥天体,属于矮行星的一种)還有為數不少的小行星。20世紀末人類在太陽系外的恆星系統中也發現了行星,截至2013年7月12日,人類已發現2000多顆太陽系外的行星。.
查看 太陽系外行星和行星
行星適居性
行星適居性是天文學裡對星體上生命的出現與繁衍潛力的評估指標,其可以適用於行星及行星的天然衛星。 生命的必要條件是能量來源(通常是太陽能但並不全然)。但通常是當其他眾多條件,如該行星的地球物理學、地球化學與天體物理學的條件成熟後,方會稱該行星為適合生命居住的。外星生命的存在仍是未知之數,行星適居性是以太陽系及地球的環境推測其他星體是否會適合生命居住。行星適居性較高的星體通常是那些擁有持續與複雜的多細胞生物與單細胞生命系統的星體。對行星適居性的研究和理论是天體科學的组成部分,正在成为一门新兴学科太空生物學。 對地球以外的星體進行生命探索是極古老的話題,最初是屬於哲學及物理學的研究領域。而在20世紀後期科學界對此有兩個重大突破。其一是使用先進機器對太陽系裡其他行星與衛星進行觀察,獲得這些星體的適居性資料,並將其與地球的相關資料作比較。其二是外太陽系行星的發現,它們是在1995年首度發現的,其後進度不斷加快。這個發現證明了太陽並不是惟一的擁有行星的星體,而且亦擴闊了探索適合生命居住的行星的範圍,使外太陽系星體亦被納入研究之中。.
查看 太陽系外行星和行星適居性
衛星
衛星,是環繞一顆行星按閉合軌道做周期性運行的天體。如地球的衛星是月球。不過,如果兩個天體的質量相當,它們所形成的系統一般稱為雙行星系統,而不是一顆行星和一顆天然衛星。通常,兩個天体的质量中心都處於行星之內。因此,有天文學家認為冥王星與冥衛一應該歸類為雙行星,但2005年發現兩顆新的冥衛,使問題複雜起來了。.
查看 太陽系外行星和衛星
飛馬座51
飛馬座51(51 Pegasi),中國傳統名稱室宿增一,是位於飛馬座的一顆類太陽恆星,距離太陽系約50.9光年(15.6秒差距) 。1995年被發現有行星圍繞該恆星公轉,是繼太陽系外,首個被證實有行星的恆星。 該行星是由米歇爾·麥耶和戴狄爾·魁若茲共同發現的,於1995年10月6日在《自然》雜誌中公佈,他們在日內瓦天文台以多普勒偵測法來偵測。.
查看 太陽系外行星和飛馬座51
飛馬座51b
飞马座51b(也被称为柏勒洛丰)是一颗位于飞马座、距离地球约50光年的系外行星。它是被发现的第一颗围绕类似太阳的恒星(飞马座51)运转的系外行星,同时也是热木星的原型。.
高精度徑向速度行星搜索器
精度徑向速度行星搜索器(或譯高精度視向速度行星搜索器;英文:High Accuracy Radial velocity Planet Searcher,縮寫:HARPS)是一個高精確度的階梯光柵攝譜儀,於2002年裝置在智利拉西拉天文台的ESO 3.6米望遠鏡。於2003年2月開光。這是以儀器ELODIE攝譜儀和CORALIE攝譜儀為基礎發展的二階段徑向速度攝譜儀。.
譜線
譜線是在均勻且連續的光譜上明亮或黑暗的線條,起因於光子在一個狹窄的頻率範圍內比附近的其他頻率超過或缺乏。 譜線通常是量子系統(通常是原子,但有時會是分子或原子核)和單一光子交互作用產生的。當光子的能量確實與系統內能階上的一個變化符合時(在原子的情況,通常是電子改變軌道),光子被吸收。然後,它將再自發地發射,可能是與原來相同的頻率或是階段式的,但光子發射的總能量將會與當初吸收的能量相同,而新光子的方向不會與原來的光子方向有任何關聯。 根據氣體、光源和觀測者三者的幾何關係,看見的光譜將會是吸收譜線或發射譜線。如果氣體位於光源和觀測者之間,在這個頻率上光的強度將會減弱,而再發射出來的光子絕大多數會與原來光子的方向不同,因此觀測者看見的將是吸收譜線。如果觀測者看著氣體,但是不在光源的方向上,這時觀測者將只會在狹窄的頻率上看見再發射出來的光子,因此看見的是發射譜線。 吸收譜線和發射譜線與原子有特定的關係,因此可以很容易的分辨出光線穿越過介質(通常都是氣體)的化學成分。有一些元素,像是氦、鉈、鈰等等,都是透過譜線發現的。光譜線也取決於氣體的物理狀態,因此它們被廣泛的用在恆星和其他天體的化學成分和物理狀態的辨識,而且不可能使用其他的方法完成這種工作。 同核異能位移是由於吸收光子的原子核與發射的原子核有不同的電子密度。 除了原子-光子的交互作用外,其他的機制也可以產生譜線。根據確實的物理交互作用(分子、單獨的粒子等等)所產生的光子在頻率上有廣泛的分佈,並且可以跨越從無線電波到伽馬射線,所有能觀測的電磁波頻譜。.
查看 太陽系外行星和譜線
豺狼座GQb
豺狼座GQb是一颗位于豺狼座、可能属于系外行星的天体,其母星为豺狼座GQ。科学家于2005年4月宣布发现该行星。它和2M1207b是第一批通过直接成像法发现的系外行星。2004年6月25日,位于智利的帕瑞纳天文台超大望远镜获得了可辨识豺狼做GQb的图像。, ESO Press Release 09/05, 2005年4月7日.
鲸鱼座
魚座是南天的一個星座,其名取於希臘神話中的海怪刻托(Cetus)。其鄰近的星座有寶瓶座、雙魚座和波江座 。.
查看 太陽系外行星和鲸鱼座
超级地球
超级地球是指一种绕行恒星公转,因质量约为地球的二點五到十倍,被归类在温度较热且较无冰层覆盖的类海王星与体积大小近似地球之行星中间的星体。 自从2005年格利泽876d被尤金尼亞·里維拉(Eugenio Rivera)所率领的团队发现之后,相继有数颗超级地球被世人发现。地球做为太阳系中最大的类地行星,其所身处的太阳系并不包含这一类能被当作范例的行星,举凡那些体积大过地球的行星,质量至少都在其十倍以上。.
