徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

中子星

指数 中子星

中子星(neutron star),是恒星演化到末期,經由引力坍縮發生超新星爆炸之後,可能成為的少數終點之一。恆星在核心的氫、氦、碳等元素於核聚变反應中耗盡,当它们最终轉變成鐵元素時便無法从核聚变中获得能量。失去熱輻射壓力支撐的外圍物質受重力牽引會急速向核心墜落,有可能导致外壳的動能轉化為熱能向外爆發產生超新星爆炸,或者根据恒星质量的不同,恒星的内部区域被压缩成白矮星、中子星或黑洞。白矮星被压缩成中子星的過程中恒星遭受劇烈的壓縮使其組成物質中的電子併入質子轉化成中子,直徑大約只有十餘公里,但上面一立方厘米的物質便可重達十億噸,且旋轉速度極快。由於其磁軸和自轉軸並不重合,磁場旋轉時所產生的無線電波等各种辐射可能會以一明一滅的方式傳到地球,有如人眨眼,此時稱作脈衝星。 一顆典型的中子星質量介於太陽質量的1.35到2.1倍,半徑則在10至20公里之間(質量越大半徑收縮得越小),也就是太陽半徑的30,000至70,000分之一。因此,中子星的密度在每立方公分8×1013克至2×1015克間,此密度大約是原子核的密度。 緻密恆星的質量低於1.44倍太陽質量,則可能是白矮星,但质量大於奧本海默-沃爾可夫極限(3.2倍太陽質量)的恆星会继续發生引力坍縮,則無可避免的將產生黑洞。 由於中子星保留母恆星大部分的角動量,但半徑只是母恆星極微小的量,轉動慣量的減少導致轉速迅速的增加,產生非常高的自轉速率,周期從毫秒脈衝星的700分之一秒到30秒都有。中子星的高密度也使它有強大的表面重力,強度是地球的2×1011到3×1012倍。逃逸速度是將物體由重力場移動至無窮遠的距離所需要的速度,是測量重力的一項指標。一顆中子星的逃逸速度大約在10,000至150,000公里/秒之間,也就是可以達到光速的一半。換言之,物體落至中子星表面的速度也將達到150,000公里/秒。更具體的說明,如果一個普通體重(70公斤)的人遇到中子星,他撞擊到中子星表面的能量將相當於二億噸TNT當量的威力(四倍於全球最巨大的核彈大沙皇的威力)。.

66 关系: 原子核半人马座半人马座X-3卡文迪许实验室天体太阳质量夸克星威尔逊山天文台宇宙速度安东尼·休伊什密度中子中微子强相互作用伽马射线弗里茨·兹威基引力地球列夫·朗道剑桥大学磁場磁星第二次世界大战约瑟琳·贝尔·伯奈尔结合能罗伯特·奥本海默美国电子特斯拉白矮星蟹狀星雲表面重力角动量詹姆斯·查德威克诺贝尔物理学奖質子费米子超子超新星超新星遗迹黑洞轉動慣量錢德拉塞卡極限船帆座钱德拉X射线天文台脉冲星致密星里卡尔多·贾科尼苏联英国...速度LGM-1PSR B1257+12PSR B1509-58PSR J0348+0432SETISN 1054X射线联星恆星演化核聚变歐本海默極限毫秒脈衝星沃尔特·巴德沙皇炸彈波爾星系 扩展索引 (16 更多) »

原子核

原子核(德语:Atomkern,英语:Atomic nucleus)是原子的组成部分,位于原子的中央,占有原子的大部分质量。組成原子核的有中子和質子。当周围有和其中质子等量的电子围绕时,构成的是原子。原子核極其渺小,如果将原子比作一座大廈,那麼原子核只有大廈裡的一張桌子那麼大。.

新!!: 中子星和原子核 · 查看更多 »

半人马座

半人马座(Centaurus)是一个巨大的明亮星座,它拥有两颗一等大星,半人马座α星和半人马座β星。半人马座区域内有各种令人感兴趣的天体。.

新!!: 中子星和半人马座 · 查看更多 »

半人马座X-3

半人马座X-3(Centaurus X-3,缩写为Cen X-3)位于半人马座方向,是第一个发现具有X射线脉冲的X射线源,后被确认为一颗低质量X射线双星。半人马座X-3最早是在1967年发现的,1971年乌呼鲁卫星观测到它具有规则的脉冲,周期为4.84秒,同时每隔2.087天脉冲就中断将近12个小时。这表明它是一颗X射线双星,X射线脉冲是由双星系统中中子星发出的,同时因两子星相互绕转而发生周期性的掩食。 半人马座X-3距离太阳约8,000秒差距,是一颗典型的低质量X射线双星。它的主星是一颗20.5倍太阳质量的超巨星(克热明斯基星,Krzeminski's star),伴星是一颗1.21倍太阳质量的中子星,光度约为1038erg/s。.

新!!: 中子星和半人马座X-3 · 查看更多 »

卡文迪许实验室

卡文迪許實驗室(Cavendish Laboratory),即是劍橋大學的物理系,研究领域包括了天体物理学、粒子物理学、固体物理学、生物物理学。由著名的英国物理学家詹姆斯·克拉克·麦克斯韦于1871年創立,1874年建成實驗室,以英国物理学家和化学家亨利·卡文迪许的名字命名。亨利·卡文迪许的亲戚、当时的剑桥大学校长威廉·卡文迪许私人捐款帮助了实验室的筹建。.

新!!: 中子星和卡文迪许实验室 · 查看更多 »

天体

#重定向 天體.

新!!: 中子星和天体 · 查看更多 »

太阳质量

太阳质量(符號為)是天文学上用于测量恒星、星团或星系等大型天体的质量单位,定义为太阳的质量,约为2×1030千克,表示为: 1个太阳质量是地球质量的333000倍。 太陽質量也可以用年的長度、地球和太陽的距離天文單位和萬有引力常數(G)的形式呈現: 現在,天文單位和萬有引力常數的數值都已經被精確的測量,然而,還是不太常用太陽質量來表示太陽系的其他行星或聯星的質量;只在大質量天體的測量上使用。現今,使用行星際雷達已經測出很準確的天文單位和" G ",但是太陽質量在習俗中仍然繼續被當成天文學歷史上未解的謎題來探究。.

新!!: 中子星和太阳质量 · 查看更多 »