查看 太陽系外行星和超级地球
超新星
超新星是某些恒星在演化接近末期时经历的一种剧烈爆炸。这种爆炸都极其明亮,过程中所突发的电磁辐射经常能够照亮其所在的整个星系,并可持续几周至几个月才会逐渐衰减变为不可见,而期间内一颗超新星所辐射的能量可以与太阳在其一生中辐射能量的总和相當。恒星通过爆炸会将其大部分甚至几乎所有物质以可高至十分之一光速的速度向外抛散,并向周围的星际物质辐射激波。这种激波会导致形成一个膨胀的气体和尘埃构成的壳状结构,这被称作超新星遗迹。超新星是星系引力波潛在的強大來源。初級宇宙射線有很大的比例來自超新星 。 超新星比新星更有活力。超新星的英文名稱為 supernova,nova在拉丁語中是“新”的意思,這表示它在天球上看上去是一顆新出現的亮星(其實原本即已存在,因亮度增加而被認為是新出現的);字首的super-是為了將超新星和一般的新星有所區分,也表示超新星具有更高的亮度。超新星這個名詞是沃爾特·巴德和弗裡茨·茲威基在1931年創造的。 超新星可以用兩種方式之一觸發:突然重新點燃核融合之火的簡併恆星,或是大質量恆星核心的重力塌陷。在第一種情況,一顆簡併的白矮星可以透過吸積從伴星那兒累積到足夠的質量,或是吸積或是合併,提高核心的溫度,點燃碳融合,並觸發失控的核融合,將恆星完全摧毀。在第二種情況,大質量恆星的核心可能遭受突然的引力坍縮,釋放重力位能,可以創建一次超新星爆炸。 最近一次觀測到銀河系的超新星是1604年的克卜勒之星(SN 1604);回顧性的分析已經發現兩個更新的殘骸 。對其它星系的觀測表明,在銀河系平均每世紀會出現三顆超新星,而且以現在的天文觀測設備,這些銀河超新星幾乎肯定會被觀測到 。它們作用的角色豐富了星際物質與高質量的化學元素。此外,來自超新星向外膨脹的激波可以觸發新恆星的形成。.
查看 太陽系外行星和超新星
軌道離心率
在天文動力學,架構在標準假說下的任何軌道都必須是圓錐切面的形狀。圓錐切面的離心率,軌道離心率是定義軌道形狀的重要參數,而且定義了絕對的形狀。離心率可以解釋為形狀從圓形偏離了多少的程度。 架構在標準假說下,離心率(偏心率,e\,\!)是嚴格的定義了圆、椭圆、抛物线和双曲线,並且有如下的數值:.
查看 太陽系外行星和軌道離心率
辐射
物理學上的輻射指的是能量以波或是次原子粒子移動的型態,在真空或介質中傳送。包含.
查看 太陽系外行星和辐射
迪迪埃·奎洛兹
迪迪埃·帕特里克·奎洛兹(Didier Patrick Queloz,),瑞士天文学家,在寻找太阳系外行星方面颇有贡献。在日内瓦大学读博士时,他和米歇爾·麥耶共同发现了围绕主序星的首颗太阳系外行星。奎洛兹用径向速度测量的方法分析了飞马座51,结果发现了一颗轨道周期为4.2天的行星。这颗行星就是飞马座51b,挑战了当时正统的关于行星形成的见解。.
開普勒11
#重定向 克卜勒11.
查看 太陽系外行星和開普勒11
開普勒16b
#重定向 克卜勒16b.
钠
钠(Natrium,化学符号:Na)是一种化学元素,它的原子序数是11,相对原子质量为23。鈉单质不會在地球自然界中存在,因為鈉在空氣中會迅速氧化,並與水產生劇烈反應,所以常見於化合物中,元素狀態的鈉通常以特殊物質(如石蠟、煤油)保存,以防與空氣中的水份或氧氣產生化合物。.
查看 太陽系外行星和钠
铁
铁是一种化学元素,它的化学符号是Fe,它的原子序数是26,它的相对原子质量是56。它是过渡金属的一种。铁是最常用的金属,是地球外核及內核的主要成份,是地殼上豐度第四高的元素和第二高的金屬。鐵常出現在类地行星中,因為鐵是高質量恆星核融合後的產物,鎳-56是放熱核融合反應的最後一個產物,之後會衰變成最常見的鐵同位素。 铁和其他8族元素相同,其氧化態範圍很廣,由−2到+6,但其中+2和+3是最常見的氧化態。在流星体及低氧的環境下,鐵會以单质的形式存在,但是鐵很容易和氧氣和水反應。鐵的表面是有光澤的銀灰色,但在空氣中鐵會反應生成水合的氧化鐵,一般稱為铁锈。許多金屬在氧化後會形成钝化的氧化層,保護內部的金屬不被氧化,但氧化鐵的密度較鐵要低,因此氧化鐵會剝落,無法保護內部的鐵不受腐蝕。.
查看 太陽系外行星和铁
银河系
銀河星系(古稱银河、天河、星河、天汉、銀漢等),是一個包含太陽系 的棒旋星系。直徑介於100,000光年至180,000光年。估計擁有1,000億至4,000億顆恆星,並可能有1,000億顆行星。太陽系距離銀河中心約26,000光年,在有著濃密氣體和塵埃,被稱為獵戶臂的螺旋臂的內側邊緣。在太陽的位置,公轉週期大約是2億4,000萬年。從地球看,因為是從盤狀結構的內部向外觀看,因此銀河系呈現在天球上環繞一圈的帶狀。 銀河系中最古老的恆星幾乎和宇宙本身一樣古老,因此可能是在大爆炸之後不久的黑暗時期形成的。在10,000光年內的恆星形成核球,並有著一或多根棒從核球向外輻射。最中心處被標示為強烈的電波源,可能是個超大質量黑洞,被命名為人馬座A*。在很大距離範圍內的恆星和氣體都以每秒大約220公里的速度在軌道上繞著銀河中心運行。這種恆定的速度違反了开普勒動力學,因而認為銀河系中有大量不會輻射或吸收電磁輻射的質量。這些質量被稱為暗物質。 銀河系有幾個衛星星系,它們都是本星系群的成員,並且是室女超星系團的一部分;而它又是組成拉尼亞凱亞超星系團的一部分。整個銀河系對銀河系外的參考坐標系以大約每秒600公里的速度在移動。.
查看 太陽系外行星和银河系
脈衝星行星
脈衝星行星(Pulsar planet)是圍繞脈衝星公轉的行星,而脈衝星即高速自轉的中子星。首個被發現的脈衝星行星即為首個被發現的系外行星。.
查看 太陽系外行星和脈衝星行星
脉冲星
脉冲星(Pulsar)是中子星的一種,為會週期性發射脈衝訊號的星體。.
查看 太陽系外行星和脉冲星
自然 (期刊)
《自然》(Nature)是世界上最早的科学期刊之一,也是全世界最权威及最有名望的学术期刊之一,首版於1869年11月4日。虽然今天大多数科学期刊都专一於一个特殊的领域,《自然》是少数(其它类似期刊有《科学》和《美国国家科学院院刊》等)依然发表来自很多科学领域的一手研究论文的期刊。在许多科学研究领域中,每年最重要、最前沿的研究结果是在《自然》中以短文章的形式发表的。 《自然》的主要读者是从事研究工作的科学家,但期刊前部的文章概括使得一般公众也能理解期刊内最重要的文章。期刊开始部分的社论、新闻及专题文章报道科学家一般关心的事物,包括最新消息、研究资助、商业情况、科学道德和研究突破等。期刊也介绍与科学研究有关的书籍和艺术。期刊的其余部分主要是研究论文,这些论文往往非常紧密,非常具有技术性。 在《自然》上发表文章是非常光荣的,《自然》上的文章经常被引用,这有助于晋升、获得资助和获得主流媒体的关注。因此科学家之间在《自然》或《科学》上发表文章上的竞争非常强。但是与其它专业的科学杂志一样,在《自然》上发表的文章需要经过严格的同行评审。在发表前编辑选择其他在同一领域有威望的、但与作者无关的科学家来检查和评判文章的内容。作者要对评审做出的批评给予反应,比如更改文章内容,提供更多的试验结果,否则的话编辑可能拒绝该文章。.
自转
自轉,是指物件自行旋轉的運動,物件會沿著一條穿过本身的軸旋轉,這條軸被稱為「自轉軸」。一般而言,自轉軸都會穿越天體的質心。 恆星和行星都會自轉,小天體亦大多會自轉。作為天體的集合體,星系也會自轉。 如果行星自轉軸在長期運動中漸漸偏離原有方向,即會產生歲差, Western Washington University Planetarium.
查看 太陽系外行星和自转
金属性
金属性或还原性是指在化学反应中原子、分子或离子失去电子的能力。失电子能力越强的粒子所属的元素金属性就越强;反之越弱,而其非金属性就越强。.
查看 太陽系外行星和金属性
雙星
雙星可以指:.
查看 太陽系外行星和雙星
GJ 1214 b
GJ 1214 b是一個在2009年發現的太陽系外超級地球,環繞位於蛇夫座內的GJ 1214恆星,距離地球13秒差距,即40光年。證據顯示,這個「水世界」同樣擁有大氣層,亦是現時除了柯洛7b以外,已發現的系外行星中第二個已知質量及半徑比太陽系的氣體巨星為小的行星。天文學家認為這顆行星是歷來發現特徵最接近地球的行星,所以它的發現對人類很重要。雖然它的恆星是一顆昏暗的紅矮星,亮度只有太陽的三千分之一,但由於二者間距離太近,這顆水行星表面溫度高達200℃,它繞恆星運行1周只需38小時,比地球要365天短得多。他的表面没有土地,表面有100%水。現時科學家透過當它凌越母星時,透過從它的光分析其大氣成分,以取得更多有關這顆行星的信息。.
HAT-P-1b
HAT-P-1b是一顆圍繞ADS 16402 B的太陽系外行星,位於蠍虎座,距離地球約450光年。ADS 16402 B是ADS 16402雙星系統的其中之一。 HAT-P-1b是由哈佛-史密松天文物理中心的天文學家利用一個稱為HAT的自動小型望遠鏡網路所發現的,當時HAT-P-1b讓ADS 16402 B的亮度下降了0.6%。 它的軌道非常接近恆星,距離僅有824萬公里,公轉週期也只有4.46天,被認為是熱木星型的行星。.
HD 1461
#重定向 天仓增十九.
HD 149026b
HD 149026 b是一個環繞著武仙座恆星HD 149026的太陽系外行星,屬於氣體行星,距離地球267光年,表面溫度高達2,300 K。值得注意的是它在凌星現象被觀測到後所測定的相對於質量和輸入熱量較小的半徑,這暗示它有異常大的行星核。.
HD 188753
HD 188753是一個三星系統,位於天鵝座,距離地球149光年。該連星系統在其他星表中又稱為ADS 13125、Ho 581、BD+41°3535、HIP 98001和WDS 19550+4152。在系統中,恆星與恆星之間的距離約為土星的日距,該三顆恆星分別為G型(黃矮星)、K型(橙矮星)和M型(紅矮星)。同時,它也是迄今唯一發現有行星運行的三星系統,該行星名為HD 188753 Ab,於2005年由波蘭天文學家马歇耶·科纳基(Maciej Konacki)發現。 該系統的視星等為7.43,肉眼不可見,需使用望遠鏡方能觀測。 該系統的主星質量約為太陽的1.06倍,而兩顆伴星的總質量則為太陽的1.63倍,它們互相繞對方公轉,週期為156天,而該雙星系統也繞著主星公轉,週期為25.7年。 Category:天鹅座 Category:太陽系外行星 188753 098001.
HD 209458b
#重定向 HD 209458 b.
HIP 11952
HIP 11952是一個距離太陽約375光年的恆星,位於鯨魚座。該恆星曾经被认为拥有兩顆太陽系外行星。.
HIP 13044b
HIP 13044b 是一个曾经被认为存在的类似木星的太阳系外行星,围绕著离地球约2000光年的天炉座恒星HIP 13044旋转的,它的发现于2010年11月18日宣布。HIP 13044形成在另一个星系内,在其母星系于6–9亿年前被银河系吸收的时候成为银河系的一员,该星系的残余成为珍珠星流。后续研究表明该行星实际上并不存在。.