夸克星

夸克星(Quark star)由奇异物質組成,是一種理論假設可能存在的引力緻密星體,需要更多的觀測數據及關鍵遺失環結理論推導來佐證其真實性。 實驗驗證方面,關鍵的奇異物質理論至今還是假說,至2013年五月為止,沒有任何可能的夸克星類型被證實或理論可以完全自洽,基礎成分「H雙重子」亦未被尋獲,最後一組對「H雙重子」進行搜尋實驗的是日本KEK(高能加速器研究機構)與日本原子能研究開發機構(JAEA)的合作項目J-PARC,目前尚未有結論。 2013年6月17日,北京質譜儀BES III與日本KEK的Belle團隊在研究疑似粲夸克偶素(Charmonium)的Y(4260)時,分別獨立發現Zc(3900),實驗報告於美國物理通訊上發表,Zc(3900)的夸克態可能是ccud或是介子分子混雜態(hadron molecule),是目前跡象最明確有可能被正式認定的第一個四夸克態粒子(雙夸克反雙夸克態)。Zc(3900)如果確認成立,其意義十分重大,將正式確立多夸克態物理的成立,確認一整門新物理學的出現,多夸克態一旦成立,則夸克水平的星體均可能成立,但不見得是奇異夸克星,也有可能是混雜態夸克星或是孤子星產生機率更高,這對近代天體物理發展而言是一項很大的突破,一整個族系的多夸克態星體均有可能被列入天體物理的研究範圍內。 對夸克星模型產生矛盾的現有物理實驗當中,在2013年1月,質子大小再度被確認為0.84087飛米,以μ-氫原子(Hydrogen muon)作為測量基準,置信度為7σ,遠比使用氫原子精確許多,推翻百年以來推算的大小0.8768飛米,完成驗證程序,正式為物理學界承認(2010年,德國(MPQ)首度測量μ-氫原子所得數據大約為0.8418飛米,其後被物理學界稱為質子大小謎團)。該數值導致量子電動力學當中的一些物理常量可能必須修改,例如「里德伯常量」。質子的夸克態為uud,質子大小修正幅度達4%,這意味過去推導的「H雙重子」uuddss物態方程,在數值計算上幾乎是全面錯誤的,短距力的效應在夸克星模型當中被低估許多。由此可以確信的是現有的夸克星模型全部都是需要修正的,這包含了夸克星半徑的推算、引力緻密程度及內部能階所能產生各類衰變粒子所造成的星體穩定性問題,2013年以前推導的夸克星模型沒有任何一個是正確的,引用新數值重新計算的工作還在進行中,尚未有相關的新論文出現。 理論發展方面,2013年3月中,CERN宣布了希格斯玻色子的能階大約在125.3-126.0GeV之間,如果CERN以外的第三方對照組實驗的數據同樣驗證此一數值(現代科學程序上要求CERN以外的機構重覆檢驗正確性,至少要有CERN以外的一個單位或多個單位進行重覆證實,CERN的發現並非最終結論),則此一能階則表示夸克星核心將會頻繁地形成希格斯玻色子及比較強烈的真空極化效應,甚至會形成穩定的希格斯玻色子物質團,夸克星的組成將不再是單純的奇異物質團,模型還必須考慮到與希格斯玻色子的交互作用,舊有推導的夸克星模型則幾乎全面都存在錯誤。考慮到夸克星是最可能進一步坍縮成更高密度的引力緻密星體,核心當中含有高密度的希格斯玻色子應當是一個正確的物理推論結果,提供了完美解釋了進一步坍縮的成因,過往的夸克星模型通常避開此一量子效應,在希格斯玻色子能階確認以後,夸克星模型無可避免地需要進行全面修正。 在質量生成貢獻度方面,希格斯玻色子一般只貢獻大約10%以下,90%以上是由夸克與膠子之間的力所賦予,質子質量當中,夸克僅佔5%,膠子不具質量,其餘質量貢獻為夸克與膠子之間的交互作用所貢獻,由於H雙重子尚未尋獲,無法得知其實際質量,在夸克星的密度及強引力參數下,夸克與膠子之間的交互作用對質量的貢獻比例是否會發生重大改變,成為夸克星模型當中的關鍵要素,對於其是否進一步坍縮或是維持長期結構穩定,以及星體總質量的生成因素,有關鍵性的影響,同時也全面影響夸克星的演化結構,舊有的理論物態方程均未考慮到此一因素,明顯需要進行大幅度修正。 希格斯玻色子的發現,將會使得夸克星研究成為新物理學及「巨觀宇宙結構研究」的關鍵性角色,夸克星引力及質量生成機制涉及使用廣義相對論的部份必須幾乎全面修改,物態轉換過程的進一步研究,對於證明廣義相對論是一個錯誤的物理理論有很大的幫助,目前夸克星機制的矛盾,大多數都來自於使用廣義相對論假設,假定廣義相對論存在錯誤的假設,並且採用新的量子引力延展理論,例如或是純量不變量(Scalar invariant)系列約十餘種延展理論,在高能階區域進行修正,對於尋找正確的夸克星模型及證明「經典黑洞理論」是錯誤的天體物理理論會有很大的幫助,而正確的夸克星模型則對暗物質、巨引源、超級星系長城及巨觀宇宙結構有決定性的影響。.

新!!: 中子星和夸克星 · 查看更多 »

威尔逊山天文台

威尔逊山天文台(Mount Wilson Observatory)位于美国加利福尼亚州帕萨迪纳附近的威尔逊山,距离洛杉矶约32公里,海拔1742米,是1904年在美国天文学家喬治·海爾的领导下,由卡耐基华盛顿研究所建立的,首任台长是海爾。他在就任时将叶凯士天文台的一架40英寸(1.01米)口径的望远镜带到这里。此外该天文台拥有一台口径为2.5米(100英寸)的望远镜和一台口径为1.5米(60英寸)的望远镜,以及一架高150英尺太阳望远镜。1969年,为纪念美国天文学家海爾,威尔逊山天文台和帕洛马山天文台合并成为海爾天文台。目前威尔逊山天文台由加州大学洛杉矶分校和南加州大学合作管理。此外,佐治亚州立大学的高分辨率天文中心(CHARA)也位于这里。.

新!!: 中子星和威尔逊山天文台 · 查看更多 »

宇宙速度

宇宙速度(cosmic velocity),是指物體從地球出發,要脫離天體重力場的四個較有代表性的初始速度的統稱。計算宇宙速度的基本公式如下: 航天器按其任務的不同,需要達到這四個宇宙速度的其中一個。例如人類第一個發射成功的星際探測器月球1号就需要達到第二宇宙速度,才能擺脫地球重力。而旅行者2号則需要達到第三宇宙速度,才能離開太陽系。 宇宙速度的概念也可应用于在其他天体發射航天器的情況。例如计算火星的环绕速度和逃逸速度,只需要把公式中的M,R,g换成火星的质量、半径、表面重力加速度即可。.

新!!: 中子星和宇宙速度 · 查看更多 »

安东尼·休伊什

安东尼·休伊什,FRS(Antony Hewish,),生於英格蘭康沃爾郡福伊,英國射電天文學家,與馬丁·賴爾共同獲得1974年諾貝爾物理獎,以表彰他在射電合成孔徑的發展與脈衝星的發現等方面的贡献。休伊什也是1969年英國皇家天文學會愛丁頓獎章的得獎者。.

新!!: 中子星和安东尼·休伊什 · 查看更多 »

密度

3 | symbols.

新!!: 中子星和密度 · 查看更多 »

中子

| magnetic_moment.

新!!: 中子星和中子 · 查看更多 »

中微子

中微子(Neutrino,其字面上的意義為「微小的電中性粒子」,又譯作--)是一种电中性的基本粒子,自旋量子數為½,以希腊字母ν标记。现在已经有证据表明其具有质量。但其质量即使相比于其他亚原子粒子也是非常微小的。它可能是现在唯一一种已探测到的暗物质,是一种热暗物质。 中微子与电子、μ子以及τ子同属轻子,有三种“味”:电中微子()、μ中微子()以及τ中微子()。每种味的中微子都相应存在一种同样电中性且自旋量子數為½的反中微子。在标准模型中,中微子的产生过程遵循轻子数守恒定律。 由于中微子是电中性的,同时还是一种轻子,因而其并不参与电磁相互作用以及强相互作用。其只参与弱相互作用以及引力相互作用。 由于弱相互作用作用距离非常短,而引力相互作用在亚原子尺度下又是十分微弱的,因而中微子在穿过一般物质时不会受到太多阻碍,且难以检测。 中微子可以通过放射性衰变以及核反应等多种方式产生。由于太阳内部时时刻刻都在发生着核反应,而超新星产生等过程也会伴随着剧烈的核反应,因而在宇宙射线中可以检测到中微子的存在。地球附近所检测到的中微子大多来源于太阳。事实上,地球面向太阳的区域每秒钟在每平方厘米上都会穿过大约650亿个来自太阳的中微子。 人们现在认识到中微子在飞行过程中会在不同味间振荡,比如β衰变中产生的电中微子可能在检测时会变为μ中微子或τ中微子。这一现象表明中微子具有质量,且不同味的中微子的质量也是不同的。依据现在宇宙学探测的数据,三种味的中微子质量之和小于电子质量的百万分之一。.

新!!: 中子星和中微子 · 查看更多 »

强相互作用

强相互作用是作用于强子之间的力,是所知四种宇宙间基本作用力最强的,也是作用距离第二短的(大约在 10-15 m 范围内,比弱交互作用的範圍大)。另外三种相互作用分别是引力、电磁力及弱相互作用。核子间的核力就是强相互作用。它抵抗了质子之间的强大的电磁力,维持了原子核的稳定。强相互作用也將夸克基本粒子結合成為質子及中子等強子,這也是組成大部份物質的粒子。而且一般質子或中子裡,大部份的質能是以强相互作用場能量的形式存在,夸克只提供了1%的質能。 强相互作用可以在二個地方看到:較大的尺度(約1至3飛米)下,强相互作用將質子及中子結合成為原子的原子核,較小的尺度(約0.8飛米,約為核子的尺寸)下,强相互作用將夸克結合,成為質子、中子或其他強子。强相互作用的作用力非常強,大到束縛一個夸克的能量可以轉換為新的夸克對的質量,强相互作用的這個性質稱為夸克禁閉。 强相互作用是唯一強度不會隨距離減小的作用力,但因為夸克禁閉,夸克會限制和其他夸克在一起,形成的強子之間會有殘留的强相互作用,也稱為核力,核力會隨距離而迅速減少。撞擊原子核釋放的部份束縛能和產生的核力有關,而核力也用在核能及核融合式的核武器中。 强相互作用一般認為是由膠子傳遞的,膠子會在夸克、反夸克及其他膠子之間交換。膠子會帶有色荷,色荷和人眼可見的顏色完全沒有關係,色荷類似電荷,但色荷有六種(紅、綠、藍、反紅、反綠、反藍),因此會形成不同的力,有不同的規則,在量子色動力學(QCD)中有描述,這也是夸克-膠子交互作用的基礎。吳秀蘭等科學家對膠子發現有很大貢獻的科學家,在1995年因此获得了欧洲物理学会髙能和粒子物理奖。 在大爆炸後,電弱時期時,電弱交互作用和强相互作用分離,統一弱交互作用和電磁交互作用的電弱統一理論已經獲得實驗證實。科學家進一步預期有一個大統一理論可以統一電弱交互作用及强相互作用,現今有許多是大統一理論的理論,第一個是哈沃德·乔吉和谢尔登·格拉肖于1974年提出了最早的SU(5)大统一理论,但和實驗不合,其他的理論有SO(10)模型、,但還沒有一個是廣為科學家接受,且有實驗證實的理論,而且許多大統一理論都預言質子衰變,但目前也還沒有實驗支持,大統一理論也還是未解決的物理學問題之一。.

新!!: 中子星和强相互作用 · 查看更多 »

伽马射线

伽瑪射線(Gamma ray),或γ射線是原子衰變裂解時放出的射線之一。此種電磁波波長在0.01奈米以下,穿透力很強,又攜帶高能量,容易造成生物體細胞內的脫氧核糖核酸(DNA)斷裂進而引起細胞突變,因此也可以作醫療之用。 1900年由法國科學家P.V.維拉德(Paul Ulrich Villard)發現,他將含鐳的氯化鋇通過陰極射線,從照片記錄上看到輻射穿過0.2毫米的鉛箔,拉塞福稱這一貫穿力非常強的輻射為γ射線,是繼α射線、β射線後發現的第三種原子核射線。1913年,γ射線被證實為是電磁波,波長短于0.2 埃,和X射線特性相似但具有比X射線還要強的穿透能力。γ射線通過物質並與原子相互作用時會產生光電效應、康普頓效應和正負電子對效應。γ射线即使使用较厚材料阻挡一般也仍然有部分射线泄漏,所以通常只能用半吸收厚度来定量材料的阻隔效果。半吸收厚度是指入射射线强度减弱到一半时阻隔物体的厚度。半吸收厚度其数值d(1/2).

新!!: 中子星和伽马射线 · 查看更多 »

弗里茨·兹威基

弗里茨·兹威基(Fritz Zwicky,),瑞士天文学家,他的一生幾乎都在加州理工學院工作,在理論和觀測天文學上,包括超新星、星系团等方面做出了重要的贡献。.

新!!: 中子星和弗里茨·兹威基 · 查看更多 »

引力

重力(Gravitation或Gravity),是指具有质量的物体之间相互吸引的作用,也是物体重量的来源。 引力与电磁力、弱相互作用力及强相互作用力一起构成自然界的四大基本相互作用。在这四种基本相互作用中,引力是最弱的一种,但同时也是一种长程有效作用力。在现代物理学中,引力一般由广义相对论来精确描述,认为引力反映了物体的惯性在弯曲时空中的表现。而经典力学中的牛顿万有引力定律则是对引力在通常物理条件下的极好的近似描述。 在地球上,地球对地面附近物体的万有引力赋予了物体的重量,并使物体落向地面。在宇宙中,引力让物质聚集而形成天体,同时也让天体之间相互吸引,形成按照轨道运转的天体系统。此外,月球以及太陽对地球上海水的引力,形成了地球上的潮汐。.

新!!: 中子星和引力 · 查看更多 »

地球

地球是太阳系中由內及外的第三顆行星,距离太阳约1.5亿公里。地球是人類已知宇宙中唯一存在生命的天体,也是人類居住的星球,共有74.9億人口。地球质量约为5.97×1024公斤,半径约6,371公里,密度是太阳系中最高。地球同时进行自转和公转运动,分别产生了昼夜及四季的变化更替,一太陽日自转一周,一太陽年公转一周。自转轨道面称为赤道面,公转轨道面称为黄道面,两者之间的夹角称为黄赤交角。地球仅擁有一顆自然卫星,即月球。 地球表面有71%的面积被水覆盖,称为海洋或可以成为湖或河流,其余是陆地板块組成的大洲和岛屿,表面分布河流和湖泊等水源。南极的冰盖及北极存有冰。主體包括岩石圈、地幔、熔融态金属的外地核以及固态金属的內地核。擁有由外地核產生的地磁场。外部被氣體包圍,称为大氣層,主要成分為氮、氧、氬。 地球诞生于约45.4亿年前,42億年前開始形成海洋。并在35亿年前的海洋中出现生命,之后逐步涉足地表和大气,并分化为好氧生物和厌氧生物。早期生命迹象产生的具體证据包括格陵兰岛西南部中拥有约37亿年的历史的石墨,以及澳大利亚大陆西部岩石中约41亿年前的 Early edition, published online before print.。此后除去数次生物集群灭绝事件,生物种类不断增多。根据学界测定,地球曾存在过的50亿种物种中,已经绝灭者占约99%,据统计,现今存活的物种大约有1,200至1,400万个,其中有记录证实存活的物种120万个,而余下的86%尚未被正式发现。2016年5月,有科学家认为现今地球上大概共出现过1--种物种,其中人类正式发现的仅占十万分之一。2016年7月,科学家称现存的生物共祖中共存在有355种基因。地球上有约74亿人口,分成了约200个国家和地区,藉由外交、旅游、贸易、传媒或战争相互联系。.

新!!: 中子星和地球 · 查看更多 »

列夫·朗道

#重定向 朗道.

新!!: 中子星和列夫·朗道 · 查看更多 »

剑桥大学

劍橋大學(University of Cambridge;勳銜:Cantab)為一所坐落於英國劍橋市的研究型書院聯邦制大學。劍橋為英語世界中歷史第二悠久的大學,前身是一個於1209年成立的學者協會。這些學者本為牛津大學的一員,但後因與牛津鎮民發生衝突而移居至此。這兩所古老的大學在辦學模式等多方面都非常相似,並經常獲合稱為「牛剑」。 劍橋大學由31所成員書院及6所學術學院組成。雖大學本身為公立性質,但享有高度自治權的書院則屬私立機構。它們有自己的管理架構、收生以及學生活動安排,工作有別於負責教研的大學中央。劍橋大學是多個學術聯盟的成員之一,亦為英國「金三角名校」及劍橋大學醫療夥伴聯盟的一部分,並與產業聚集地的發展息息相關。 除了各學系安排的課堂,劍橋的學生也需出席由書院提供的輔導課程。學校共設八間文藝及科學博物館,並有館藏逾1500萬冊的圖書館系統及全球最古老的大學出版社。除了學習,學生可加入各學會、學團及體育校隊,參與不同的課外活動。劍橋大學校友包括多位著名數學家、科學家、經濟學家、作家、哲學家。共有116位諾貝爾獲獎者、15位英國首相、10位菲爾茲獎得主、6位图灵奖得主曾為此校的師生、校友或研究人員。.

新!!: 中子星和剑桥大学 · 查看更多 »

磁場

在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.

新!!: 中子星和磁場 · 查看更多 »

磁星

磁星(Magnetar)是中子星的一種,它們均擁有極強的磁場,透過其產生的衰變,使之能源源不絕地釋出高能量電磁輻射,以X射線及伽瑪射線為主。磁星的理論於1992年由科學家羅伯特·鄧肯(Robert Duncan)及克里斯托佛·湯普森(Christopher Thompson)首先提出,在其後幾年間,這個假設得到廣泛接納,去解釋軟伽瑪射線復發源(soft gamma repeater)及不規則X射線脈衝星(anomalous X-ray pulsar)等可觀測天體。.