KOI-172.02
#重定向 克卜勒69c.
M4 (球狀星團)
M4星团(又称球状星团M4或NGC 6121)是位于天蝎座的一个结构松散的球状星团。 位于心宿二西边1.3度的地方。用小望远镜能看见,中型望远镜则能分辨出单个恒星。最亮的一颗视星等为10.8,整个星团则为5.6等。距地球7200光年,大概是最近的星团之一。包含至少43颗变星。 1746年被Philippe Loys de Chéseaux发现。是最先被分辨出单个恒星的星团。1987年,天文学家在该星团内发现了一颗周期为3.0毫秒的脉冲星。1995年,哈勃太空望远镜拍下的白矮星是已知最古老的天体。其中之一PSR B1620-26有一颗脉冲星伴星和一个质量为木星2.5倍的行星。.
MEarth計劃
MEarth計畫(The MEarth Project)是美國NSF基金會使用機器人以凌日法搜尋環繞紅矮星行星的計畫。MEarth擁有8架 機器人操作的 f/9 里奇-克萊琴望遠鏡 RC光學系統。這些望遠鏡安裝在美國亞利桑那州的弗雷德·勞倫斯·惠普爾天文台,各自配置了一對 2048 × 2048的Apogee U42 CCDs。.
OGLE-2005-BLG-390Lb
OGLE-2005-BLG-390Lb是一顆太陽系外行星,繞著恆星OGLE-2005-BLG-390L公轉。它位於天蠍座,距離地球21,500 ± 3,300光年,其位置接近銀河系的中心。截至2006年1月,這顆行星是眾多系外行星當中,與地球最為相似的一個。 這顆行星是由三個小組共同發現的,分別為PLANET/RoboNet、OGLE和MOA,該發現於2006年1月25日公佈。科學家發現OGLE-2005-BLG-390Lb並未擁有行星適居性。.
PSR B1257+12
PSR 1257+12(PSR B1257+12)是一顆位於室女座的脈衝星,距離地球大約980光年。這顆恆星受到注意的地方,在於人們相信它擁有四顆行星,同時它們也是首批被發現的太陽系外行星。 這顆脈衝星最先於1990年由波蘭天文學家亞歷山大·沃爾茲森(Aleksander Wolszczan),於1990年以位於波多黎各阿雷西博的射電望遠鏡發現的。它屬於毫秒脈衝星,為中子星的一種,自轉週期為6.22毫秒,但他卻發現其脈衝信號出現不尋常,遂對它作更深入的觀測。.
PSR B1620-26c
PSR B1620-26c,是一顆脈衝星行星,也是首個被證實的。它環繞編號PSR B1620-26的脈衝星公轉,該天體位於天蠍座,屬於球狀星團M4的一員,距離地球12,400光年。該行星曾被建議命名為「瑪土撒拉」(Methuselah),但由於此名稱通常不會用於天文學上,因此不被國際天文聯會接受。.
PSR B1829-10
PSR B1829-10,或常稱為PSR 1829-10,是一個距離地球約30000光年的脈衝星,位於盾牌座。.
SCR 1845-6357
SCR 1845-6357是一顆位於孔雀座,距離地球12.6光年的紅矮星。它的質量大約是太陽的7%,亮度极低,为太阳的0.00000139倍,体积与天王星相当,但是這只是初步測量的數值,可能還會有變化。 這顆星被發現擁有一顆棕矮星的伴星,被標示為SCR 1845-6357 B。這顆伴星的分類是T-矮星,在4.5AU的距離上繞著主星公轉,質量約在木星質量的9至65倍之間,標面溫度估計為850K。.
WASP-3b
WASP-3b是位於天琴座環繞著WASP-3的一顆系外行星,距離大約727光年。它是被SuperWASP使用凌日法發現的,隨後並經由徑向速度的觀測證實WASP-3b是一顆行星。這顆行星的質量和半徑顯示它是一顆氣體巨星,組成類似木星的龐然大物。WASP-3b環繞的軌道距離使它成為一顆熱木星,並且大氣層的溫度高達1983K*。 在2010年,使用凌日時間變分法發現WASP-3還有一顆行星存在,被命名為WASP-3c 。此一發現提醒了未來的觀測者,必須要確認已發現的行星系中有沒有第二顆行星的存在。.
WASP-3c
WASP-3 是位於天琴座的一顆黃-白矮星,距離大約727光年,光度10等的恆星。.
柯伊伯带
柯伊伯带(Kuiper belt),又稱作倫納德-柯伊伯带,另譯庫柏帶、--,是位於太陽系中海王星軌道(距離太陽約30天文单位)外側的黃道面附近、天體密集的圓盤狀區域。柯伊伯带的假說最先由美国天文學家弗雷德里克·倫納德提出,十几年後杰拉德·柯伊伯證實了该观点。柯伊伯帶类似于小行星带,但大得多,它比小行星帶宽20倍且重20至200倍。如同主小行星帶,它主要包含小天体或太阳系形成的遗迹。虽然大多数小行星主要是岩石和金属构成的,但大部分柯伊伯带天体在很大程度上由冷冻的挥发成分(称为“冰”),如甲烷,氨和水组成。柯伊伯带至少有三顆矮行星:冥王星,妊神星和鸟神星。一些太阳系中的衛星,如海王星的海卫一和土星的土卫九,也被认为起源于该区域。 柯伊伯带的位置處於距離太陽40至50天文单位低傾角的軌道上。該處過去一直被認為空無一物,是太陽系的盡頭所在。但事實上這裡滿佈着直徑從數公里到上千公里的冰封微行星。柯伊伯带的起源和確實結構尚未明確,目前的理論推測是其來源於太陽原行星盤上的碎片,這些碎片相互吸引碰撞,但最後只組成了微行星帶而非行星,太陽風和物質會在在此處減速。 柯伊伯带有时被误认为是太陽系的邊界,但太阳系还包括向外延伸两光年之远的奥尔特星云。柯伊伯带是短周期彗星的來源地,如哈雷彗星。自冥王星被發現以來,就有天文學家認為其應該被排除在太陽系的行星之外。由於冥王星的大小和柯伊伯带內大的小行星大小相近,20世紀末更有主張該其應被歸入柯伊伯带小行星的行列当中;而冥王星的卫星则應被當作是其伴星。2006年8月,国际天文学联合会將冥王星剔出行星類別,并和谷神星与新发现的阋神星一起归入新分类的矮行星。 柯伊伯带不应该与假设的奥尔特云相混淆,后者比前者遥远一千倍以上。柯伊伯带内的天体,连同离散盘的成员和任何潜在的奥尔特云天体被统称为海王星外天体(TNOs)。冥王星是在柯伊伯带中最大的天體,而第二大知名的海王星外天体,則是在离散盘的阋神星。.
查看 太陽系外行星和柯伊伯带
柯洛7
COROT-7(柯洛7),是一颗位于麒麟座的G9V型恒星,比太阳稍小,距离地球约489光年,视星等为11.7,裸眼无法直接看到它。.
查看 太陽系外行星和柯洛7
柯洛7b
柯洛7b(COROT-7b,最初被称为柯洛-系外行星-7b)是一颗位于麒麟座、距离地球390光年、环绕未经确认的恒星柯洛7——该恒星比太阳稍小——运转的系外行星,它于2009年为法国所主持的柯洛计划所发现。在迄今为止所有已知直径的系外行星中,该行星直径最小,约为地球的1.7倍。其质量约为地球的5.6-11倍,这表明它可能是一颗岩石行星。该行星的轨道十分靠近其母星,轨道周期为20小时。这也是太阳系外发现的第一颗岩质行星。.
查看 太陽系外行星和柯洛7b
恒星
恆星是一種天體,由引力凝聚在一起的一顆球型發光電漿體,太陽就是最接近地球的恆星。在地球的夜晚可以看見的其他恆星,幾乎全都在銀河系內,但由於距離非常遙遠,這些恆星看似只是固定的發光點。歷史上,那些比較顯著的恆星被組成一個個的星座和星群,而最亮的恆星都有專有的傳統名稱。天文學家組合成的恆星目錄,提供了許多不同恆星命名的標準。 至少在恆星生命的一段時期,恆星會在核心進行氫融合成氦的核融合反應,從恆星的內部將能量向外傳輸,經過漫長的路徑,然後從表面輻射到外太空。一旦核心的氫消耗殆盡,恆星的生命就即將結束。有一些恆星在生命結束之前,會經歷恆星核合成的過程;而有些恆星在爆炸前會經歷超新星核合成,會創建出幾乎所有比氦重的天然元素。在生命的盡頭,恆星也會包含簡併物質。天文學家經由觀測其在空間中的運動、亮度和光譜,確知一顆恆星的質量、年齡、金屬量(化學元素的豐度),和許多其它屬性。一顆恆星的總質量是恆星演化和決定最終命運的主要因素:恆星在其一生中,包括直徑、溫度和其它特徵,在生命的不同階段都會變化,而恆星周圍的環境會影響其自轉和運動。描繪眾多恆星的溫度相對於亮度的圖,即赫羅圖(H-R圖),可以讓我們測量一顆恆星的年齡和演化的狀態。 恆星的生命是由氣態星雲(主要由氫、氦,以及其它微量的較重元素所組成)引力坍縮開始的。一旦核心有了足夠的密度,氫融合成氦的核融合反應就可以穩定的持續進行,釋放過程中產生的能量。恆星內部的其它部分會進行組合,形成輻射層和對流層,將能量向外傳輸;恆星內部的壓力能防止其因自身的重力繼續向內坍縮。一旦耗盡了核心的氫燃料,質量大於0.4太陽質量的恆星,會膨脹成為一顆紅巨星,在某些情況下,在核心或核心周圍的殼層會融合成更重的元素。然後這顆恆星會演化出簡併型態,並將一些物質回歸至星際空間的環境中。這些釋放至間中的物質有助於形成新一代的恆星,它們會含有比例較高的重元素。與此同時,核心成為恆星殘骸:白矮星、中子星、或黑洞(如果它有足夠龐大的質量)。 聯星和多星系統包含兩顆或更多受到引力束縛的恆星,通常彼此都在穩定的軌道上各自運行著。當這樣的兩顆恆星在相對較近的軌道上時,其间的引力作用可以對它們的演化產生重大的影響。恆星可以構成更巨大的引力束縛結構,像是星團或是星系。.
查看 太陽系外行星和恒星
恒星光谱
在天文學,恆星分類是將恆星依照光球的溫度分門別類,伴隨著的是光譜特性、以及隨後衍生的各種性質。根據維恩定律可以用溫度來測量物體表面的溫度,但對距離遙遠的恆星是非常困難的。恆星光譜學提供了解決的方法,可以根據光譜的吸收譜線來分類:因為在一定的溫度範圍內,只有特定的譜線會被吸收,所以檢視光譜中被吸收的譜線,就可以確定恆星的溫度。早期(19世紀末)恆星的光譜由A至P分為16種,是目前使用的光譜的起源。 恒星光谱分类 20世纪初,美国哈佛大学天文台对50万颗恒星进行了光谱研究。他们根据恒星不同的谱线进行了分类,结果发现它们与颜色也有关系.
查看 太陽系外行星和恒星光谱
恆星系統
恆星系統或恆星系是少數幾顆恆星受到引力的拘束而互相環繞的系統,為數眾多的恆星受到引力的約束一般稱為“星團”或“星系”,但是概括來說都可以稱為恆星系統。恆星系統有時也會用在單獨但有更小的行星系環繞的恆星。.
查看 太陽系外行星和恆星系統
格利泽581
格利泽581(英語:Gliese 581)是一顆位於天秤座之M2.5V紅矮星,距離地球約20.4光年(193.9兆千米),處於天秤座β星以北約2度。在所有已知的恆星系統中,該恆星是第89個最接近于太阳系的恆星。質量方面估計約為太陽的1/3。.
格利泽581e
格利泽581e(英语、德语、法语、卡斯蒂利亚语:Gliese 581 e;Gliese为德语,汉译格利泽,)是迄今发现的第四颗围绕M3V型红矮星格利泽581运转的行星,属于太阳系外行星,位于天秤座,距离地球大约20.5光年。该行星的质量至少为地球的1.9倍,是迄今发现的围绕太阳系外恒星运转的最小的、同时也是质量最接近地球的太阳系外行星。不过它的轨道距离其母星只有0.03个天文单位,远离适居带;同时由于高温、过小的体积和来自恒星的强烈辐射,它也不大可能拥有大气层。.