新!!: 中子星和磁星 · 查看更多 »

第二次世界大战

二次世界大戰(又常簡稱二次大戰、二戰、WWII等;World War II;Seconde Guerre mondiale;Zweiter Weltkrieg;Вторая мировая война;第二次世界大戰)是一次自1939年至1945年所爆發的全球性軍事衝突,整場戰爭涉及到全球絕大多數的國家,包括所有的大國,并最終分成了兩個彼此對立的軍事同盟─同盟國和軸心國。這次戰爭是人類歷史上最大規模的戰爭,動員了1億多名軍人參與這次軍事衝突。主要的參戰國紛紛宣布進入總體戰狀態,幾乎將自身國家的全部經濟、工業和科學技術應用於戰爭之上,同時也將民用與軍用的資源合併以方便統籌規劃。包括有猶太人大屠殺、南京大屠殺、戰爭中日軍對中國軍民進行細菌戰、以及最终美國對日本首次使用原子彈等事件,使得第二次世界大戰也是自有紀錄以來涉及最多大規模民眾死亡案例的軍事衝突,全部總計便將近有5,000萬至7,000萬人因而死亡,這也讓第二次世界大戰成了人類歷史上死亡人數最多的戰爭。 儘管早在1931年9月,日本便侵佔了中國的滿洲,而後建立了傀儡國家滿洲國。至1937年7月盧溝橋事變後中日更爆發了全面戰爭。不過大多數人仍多把第二次世界大戰的爆發定為1939年9月1日德國入侵波蘭開始,這次入侵行動隨即導致英國與法國向德國宣戰。然而德國在入侵波蘭後開始著手嘗試在歐洲建立一個大帝國,自1939年末期到1941年初期為止,發動一連串戰爭並藉由條約的簽署使得德國幾乎佔領了歐洲絕大部分的地區,而名義上保持中立的蘇聯在和德國簽訂《德蘇互不侵犯條約》後,也跟進侵略潮流,陸續佔領或者吞併了其在歐洲邊界的鄰近6個國家,在這之中也包括第二次世界大戰爆發時所佔領的波蘭領土。英國以及大英國協的成員國則堅持持續與軸心國繼續作戰,並分別在北非和大西洋海上發生多次軍事衝突,而這也使得英國成了歐洲地區少數仍能繼續反抗德軍入侵的主要武力之一。1941年6月,歐洲的軸心國集團決定撕毀與蘇聯的合作約定,聯合入侵蘇聯領土,這次攻勢也開始了人類歷史上規模最大的地面戰爭爆發,但也在之後讓原本幾乎統轄整個歐洲地區的軸心國被迫投入大量軍力來維持作戰優勢。到了1941年12月,已經加入軸心國的大日本帝國為了能夠在亞洲及太平洋地區獲得領導地位,陸續襲擊位于太平洋的美國統轄地區和座落於與中南半島的歐洲殖民地,很快地於西太平洋和東亞戰區獲得了主導權。 到了1942年時日本開始在一系列的海戰中戰敗,位於歐洲的軸心國也陸續於北非戰役以及斯大林格勒戰役中節節敗退,這些都迫使軸心國停下進攻的腳步。1943年時,義大利法西斯政權在西西里島戰役中面對同盟國部隊嚴重失利,另一方面德軍在库尔斯克会战戰敗後失去對於東歐的領導地位,同時美國也在太平洋戰區中獲得了一連串的勝利,自此軸心國集團逐漸失去主導權並開始嘗試將佈署於各地的前線部隊進行戰略性的撤退。到了1944年時,盟軍決定登陸法國以開闢第二戰場,而蘇聯除了成功收復過去被佔領的領土外,也開始轉往進攻德國與其同盟國家的土地。在蘇聯和波蘭部隊共同攻入柏林後,第二次世界大戰歐洲戰區最終在1945年5月8日德國投降的情況下宣告結束。而另一方面美國在1944年和1945年成功擊敗了日本海軍部隊並陸續佔領了數個重要的西太平洋島嶼,這使得日本列島隨時面臨同盟國部隊入侵的危機。最後在美軍分別於廣島市和長崎市投下原子彈並造成大量日本平民死亡。1945年8月8日蘇聯進攻日本控制下的中國東北地區,8月14日日本跟進宣佈願意接受無條件投降的條件,而隨著亞洲戰事的停息也意味著第二次世界大戰正式結束。 1945年時第二次世界大戰以同盟國勝利宣告結束,然而二次大戰對世界影響極為深遠,改變了往後世界的政治版圖和社會結構,特別是戰敗的軸心國集團被迫接受同盟國的安排。1945年10月24日聯合國亦宣告成立,期望能夠促進各國合作並防止未來的軍事衝突;同時戰勝的盟軍各國,也紛紛在聯合國各個機構中擔任重要職位,特別是以美國、蘇聯、中國、英國和法國5個國家為首成立聯合國聯合國安全理事會的常任理事國,主導著世界的秩序.

新!!: 中子星和第二次世界大战 · 查看更多 »

约瑟琳·贝尔·伯奈尔

乔丝琳·贝尔·伯内尔女爵士,DBE,FRS,FRSE,FRAS(Dame Jocelyn Bell Burnell, ),出生名蘇珊·乔丝琳·贝尔(Susan Jocelyn Bell),英国天体物理学家,出生於贝尔法斯特。当她还是研究生时,与安东尼·休伊什一起利用射电望远镜发现了第一颗脉冲星。 她现在是物理研究所的主管。2014年10月起擔任愛丁堡皇家學會會長。 关于发现脉冲星的文件共有5个作者,安东尼·休伊什位列第一,约瑟琳·贝尔·伯奈尔列在第二。休伊什博士与马丁·赖尔博士一同被授予诺贝尔物理学奖,但并没有把贝尔作为共同研究者列入诺贝尔奖获奖名单。这引起了争议,遭到了休伊什的同胞——天文学家霍伊尔的谴责。 瑞典科学院在其新闻稿中宣布1974年诺贝尔物理学奖,引用莱尔和休伊什他们在天体物理学的开创性工作,特别提到莱尔对孔径的工作合成技术的支持,和休伊什发现脉冲星上所起的决定性作用。约瑟夫·什克洛夫斯基博士,1972年的布鲁斯奖的获奖者,已在1970年国际天文学联合大会时找出贝尔,告诉她“贝尔小姐,你已作出20世纪最伟大的天文发现”。.

新!!: 中子星和约瑟琳·贝尔·伯奈尔 · 查看更多 »

结合能

结合能(Binding Energy)是指两个或多个粒子结合成更大的微粒释放的能量,或相应的微粒分解成原来的粒子需要吸收的能量,这两种表述是等价的。比如质子和中子结合成原子核时放出的能量,或原子核完全分解成质子和中子时吸收的能量,就是这种原子核的结合能。在结合成原子核的过程中,结合之前质子与中子质量之和大于结合之后原子核的质量,出现质量亏损,放出能量。放出的能量可以用质能方程\Delta E.

新!!: 中子星和结合能 · 查看更多 »

罗伯特·奥本海默

朱利叶斯·罗伯特·奥本海默(Julius Robert Oppenheimer,),美国犹太人物理学家,曼哈顿计划的主要领导者之一,被誉为人类“原子弹之父”。奥本海默曾长期任教于加州大学伯克利分校(1929-1947年),曼哈顿计划期间还创立了洛斯阿拉莫斯国家实验室,第二次世界大战后长期担任普林斯顿高等研究院院长(1947-1966年)。.

新!!: 中子星和罗伯特·奥本海默 · 查看更多 »

美国

美利堅合眾國(United States of America,簡稱为 United States、America、The States,縮寫为 U.S.A.、U.S.),通稱美國,是由其下轄50个州、華盛頓哥倫比亞特區、五个自治领土及外岛共同組成的聯邦共和国。美國本土48州和联邦特区位於北美洲中部,東臨大西洋,西臨太平洋,北面是加拿大,南部和墨西哥及墨西哥灣接壤,本土位於溫帶、副熱帶地區。阿拉斯加州位於北美大陸西北方,東部為加拿大,西隔白令海峽和俄羅斯相望;夏威夷州則是太平洋中部的群島。美國在加勒比海和太平洋還擁有多處境外領土和島嶼地區。此外,美國还在全球140多個國家和地區擁有着374個海外軍事基地。 美国拥有982萬平方公里国土面积,位居世界第三(依陆地面積定義为第四大国);同时拥有接近超过3.3億人口,為世界第三人口大国。因为有着來自世界各地的大量移民,它是世界上民族和文化最多元的國家之一Adams, J.Q.; Strother-Adams, Pearlie (2001).

新!!: 中子星和美国 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 中子星和电子 · 查看更多 »

特斯拉

特斯拉(tesla),符号表示为T,是磁通量密度(Wb/m2)或磁感应强度的国际单位制导出单位。.

新!!: 中子星和特斯拉 · 查看更多 »

白矮星

白矮星(white dwarf),也稱為簡併矮星,是由简并态物质構成的小恆星。它們的密度極高,一顆質量與太陽相當的白矮星體積只有地球一般的大小,微弱的光度則來自過去儲存的熱能。在太陽附近的區域內已知的恆星中大約有6%是白矮星。這種異常微弱的白矮星大約在1910年就被亨利·諾利斯·羅素、愛德華·皮克林和威廉·佛萊明等人注意到, p. 1白矮星的名字是威廉·魯伊登在1922年取的。 白矮星被認為是中、低質量恆星演化階段的最終產物,在我們所屬的星系內97%的恆星都屬於這一類。, §1.

新!!: 中子星和白矮星 · 查看更多 »

蟹狀星雲

蟹状星云(M1,NGC 1952或金牛座 A)是位于金牛座ζ星(天關)东北面的一个超新星残骸和脉冲风星云。蟹状星云距地球约6,500光年(2,000秒差距),直径达11光年(3.4秒差距),并以每秒约1,500公里的速度膨胀。它是银河系英仙臂的一部分。 该星云由约翰·贝维斯于1731年发现,它对应于中国、阿拉伯和日本天文学家於公元1054年记录的一次超新星爆发(编号SN 1054,中国称天关客星)。1969年天文学家发现星云的中心是一颗脉冲星,它的直径约28–30公里,每秒自转30.2次,并发射出从γ射线到无线电波的宽频率范围电磁波。它也是首顆被确认为历史上超新星爆发遗迹的天体。 蟹状星云的X射线和γ射线辐射能量超过30 keV,最高可达10 TeV,而且非常稳定,因此天文学家将蟹状星云看成是宇宙中最稳定的高能辐射源之一,并将其作为一种标准来测量宇宙其他輻射源的能量。此星云是一个很好的辐射源,通过其他天体的掩星可以研究它與其他的天體。20世纪50和60年代时,天文学家曾借助穿过日冕的蟹状星云辐射对太阳日冕进行密度和成分测定。2003年,土卫六阻挡了蟹状星云的X射线辐射,天文学家借此机会测量土卫六的大气层的厚度。.

新!!: 中子星和蟹狀星雲 · 查看更多 »

表面重力

天體或其他物體的表面重力(代表符號 g)是物體在其表面所受到的重力加速度。表面重力可以被認為是由假設性的非常接近天體表面,且不擾動系統和質量可忽略的試驗粒子受到重力影響時產生的加速度。 表面重力是以加速度的單位進行量測,国际单位制下表面重力單位是米每二次方秒。它也可使用地球表面標準重力 g.

新!!: 中子星和表面重力 · 查看更多 »

角动量

在物理学中,角动量是与物体的位置向量和动量相关的物理量。對於某慣性參考系的原點\mathbf,物體的角動量是物体的位置向量和动量的叉積,通常写做\mathbf。角动量是矢量。 其中,\mathbf表示物体的位置向量,\mathbf表示角动量。\mathbf表示动量。角動量\mathbf又可寫為: 其中,I表示杆状系统的转动惯量,\boldsymbol是角速度矢量。 假設作用於物體的外力矩和為零,則物體的角动量是守恒的。需要注意的是,由于成立的条件不同,角动量是否守恒与动量是否守恒没有直接的联系。 當物體的運動狀態(動量)發生變化,則表示物體受力作用,而作用力大小就等於動量\mathbf的時變率:\mathbf.

新!!: 中子星和角动量 · 查看更多 »

詹姆斯·查德威克

詹姆斯·查德威克爵士,CH,FRS(Sir James Chadwick,),英国物理学家,因於1932年发现中子而获1935年诺贝尔物理学奖。1941年,他为核武器报告的最後稿本执笔,这份报告促使美國政府開始积极进行核武器研究。第二次世界大戰期間,他担任曼哈頓計劃英國小組的組長。因對物理學的貢獻,他於1945年在英格蘭被冊封為爵士。.

新!!: 中子星和詹姆斯·查德威克 · 查看更多 »

诺贝尔物理学奖

| title.

新!!: 中子星和诺贝尔物理学奖 · 查看更多 »

質子

|magnetic_moment.

新!!: 中子星和質子 · 查看更多 »

费米子

在粒子物理學裏,费米子(fermion)是遵守费米-狄拉克统计的粒子。費米子包括所有夸克與輕子,任何由奇數個夸克或輕子組成的複合粒子,所有重子與很多種原子與原子核都是費米子。術語費米子是由保羅·狄拉克給出,紀念恩里科·費米在這領域所作的傑出貢獻。 費米子可以是基本粒子,例如電子,或者是複合粒子,例如質子、中子。根據相對論性量子場論的自旋統計定理,自旋為整數的粒子是玻色子,自旋為半整數的粒子是費米子。除了這自旋性質以外,費米子的重子數與輕子數守恆。因此,時常被引述的「自旋統計關係」實際是一種「自旋統計量子數關係」。 根據費米-狄拉克統計,對於N個全同費米子,假設將其中任意兩個費米子交換,則由於描述這量子系統的波函數具有反對稱性,波函數的正負號會改變。由於這特性,費米子遵守包利不相容原理:兩個全同費米子不能占有同樣的量子態。因此,物質具有有限體積與硬度。費米子被稱為物質的組成成分。質子、中子、電子是製成日常物質的關鍵元素。.

新!!: 中子星和费米子 · 查看更多 »

超子

超子是含有上夸克、下夸克、奇夸克,並且至少含有一個奇夸克的重子。超子的自旋是半奇數,而且都遵守費米-狄拉克統計,是費米子。它們都是通過強核力彼此之間相互作用,是一種強子。當超子弱衰變時宇稱不守恆。 最早關於超子的研究是開始於1950年代。這促成物理學者給出井然有序的粒子分類。當今,歐洲核子研究組織、費米國立加速器實驗室、史丹佛線性加速器中心、布魯克哈芬國家實驗室等都有在研究关於超子的論題,這包括CP破壞、自旋測量、激發態研究(一般指為光譜學)、尋找像五夸克或雙重子一類的奇特態。 超子的例子有:Δ、Λ、Σ、Ξ和Ω,他們鲜为人知,一般比核子重,而且寿命非常短。.

新!!: 中子星和超子 · 查看更多 »

超新星

超新星是某些恒星在演化接近末期时经历的一种剧烈爆炸。这种爆炸都极其明亮,过程中所突发的电磁辐射经常能够照亮其所在的整个星系,并可持续几周至几个月才会逐渐衰减变为不可见,而期间内一颗超新星所辐射的能量可以与太阳在其一生中辐射能量的总和相當。恒星通过爆炸会将其大部分甚至几乎所有物质以可高至十分之一光速的速度向外抛散,并向周围的星际物质辐射激波。这种激波会导致形成一个膨胀的气体和尘埃构成的壳状结构,这被称作超新星遗迹。超新星是星系引力波潛在的強大來源。初級宇宙射線有很大的比例來自超新星 。 超新星比新星更有活力。超新星的英文名稱為 supernova,nova在拉丁語中是“新”的意思,這表示它在天球上看上去是一顆新出現的亮星(其實原本即已存在,因亮度增加而被認為是新出現的);字首的super-是為了將超新星和一般的新星有所區分,也表示超新星具有更高的亮度。超新星這個名詞是沃爾特·巴德和弗裡茨·茲威基在1931年創造的。 超新星可以用兩種方式之一觸發:突然重新點燃核融合之火的簡併恆星,或是大質量恆星核心的重力塌陷。在第一種情況,一顆簡併的白矮星可以透過吸積從伴星那兒累積到足夠的質量,或是吸積或是合併,提高核心的溫度,點燃碳融合,並觸發失控的核融合,將恆星完全摧毀。在第二種情況,大質量恆星的核心可能遭受突然的引力坍縮,釋放重力位能,可以創建一次超新星爆炸。 最近一次觀測到銀河系的超新星是1604年的克卜勒之星(SN 1604);回顧性的分析已經發現兩個更新的殘骸 。對其它星系的觀測表明,在銀河系平均每世紀會出現三顆超新星,而且以現在的天文觀測設備,這些銀河超新星幾乎肯定會被觀測到 。它們作用的角色豐富了星際物質與高質量的化學元素。此外,來自超新星向外膨脹的激波可以觸發新恆星的形成。.

新!!: 中子星和超新星 · 查看更多 »

超新星遗迹

超新星遗迹(Supernova remnant,缩写为SNR)是超新星爆发时抛出的物质在向外膨胀的过程中与星际介质相互作用而形成的延展天体,形状有云状、壳状等,差异很大。截至2006年,已经在银河系中发现了200余个超新星遗迹,在大麦云、小麦云、M31、M33 等邻近的河外星系中也有发现。.