格利泽581g
格利泽581g(Gliese 581 g)是一颗未经证实的系外行星,绕行位于天秤座的红矮星格利泽581,距离地球约20.5光年。它是在格利泽581行星系中发现的第六颗行星,距离恒星距离则排该星系第四,于2010年9月29日由华盛顿卡内基学会和加州大学圣克鲁斯分校(UCSC)等机构发现后公诸于世,是夏威夷凯克天文台历时11年的观测所取得的成果。这颗在“適居带”内新发现的行星,有可能是迄今发现的与地球最像的系外行星,也是第一个潜在適居行星的确凿证据。但是ESO和HARPS研究小组都不能证实此行星存在 。也有天文学家指出没有在格利泽581的可居住区域内任何行星的可信信号,无法证实格利泽581g的存在。而根据美国高分辨率蝇眼探测器(HiRes)研究显示,格利泽581拥有6颗行星的可能性误差达到99.9978% 。.
格利澤876
格利泽876是一顆紅矮星,體積為太陽的一半,位於寶瓶座,距離地球15光年;距離银河系6000光年。他也是一顆變星,標示的名稱為寶瓶座 IL,其光譜類型為M4V。之前已經發現兩顆行星,其軌道共振為2:1;在2006年發現他有第3顆行星。格利泽876是迄今被證實有行星的兩顆紅矮星之一,另一顆是格利澤436。.
格利澤876d
格利泽876d (Gliese 876 d)是围绕着红矮星格利泽876公转的太阳系外行星。当它在2005年被发现时,它是除围绕PSR B1257+12公转的脉冲星行星之外的已知质量最小的太阳系外行星。格利泽876d在它的行星系统中位置最靠内,它和母星格利泽876之间的距离只有地球到太阳之间距离的五十分之一。因此格利泽876d只用不到两天的时间就完成一次公转。由于低质量的缘故,格利泽876d可以被归类为超级地球。.
棕矮星
褐矮星又称--矮星,是質量太低,在核心不能維持大規模的氫融合反應,與主序恆星不同的次恆星。它們的質量據有最重的氣體巨星和最輕的恆星,質量上限大約在75至80 木星質量(MJ)。棕矮星的質量至少超過氘融合所需要的13 MJ,而超過〜65 MJ,鋰融合就可以進行。 在2013年3月,有一篇論文提出質量非常低的棕矮星和巨大行星的分界大約在〜13木星質量,引起了學界的討論。相似的研究涉及DENIS-P J082303.1-491201 b,在2014年3月發現的一個極低溫的聯星系統,質量較低的成員大約只有29木星質量,並且被列名為質量最大的系外行星。儘管如此,一個學派認為要基於形成;另一派認為要依據內部的物理。 棕矮星一樣可以依據光譜分類,主要的類型有M、L、T、和Y。不管它們的名稱,棕矮星有著不同的顏色。依據A.
查看 太陽系外行星和棕矮星
椭圆
在数学中,椭圆是平面上到两个固定点的距离之和为常数的点之轨迹。 根據該定義,可以用手繪橢圓:先準備一條線,將這條線的兩端各綁在固定的點上(這兩個點就當作是橢圓的兩個焦點,且距離小於線長);取一支筆,用筆尖将線繃緊,這時候兩個點和筆就形成了一個三角形(的兩邊);然後左右移動筆尖拉著線開始作圖,持續地使線繃緊,最後就可以完成一個橢圓的圖形了。.
查看 太陽系外行星和椭圆
次棕矮星
次棕矮星(sub-brown dwarf)是一種與恆星及棕矮星形成方式相同(即透過星雲塌縮而成),但擁有行星等級質量的天體。它們的質量甚至比棕矮星的質量下限(大約木星質量的13倍)還要低,因此它們並非棕矮星,故名「次棕矮星」。不同於棕矮星的性質,它們的質量不足以進行氘的融合。 POSITION STATEMENT ON THE DEFINITION OF A "PLANET" (IAU).
查看 太陽系外行星和次棕矮星
欧洲南方天文台
歐洲南天天文台()是為在南半球研究天文學,在政府間組織的一個研究機構,由15個國家組成和支援的一個天文研究組織。它成立於1962年,目的是為歐洲天文學家提供先進的設施和捷徑以研究南方的天空。這個組織總部設在德國慕尼黑附近的加興,雇用了約730名工作人員,每年並接受成員國約1億3100萬歐元的經費。 歐洲南天天文台建設和經營一些已知規模最大和技術最先進的望遠鏡,包括首創主動光學技術的新技術望遠鏡、和由4個8米等級的望遠鏡和4個1.8米輔助望遠鏡組成的甚大望遠鏡。目前由ESO進行的計畫包括亞他加馬大型毫米波陣列和歐洲極大望遠鏡。 ALMA是下一個十年最大的地面天文專案,將成為在毫米與次毫米波尺度下觀測的主要新工具。他的建設正在進行中,預計於2013年完成。ALMA專案是歐洲各國、亞洲、北美洲和智利之間的國際合作計畫。歐洲執行權由ESO代表行使,並且還主持ALMA區域中心。 E-ELT是40米等級的望遠鏡,目前還在細部設計階段,將是世界上觀測天空最大的巨眼。 歐洲極大望遠鏡,它將極有力的推動天文物理學的知識,能夠仔細研究的天體,包括圍繞著其它恆星的行星、宇宙中的第一個天體、超大質量黑洞、和主宰宇宙的暗物質與暗能量的自然本質和分布。從2005年底,ESO就一直與工作和使用社群的歐洲天文學家和天文物理學家共同來定義此新的聚型望遠鏡。 ESO的觀測機構已經作出許多重大的天文發現和一些天體目錄。最近的研究結果包括發現最遙遠的伽瑪射線暴和我們的星系,銀河系,中心有黑洞的證據。2004年,甚大望遠鏡讓天文學家獲得第一張在173光年外環繞著的棕矮星的系外行星2M1207b軌道的絕佳影像。安裝在ESO另一架望遠鏡上的儀器,高精度徑向速度行星搜索器發現許多的系外行星,包括迄今發現最小的系外行星格利澤581c。甚大望遠鏡還發現迄今距離人類最遙遠星系的候選者阿貝爾1835 IR1916。.