新!!: 中子星和超新星遗迹 · 查看更多 »

黑洞

黑洞(英文:black hole)是根據廣義相對論所推論、在宇宙空間中存在的一種質量相當大的天體和星體(並非是一般認知的「洞」概念)。黑洞是由質量足够大的恒星在核聚变反应的燃料耗盡後,發生引力坍缩而形成。黑洞的質量是如此之大,它产生的引力场是如此之强,以致于大量可測物质和辐射都无法逃逸,就連传播速度極快的光子也逃逸不出來。由于类似热力学上完全不反射光线的黑体,故名黑洞。在黑洞的周圍,是一個無法偵測的事件視界,標誌著無法返回的臨界點,而在黑洞中心有一個密度趨近於無限的奇異點。 當恆星內部氫元素全部核融合完畢時,因燃料用完無法抵抗自身重力而開始向內塌陷,但隨著壓力越來越高,內部的重元素會重新開始燃燒導致瞬間膨脹,這時恆星的體積將暴增至原先的數十倍至百倍,這便是紅巨星,質量更大的恆星則會發生超新星爆炸,無論是紅巨星或是超新星,都會將外部物質全部吹飛,直到連重元素也燒完時,重力又會使得恆星繼續向內塌陷,最後形成一顆與月球差不多大小的白矮星,質量稍大的恆星則會形成中子星,會放出規律的電磁波,至於質量更大的恆星則會繼續塌陷,強大的重力使周圍的空間產生扭曲,最後形成一個密度每立方公分約一億噸的天體:「黑洞」。直至目前為止,所發現質量最小的黑洞大約有3.8倍太陽質量。 黑洞無法直接觀測,但可以藉由間接方式得知其存在與質量,並且觀測到它對其他事物的影響。藉由物體被吸入之前因高熱而放出紫外線和X射線的「邊緣訊息」,可以獲取黑洞的存在的訊息。推測出黑洞的存在也可藉由間接觀測恆星或星際雲氣團繞行黑洞軌跡,來取得位置以及質量。 黑洞是天文物理史上,最引人注目的題材之一,在科幻小說、電影甚至報章媒體經常可見將黑洞作為素材。迄今,黑洞的存在已得到天文學界和物理學界的绝大多數研究者所認同,並且天文界不時提出於宇宙中觀測到已存在的黑洞。 根據英國物理學者史蒂芬·霍金於2014年1月26日的論據:愛因斯坦的重力方程式的兩種奇點的解,分別是黑洞跟白洞。不過理論上黑洞應該是一種「有進沒出」的天體,而白洞則只能出而不能進。然而黑洞卻有粒子的輻射,所以不再適合稱其名為黑洞,而應該改其名為「灰洞」,先前認為黑洞可以毀滅資訊情報的看法,是他「最大的失誤」。.

新!!: 中子星和黑洞 · 查看更多 »

轉動慣量

在经典力學中,轉動慣量又稱慣性矩(Moment of inertia),通常以I表示,國際單位制為·。轉動慣量是一個物體對於其旋轉運動的慣性大小的量度。一個剛體對於某轉軸的轉動慣量決定了對於這物體繞著這轉軸進行某種角加速度運動所需要施加的力矩。轉動慣量在转动動力學中的角色相當於線性動力學中的質量,描述角動量、角速度、力矩和角加速度等數個量之間的關係。.

新!!: 中子星和轉動慣量 · 查看更多 »

錢德拉塞卡極限

錢德拉塞卡極限(Chandrasekhar Limit),以印度裔美籍天文物理學家蘇布拉馬尼揚·錢德拉塞卡命名,是無自轉恆星以電子簡併壓力阻擋重力塌縮所能承受的最大質量,這個值大約是1.4倍太陽質量 ,計算的結果會依據原子核的結構和溫度而有些差異, F. X. Timmes, S. E. Woosley, and Thomas A. Weaver, Astrophysical Journal 457 (February 1, 1996), pp.

新!!: 中子星和錢德拉塞卡極限 · 查看更多 »

船帆座

船帆座(Vela),于十八世纪由南船座拆分得来。南船座原是南天星座之一,后被拆分为四个单独的星座,分别是船帆座、船底座、船尾座和罗盘座。.

新!!: 中子星和船帆座 · 查看更多 »

钱德拉X射线天文台

钱德拉X射线天文台(Chandra X-ray Observatory,缩写为CXO),是美国宇航局(NASA)于1999年发射的一颗X射线天文卫星,以美国籍印度物理学家苏布拉马尼扬·钱德拉塞卡命名,為大型轨道天文台计划的第三颗卫星,目的是观测天体的X射线辐射。其特点是兼具极高的空间分辨率和谱分辨率,被认为是X射线天文学上具有里程碑意义的空间望远镜,标志着X射线天文学从测光时代进入了光谱时代。.

新!!: 中子星和钱德拉X射线天文台 · 查看更多 »

脉冲星

脉冲星(Pulsar)是中子星的一種,為會週期性發射脈衝訊號的星體。.

新!!: 中子星和脉冲星 · 查看更多 »

致密星

致密星是白矮星、中子星、奇特星、黑洞等一类致密天体的总称,它们与正常星的主要区别是不再有核燃料进行聚变反应,热压力不足以与自身的引力保持平衡,因而塌缩成尺度非常小、密度非常大的天体。致密星通常是恒星演化末期的终结形态,恒星演化为何种致密星主要取决于恒星的质量。一般来說,质量在1倍至6倍太阳质量的恒星最终演化成白矮星,并伴随有质量损失,其外壳向外抛出,形成行星状星云。质量为3至8倍太阳质量的恒星演化成中子星,更大质量的恒星则坍缩成黑洞。.

新!!: 中子星和致密星 · 查看更多 »

里卡尔多·贾科尼

里卡尔多·贾科尼(Riccardo Giacconi,),约翰霍普金斯大学教授,意大利裔美国天文学家,因在X射线天文学方面的先驱性贡献而获得2002年的诺贝尔物理学奖。.

新!!: 中子星和里卡尔多·贾科尼 · 查看更多 »

苏联

苏维埃社会主义共和国联盟( ),简称苏联(),是一個存在於1922年至1991年的聯邦制社會主義國家,也是當時世界上土地面積最大的國家,佔有東歐的大部分,以及幾乎整個中亞和北亞;陸地與挪威、芬蘭、波蘭、捷克斯洛伐克、匈牙利、羅馬尼亞、土耳其、伊朗、阿富汗、中国、蒙古及朝鮮接壤;而與瑞典、日本、美國及加拿大隔海相望。 蘇聯起源自1917年的俄國革命,俄羅斯帝國的沙皇政府被推翻後,臨時政府成立,但僅執政了不到8個月,布爾什維克便很快從臨時政府手中奪取政權並於選舉後武力解散俄國立憲會議,史稱十月革命及一月劇變;之後俄國發生內戰,布尔什维克党領導的紅軍擊敗了白軍以及協約國的武裝干涉。1922年12月,俄羅斯、白俄羅斯、烏克蘭和外高加索等蘇維埃社會主義共和國合併,成立首個以社會主義為理念的國家——蘇聯。 第一任蘇聯領導人弗拉基米尔·列宁於1924年去世後,约瑟夫·斯大林從一連串的權力鬥爭中勝出,取得了領導權。斯大林以計劃經濟作保障,在歐美經濟危機期間推行驚人的大規模重工業化,但也進行多次大清洗,導致逾百萬人在政治鬥爭中被整肅或被殺。第二次世界大戰中,蘇聯先是与纳粹德国结盟,於1939年和德國共同瓜分了波蘭、将波罗的海国家纳入版图、割占罗马尼亚领土,将流亡苏联的德国政治难民交还纳粹判決。不過很快兩者關係破裂,1941年6月22日,苏联遭到德國等軸心國入侵,歷經了4年激烈的戰事後取得了勝利,與美國一同成為當時世界上最強大的兩個國家,被稱為超級大國,同時因出兵击退入侵德军,并得以控制了東歐大部分國家。 蘇聯而後與衛星國組成的華沙条約組織(華約),與以美國為首的北大西洋公約組織(北約)對峙,這兩大軍事集團在冷戰時期於全世界展開意識形態的對立和政治鬥爭,但在1980年代初期,石油以及初級資源價格回落,此時的蘇聯大力施行福利國家政策,致经济增长速度变慢,加上政治欠乏改革,基本的人民自由也陷入壓抑,苏联的国力已经落后于美国。 在1980年代末,蘇聯領導人米哈伊爾·戈爾巴喬夫試圖進行改革政策,將國家自由化和民主化,放寬對東歐等其他衛星國的控制,却导致蘇聯在1991年解體,在政治斗争中获胜的葉爾欽所領導的俄羅斯聯邦繼承了蘇聯主要的軍事、經濟和國際地位,但人口損失近半的情況下,蘇聯建立的紅色秩序已經不復存在。 儘管苏联宪法規範苏联是一個联邦制国家,由15个平等权利的苏维埃社会主义共和国(加盟共和国)按照自愿联合的原则组成,但其联邦特性不高,因為中央政府權力高度集中,並奉行世界上第一個完全的社會主義制度及計劃經濟政策,由蘇聯共產黨一黨執政。在1945年苏联16个加盟共和国中应有2个(乌克兰、白俄罗斯)应作为联合国创始会员国,因为苏联是联邦制国家,所以苏联在联合国历史上是唯一一个“一国三票”的主权国家。.

新!!: 中子星和苏联 · 查看更多 »

英国

大不列颠及北爱尔兰联合王国(United Kingdom of Great Britain and Northern Ireland),简称联合王国(United Kingdom,缩写作 UK)或不列颠(Britain),中文通称英国(中文世界早期亦称英联王国),是本土位於西歐並具有海外領地的主權國家,英國為世界七大國之一,位于欧洲大陆西北面,由大不列颠岛、爱尔兰岛东北部分及一系列较小岛屿共同组成。英国和另一国家唯一的陆上国境线位于北爱尔兰,和爱尔兰共和国相邻。英国由大西洋所环绕,东为北海,南为英吉利海峡,西南偏南为凯尔特海,同爱尔兰隔爱尔兰海相望。该国总面积达,为世界面积第80大的主权国家及欧洲面积第11大的主权国家,人口6510万,为全球第21名及歐洲第3名。 英国为君主立宪国家,采用议会制进行管辖。其首都伦敦为全球城市A++级别和国际金融中心,大都会区人口达1380万,为欧洲第三大和欧盟第一大。现在位英国君主为女王伊丽莎白二世,1952年2月6日即位。英国由四个构成国组成,分别为英格兰、苏格兰、威尔士和北爱尔兰,其中后三者在权力下放体系之下各自拥有一定的权力。三地首府分别为爱丁堡、加的夫和贝尔法斯特。附近的马恩岛、根西行政区及泽西行政区并非联合王国的一部分,而为王冠属地,英国政府负责其国防及外交事务。 英国的构成国之间的关系在历史上经历了一系列的发展。英格兰王国通过1535年和1542年的《联合法令》将威尔士纳入其领土范围。1707年的条约使英格兰和苏格兰王国联合成为大不列颠王国,而1801年后者则进一步同爱尔兰王国联合成为大不列颠及爱尔兰联合王国。1922年,爱尔兰的六分之五脱离联邦,由此便有了今日的大不列颠及北爱尔兰联合王国。大不列颠及北爱尔兰联合王国亦有14块海外领地,为往日帝国的遗留部分。大英帝国在1921年达到其巅峰,拥有全球22%的领土,是有史以来面积最大的帝国。英国在语言、文化和法律体系上对其前殖民地保留了一定的影响力,因而吸引許多以前英聯邦的移民前來居住。 英国为发达国家,以名义GDP为量度为世界第五大经济体,以购买力平价为量度为世界第九大经济体。英国同时还是世界首个工业化国家,在1815年-1914年为世界第一强国,现今仍是強國之一,在全球范围内的经济、文化、军事、科技和政治上有显著影响力。英国为国际公认的有核国家,其军事开支位列全球第五 (IISS)。自1946年以来,英国即为联合国安全理事会常任理事国,而自1973年以来即为欧洲联盟(EU)及其前身欧洲经济共同体(EEC)的成员国,同时还为英联邦、欧洲委员会、七国财长峰会、七国集团、二十国集团、北大西洋公约组织、经济合作与发展组织和世界贸易组织成员国。2016年英國脫離歐盟公投中,英国民众决定脱离欧盟,但因間接影響全球經濟,所以並未得到多數國家支持。.

新!!: 中子星和英国 · 查看更多 »

速度

速度(Vēlōcitās,Vitesse,Velocità,Geschwindigkeit,Velocity)是描述物体运动快慢和方向的物理量。物体在一段时间\Delta t内的平均速度\bar是它在这段时间里的位移\Delta \boldsymbol和时间间隔之比: 物体在某一时刻的瞬时速度\boldsymbol则是定義為位置矢量\boldsymbol 隨時間t的變化率: 物理学中提到物体的速度通常是指其瞬时速度。速度在国际单位制中的单位是米每秒,国际符号是m/s,中文符号是米/秒。相对论框架中,物体的速度上限是光速。 日常生活中,速度和速率幾乎是同義的。然而在物理學中,速度和速率是两个不同的概念。速度是矢量,具有大小和方向;速率則純粹指物體運動的快慢,是标量,没有方向。举例来说,假如一辆汽车以60公里每小时的速率朝正北方行驶,那么它的速度是一个大小等于60公里每小时、方向指向正北的矢量。物体的瞬时速率等于瞬时速度的大小,而平均速率则不一定等于平均速度的大小。.

新!!: 中子星和速度 · 查看更多 »

LGM-1

#重定向 PSR B1919+21.

新!!: 中子星和LGM-1 · 查看更多 »

PSR B1257+12

PSR 1257+12(PSR B1257+12)是一顆位於室女座的脈衝星,距離地球大約980光年。這顆恆星受到注意的地方,在於人們相信它擁有四顆行星,同時它們也是首批被發現的太陽系外行星。 這顆脈衝星最先於1990年由波蘭天文學家亞歷山大·沃爾茲森(Aleksander Wolszczan),於1990年以位於波多黎各阿雷西博的射電望遠鏡發現的。它屬於毫秒脈衝星,為中子星的一種,自轉週期為6.22毫秒,但他卻發現其脈衝信號出現不尋常,遂對它作更深入的觀測。.

新!!: 中子星和PSR B1257+12 · 查看更多 »

PSR B1509-58

PSR B1509-58是一顆脈衝星,位在圓規座,1982年由愛因斯坦衛星發現,距離地球大約17,000光年遠。它的年齡約1,700歲,附近的星雲橫跨約150光年。 NASA描述這顆脈衝星類似「一隻宇宙之手」。.

新!!: 中子星和PSR B1509-58 · 查看更多 »

PSR J0348+0432

PSR J0348+0432是一個位於金牛座的中子星和白矮星組成的聯星系。該聯星系由綠堤望遠鏡於2007年的飄移掃描巡天中發現。 2011年天文學家宣布該系統中子星的質量是2.01 \pm 0.04 M_\odot,是發現至今質量最高的中子星。它的質量是結合電波計時和白矮星伴星的光譜精確量測而得知的。這個質量是稍高的值,但和使用引力时间延迟效应得知質量的PSR J1614-2230相比較之下,兩者在統計上並沒有明顯區別。這項量測確認使用不同方式可以確認大質量中子星的存在。 這個脈衝星聯星系統的顯著特徵就是高質量中子星和只有2小時27分的短周期。這允許科學家可以量測因為軌道衰減產生的重力波,類似的狀況還有PSR B1913+16和PSR J0737-3039。.

新!!: 中子星和PSR J0348+0432 · 查看更多 »

SETI

SETI可以指:.

新!!: 中子星和SETI · 查看更多 »

SN 1054

天關客星(編號:SN 1054),是1054年金牛座內爆發的一顆超新星,古代中國和阿拉伯的天文學家在史書中對這顆星留下了詳細的記錄。因該星星突然出現在天關星(金牛座ζ)附近,故名天關客星。 《宋史‧天文志》中載: 至和元年五月己丑也就是1054年7月4日。 《宋史‧仁宗本紀》中載: 《續資治通鑒長編》卷一七六中載: 《宋會要》卷五十二中記載: 根據中國史籍中的記錄可以推斷,這顆超新星在23天的時間內白天都可以見到,在夜晚可見的時間則持續了一年十個月。據研究,這顆星可能是Ⅱ型超新星。天關客星爆炸後的遺骸形成了蟹狀星雲,在1774年收錄在梅西耶天體列表中成為第1號天體(蟹狀星雲M1,NGC 1952)。 在人类有文字记载的历史上,观测到银河系内的超新星爆发的机会非常少。除了蟹状星云以外,还有被第谷和他的学生开普勒观测到的第谷超新星与开普勒超新星。据天文学家推算,银河系内的超新星爆发平均20-50年出现一次。但是大都发生在银核内部,或者在银盘的另一半完全被银核遮挡。蟹状星云的超新星爆发,恰巧发生在银河系内与太阳同一侧银盘上但是比太阳系更远离银核的外侧。这样的部位发生超新星爆发,从地球上观测完全没有遮挡,但是这样机会就极为罕见。 20世纪早期,对早期间隔数年的星雲照片进行分析表明,它正在不断膨胀。根据其膨胀速度反推可得,该星云在地球上开始可见的时间至少在900年以前。而中国天文学家1054年的记录过在天空的相同区域产生过一颗亮星,甚至白天都可观测到。由于距离十分遥远,当时中国人观测到的白天的“客星”只可能是超新星。这是一种核聚变已耗尽能量并自行坍缩,从而发生爆炸的巨大恒星。 近期对历史记载的分析表明,产生蟹状星云的超新星爆发时间为4月或5月上旬,到了7月最亮时视星等升至−7到−4.5之间(比夜空中除了月球以外的任何天体都亮)。该超新星在首次发现大约两年之内都可用肉眼看到。归功于东亚地区和中东地区天文学家1054年记录的观测,蟹状星云成为第一个被确认与超新星爆发有关的天体。.