欧洲空间局
欧洲空间局(Agence spatiale européenne,缩写:ASE; European Space Agency,缩写:ESA)是由欧洲数国政府組成的的國際空间探测和开发组织,总部设在法国首都巴黎。欧洲空间局负责亞利安4号和亞利安5号火箭运载火箭的研制与开发。 欧洲空间局的前身,--(European Space Research Organization,ESRO)经过1962年6月14日签署的一项协议,于1964年3月20日建立。如今它仍旧是ESA的一部分,称为欧洲空间研究与技术中心,位于荷兰诺德韦克。 ESA目前共有19个成员国:奥地利、比利时、捷克、丹麦、芬兰、法国、德国、希腊、爱尔兰、意大利、卢森堡、荷兰、挪威、葡萄牙、西班牙、瑞典、瑞士、羅馬尼亞以及英国;另外,加拿大是ESA的準成員國(Associate Member)。法国是其主要贡献者(参见法國國家太空研究中心)。目前,ESA与欧盟没有关系。歐盟轄下另有歐盟衛星中心(European Union Satellite Centre)。 ESA共有约2200名工作人员。其2011年的预算约为40亿欧元。 ESA的发射中心(欧洲航天发射中心)位于南美洲北部大西洋海岸的法属圭亚那,占地约90600平方公里,属法國國家太空研究中心领导,主要负责科学卫星、应用卫星和探空火箭的发射以及与此有关的一些运载火箭的试验和发射。由于此地靠近赤道,对火箭发射具有很大益处:纬度低,从发射点到入轨点的航程大大缩短,三子级不必二次启动;相同发射方位角的轨道倾角小,远地点变轨所需要的能量小,增加了同步轨道的有效载荷;向北和向东的海面上有一个很宽的发射弧度;人口、交通、气象条件理想等。目前,航天中心有阿里安第一、第二、第三发射场,是欧洲航天活动的主要基地。控制中心則位於德國的達姆施塔特。.
查看 太陽系外行星和欧洲空间局
比鄰星b
比鄰星b(Proxima Centauri b 或 Proxima b)是一顆太陽系外行星,位於紅矮星比鄰星適居帶內。該行星距離地球約4.2光年(1.3秒差距),在天球上位於半人馬座 。比鄰星b是已知距離太陽系最近的系外行星,也是已知距離最近的適居帶內系外行星。該行星是由觀測母恆星光譜譜線週期性移動狀況的徑向速度法發現。根據觀測資料,該天體相對於地球的運動速度大約時速5公里。.
查看 太陽系外行星和比鄰星b
氢
氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.
查看 太陽系外行星和氢
氣體巨星
#重定向 氣態巨行星.
查看 太陽系外行星和氣體巨星
氦
氦(Helium,舊譯作氜)是一种化学元素,其化学符号是He,原子序数是2,是一种无色的惰性气体,放电时发橙红色的光。在常温下,氦是一种极轻的无色、无臭、无味的单原子气体。氦在空氣中含量較少,但在宇宙中是第二豐富的元素,在银河系佔24%。.
查看 太陽系外行星和氦
波江座
波江座是现代88星座,也是托勒密48星座之一。包含中国古代星座:天苑,九州殊口,天园,九游 ,玉井和水委。.
查看 太陽系外行星和波江座
木星
|G1.
查看 太陽系外行星和木星
月相
月相,是由地球上所觀看之月光形態。月球本身不發光,月球直接被太陽照射之部份反射太陽光,才可見發亮,其陰影部分是月球自己之陰暗面。根據天文學,月球環繞地球公轉時,地球、月球、太陽之相對位置不斷規律地變化,使觀測者從不同角度看到月球被太陽照明之部分,造成月相盈虧圓缺之變化。 月相盈虧周期平均是29.53日,曆法中之朔望月源於此。.
查看 太陽系外行星和月相
星等
星等(magnitude),為天文学术语,是指星体在天空中的相对亮度。一般而言,这也指“视星等”,即为从地球上所见星体的亮度。在地球上看起来越明亮的星体,其视星等数值就越低。常见情况下人们使用可见光来衡量视星等,但在科学探测中,红外线等其它波段也有用到。不同波段探测到的星等数据会有所不同。一颗星星的星等,取决于它离地球的距离、它本身的光度(即为绝对星等)、星际尘埃遮蔽等多重因素。一般人的肉眼能够分辨的极限大约是6.5等。.
查看 太陽系外行星和星等
星際行星
星際行星(Interstellar planet),或稱為流浪行星(Rogue planet)、游牧行星(nomad planet)、自由浮動行星(free-floating planet)或孤兒行星(Orphan planet),粗略地說是不繞任何恆星公轉的行星,或只圍繞星系公轉的行星。雖然其不圍繞任何星體公轉,卻只具有行星質量。它們或是受到其他行星等天體的引力影響而被拋出原本繞著公轉的行星系統,或是在行星系統形成期間被彈射出來原行星,以致流浪於星系或宇宙之中。2011年科學家利用重力微透鏡法首度證實星際行星的存在,並推測銀河系內木星大小的星際行星數量有恆星的兩倍之多。 NASA JPL News Release, 2011-5-18雖然它們在星際中流浪,但不代表它們不能支持生命——儘管如此,其上存在的生命可能也只是如細菌般的微生物。 而並非被拋離行星系的巨大星際行星,則是以恆星形成的方式誕生。這種星際行星被國際天文聯合會定義為次棕矮星,如只有8个木星質量的蝘蜓座110913-773444。人類已知最接近地球的星際行星為距離地球80光年的PSO J318.5-22。.
查看 太陽系外行星和星際行星
海王星
海王星是太陽系八大行星中距离太阳最远的,體積是太陽系第四大,但質量排名是第三。海王星的質量大約是地球的17倍,而類似雙胞胎的天王星因密度較低,質量大約是地球的14倍。海王星以羅馬神話中的尼普顿(Neptunus)命名,因為尼普顿是海神,所以中文譯為海王星。天文學的符號(♆,Unicode編碼U+2646),是希臘神話的海神波塞頓使用的三叉戟。 作爲一個冰巨行星,海王星的大氣層以氫和氦為主,還有微量的甲烷。在大氣層中的甲烷,只是使行星呈現藍色的一部分原因。因為海王星的藍色比有同樣份量的天王星更為鮮豔,因此應該還有其他成分對海王星明顯的顏色有所貢獻。 海王星有太陽系最強烈的風,測量到的風速高達每小時2,100公里。 1989年航海家2號飛掠過海王星,對南半球的大黑斑和木星的大紅斑做了比較。海王星雲頂的溫度是-218 °C(55K),因為距離太陽最遠,是太陽系最冷的地區之一。海王星核心的溫度約為7,000 °C,可以和太陽的表面比較,也和大多數已知的行星相似。 海王星在1846年9月23日被發現, 是唯一利用數學預測而非有計畫的觀測發現的行星。天文學家利用天王星軌道的攝動推測出海王星的存在與可能的位置。迄今只有航海家2號曾經在1989年8月25日拜訪過海王星。2003年,美國國家航空暨太空總署提出有如卡西尼-惠更斯號科學水準的海王星軌道探測計畫,但不使用熱滋生反應提供電力的推進裝置;這項計劃由噴射推進實驗室和加州理工學院一起完成。.
查看 太陽系外行星和海王星
海洋行星
海洋行星(Ocean planet)是一类假定存在的系外行星,其表面完全为液态水构成的海洋所覆盖,而沒有陸地或島嶼。 在外太阳系中形成的行星,其最初的物质构成类似于彗星,包括质量近乎均等的水和岩石。对太阳系的形成和演化进行的模拟显示在行星形成过程中,其轨道有可能向内或向外迁移,从而有可能出现下列情况:冰冻行星的轨道向内迁移,行星上的冰体水融化为液态水,最终形成海洋行星。该种可能性在和阿兰·莱杰於2003年的专业天文学文献中被首次提出。這樣的行星理論上是可以支持生命的。 该类行星上的海洋可能深达数百公里,远深于地球上的海洋。在海洋的较深地区,巨大的压力使得一个由非常态冰构成的地幔得以成型,其中的非常态冰则并非处于低温状态。如果该行星足够接近母星,那么其上的海水温度就可能接近于沸点,海水将会处于超临界状态,从而使得海洋缺乏确定的表面。.
查看 太陽系外行星和海洋行星
斯沃斯莫爾學院
斯沃斯莫爾學院(Swarthmore College)是一所私立的美國文理學院。斯沃斯莫爾學院坐落於賓夕法尼亞州費城西部約11英里的斯沃斯莫爾小鎮里。學校擁有註冊學生約1,500名。 成立於1864年,是三校聯盟(Tri-College Consortium)的成員之一。.
日
日,一般指地球日,时间单位。.
查看 太陽系外行星和日
摄氏温标
摄氏温标是世界上普遍使用的温标,符号为°C,属于公制单位。 摄氏温标的规定是:在标准大气压,纯水的凝固点(即固液共存的温度)為0°C,水的沸點為100°C,中間劃分為100等份,每等份為1°C。.
查看 太陽系外行星和摄氏温标
2M1207
2M1207,是一顆位於半人馬座的棕矮星。該恆星被拍攝得有一顆伴星繞其公轉,它被編為2M1207b,極有可能是人們首顆拍得的太陽系外行星,同時也會是首顆圍繞棕矮星公轉的行星。 根據J2000.0天球座標系統的數據,該恆星位於赤經12h7m33.4s,赤緯-39°32′54″,透過2MASS的紅外線全天偵測而被發現,因此以“2M”及赤經位置來命名。它距離地球約70秒差距(PC),其光譜類型為M8。如果它的行星仍然年輕,估計它的質量為木星的25倍。 2005年12月,美國天文學家Eric Mamajek發表更準確的數據,指2M1207距離地球約53PC(173光年), Eric Mamajek, November 8, 2007.
2M1207b
2M1207b是一顆圍繞棕矮星2M1207的太陽系外行星,距離地球大約為170光年,位於半人馬座。2M1207b也是第一顆以直接攝影法發現的系外行星,是由Gael Chauvin所領導的歐洲南天天文台觀測團隊在2004年9月於智利使用帕瑞納天文台的甚大望遠鏡所發現的A giant planet candidate near a young brown dwarf.
另见
SETI
- 500米口径球面射电望远镜
- HD 164595
- KIC 8462852
- PSR B1919+21
- SETI@home
- SETI协会
- SHGb02+14a无线电信号
- Wow!訊號
- 主动搜寻地外文明计划
- 亚历山大·列昂尼多维奇·扎伊采夫
- 亞瑟·查理斯·克拉克
- 先驅者鍍金鋁板
- 动物园假说
- 卡尔·萨根
- 卡尔达肖夫指数
- 史蒂芬·韋伯
- 吉兒·塔特
- 圣马力诺指数
- 外星生命
- 大耳朵
- 太陽系外行星
- 奧茲瑪計畫
- 宇宙的呼喚
- 宇宙语言
- 尼古拉·卡尔达肖夫
- 平庸原理
- 德雷克公式
- 快速電波爆發
- 戴森球
- 接觸未來 (小說)
- 搜寻地外文明计划
- 搜寻来自近地外智慧生命群落的无线电波计划
- 旅行者金唱片
- 水坑 (无线电)
- 法蘭克·德雷克
- 突破倡議
- 约瑟夫·什克洛夫斯基
- 艾伦望远镜阵
- 行星列表
- 费米悖论
- 適居帶
- 適居恆星表
- 阿雷西博信息
- 阿雷西博天文台
- 阿雷西博射电望远镜
- 青少年的訊息
- 鳳凰計畫 (美國)
系外行星學
行星类型
- 中介行星
- 原行星
- 太陽系外行星
- 巨無霸地球
- 巨行星
- 星際行星
- 棕矮星
- 次地球
- 次棕矮星
- 氣態巨行星
- 海洋行星
- 熔岩行星
- 熱木星
- 熱海王星
- 环联星运转行星
- 矮行星
- 类地行星
- 脈衝星行星
- 行星類型列表
- 超短周期行星
- 超級海王星
- 超级地球
- 超级木星
- 銀河系外行星
- 鐵行星
- 雙行星
- 離心木星
亦称为 太陽系以外行星,外星行星。