新!!: 中子星和SN 1054 · 查看更多 »

X射线联星

X射线聯星是一类发出明亮X射线辐射的聯星,聯星系统中有一颗为致密星,通常为中子星或黑洞。它们的典型光度在1036-1038尔格/秒之间,比太阳全波段的光度高3到5个数量级。X射线聯星在靠近银心和银盘的方向分布比较集中,在球状星团中也有分布。.

新!!: 中子星和X射线联星 · 查看更多 »

恆星演化

恆星演化是恆星在生命過程中所經歷急遽變化的序列。恆星依據質量,一生的範圍從質量最大的恆星只有幾百萬年,到質量最小的恆星比宇宙年齡還要長的數兆年。右方的表顯示質量和恆星壽命的關聯性。所有的恆星都從通常被稱為星雲或分子雲的氣體和塵埃坍縮中誕生。在幾百萬年的過程中,原恆星達到平衡的狀態,安頓下來成為所謂的主序星。 恆星大部分的生命期都在以核融合產生能量的狀態。最初,主序星在核心將氫融合成氦來產生能量,然後,氦原子核在核心中佔了優勢。像太陽這樣的恆星會從核心開始以一層一層的球殼將氫融合成氦。這個過程會使恆星的大小逐漸增加,通過次巨星的階段,直到達到紅巨星的狀態。質量不少於太陽一半的恆星也可以經由將核心的氢融合成氦來產生能量,質量更重的恆星可以依序以同心圓產生質量更重的元素。像太陽這樣的恆星用盡了核心的燃料之後,其核心會塌縮成為緻密的白矮星,並且外層會被驅離成為行星狀星雲。質量大約是太陽的10倍或更重的恆星,在它缺乏活力的鐵核塌縮成為密度非常高的中子星或黑洞時會爆炸成為超新星。雖然宇宙的年齡還不足以讓質量最低的紅矮星演化到它們生命的尾端,恆星模型認為它們在耗盡核心的氫燃料前會逐漸變亮和變熱,然後成為低質量的白矮星The End of the Main Sequence, Gregory Laughlin, Peter Bodenheimer, and Fred C. Adams, The Astrophysical Journal, 482 (June 10, 1997), pp.

新!!: 中子星和恆星演化 · 查看更多 »

核聚变

--,是将两个较轻的核结合而形成一个较重的核和一个很轻的核(或粒子)的一种核反应形式。在此过程中,物质没有守恒,因为有一部分正在聚变的原子核的物质被转化为光子(能量)。核聚变是给活跃的或“主序的”恆星提供能量的过程。 两个较轻的核在融合过程中产生质量亏损而释放出巨大的能量,两个轻核在发生聚变时因它们都带正电荷而彼此排斥,然而两个能量足够高的核迎面相遇,它们就能相当紧密地聚集在一起,以致核力能够克服库仑斥力而发生核反应,这个反应叫做核聚变。 舉個例子:两个質量小的原子,比方說兩個氚,在一定条件下(如超高温和高压),會发生原子核互相聚合作用,生成中子和氦-4,并伴随着巨大的能量释放。 原子核中蕴藏巨大的能量。根据质能方程E.

新!!: 中子星和核聚变 · 查看更多 »

歐本海默極限

奥本海默極限(TOV极限,也叫奥本海默-沃尔科夫极限)即是中子星的质量上限,类似于白矮星质量上限的钱德拉塞卡极限。罗伯特·奥本海默和乔治·沃尔科夫得到的中子星质量上限约为0.7倍太阳质量,这在今天看来应该是错误的,当今的结果在1.5至3倍太阳质量之间。对于质量小于此极限的中子星,支持星体的内部压力来自中子与中子之间的强相互作用以及中子本身的量子简并压力;而对于质量大于此极限的中子星会在自身引力的作用下崩溃,从而坍缩为一个黑洞,理论上在其他途径的内部压力支持下还可能成为其他形式的星体(例如在夸克简并压力的支持下坍缩为夸克星)。但由于对这些理论上的夸克简并物质了解相对中子简并物质更少,一般天体物理学家相信,除非有实际观测的反例证实,中子星在超过这一极限时都会直接坍缩为黑洞。 一个由恒星坍缩成的黑洞必须具有大于托尔曼-奥本海默-沃尔科夫极限的质量。理论预言由于恒星演化中的质量损失,一个具有太阳那样金属量的孤立恒星坍缩而成的黑洞应该具有不超过10倍左右的太阳质量, S. E. Woosley, A. Heger, and T. A. Weaver, Reviews of Modern Physics 74, #4 (October 2002), pp.

新!!: 中子星和歐本海默極限 · 查看更多 »

毫秒脈衝星

毫秒脈衝星(MSP),曾經被稱為"反覆脈衝星",是自轉週期在1-10毫秒範圍內的脈衝星,他目前僅能在微波或X射線的電磁波頻譜的波段上被觀察到。 毫秒脈衝星的起源依然有些神秘,主導的理論認為它們原本是週期較長的脈衝星,經由吸積的延長或回覆。基於這個理由,低質量X射線雙星系特別受到關注,它們被認為是正在回覆過程中的脈衝星。 像這一類散發出X射線的脈衝星被認為是正在被加速的階段,活躍性正在增加中。它們可能是正在吸收由伴星的洛希瓣溢出的角動量,使自轉的速度增加至每秒鐘數百轉,而被加速的中子星。已經被加速了的毫秒脈衝星,散發出的電磁波頻譜是在長波長的部分。 許多毫秒脈衝星是在球狀星團內被發現的,因為在這些系統內極端高的恆星密度有利於創造能引起雙星之間質量交換的環境,讓自轉的中子星經由交互作用提高週期成為毫秒脈衝星。目前在球狀星團內發現的毫秒脈衝星大約有130顆,單單在Terzan 5中就有33顆,然後是杜鵑座47有22顆,M28和M15各有8顆。.

新!!: 中子星和毫秒脈衝星 · 查看更多 »

沃尔特·巴德

威廉·海因里希·沃尔特·巴德(Wilhelm Heinrich Walter Baade,),德国天文学家,在美国度过了大部分科研生涯。巴德提出了两类星族的概念,正确区分了两类造父变星,并对宇宙距离的尺度做出了重要的修正。.

新!!: 中子星和沃尔特·巴德 · 查看更多 »

沙皇炸彈

AN602(АН602),别称“沙皇炸彈”(Царь-бомба),是冷战期间蘇聯所製造的氫彈,總共製造兩枚,其中一枚於1961年10月30日在新地島試爆,另一枚作為研究與備用。它是人類至今所引爆過所有種類的炸彈中,體積、重量和威力上均为最強大的炸彈。它又被称为“库兹卡的妈妈”(Кузькина мать),这是一句俄国谚语,粗略翻译为“我们要你好看!”可能与苏联共产党中央委员会第一书记尼基塔·赫鲁晓夫在1960年的联合国大会会议上,承诺给美国看看“库兹卡的妈妈”有关。 它的爆炸當量本來相當於一億噸的TNT炸藥,不過蘇聯當局憂心試爆後的核子落塵对環境的嚴重影响,會導致內政难题與外交风波,因此將核彈減半為5000萬噸的爆炸威力。儘管被削减了一半的威力,沙皇炸彈的威力依舊是第二次世界大战末期投擲於廣島和長崎的「小男孩」原子彈的3800倍,「胖子」原子彈的2300倍。雖然蘇聯成功完成試爆,沙皇炸彈仍然從未列入現役武器,蘇聯軍方僅想要将沙皇炸彈作為蘇聯在軍力上的象徵與展示。 “沙皇”一词惯用于描述俄罗斯的巨型事物,如沙皇鐘、沙皇炮等。AN602拥有诸多别称,例如RDS-220(РДС-220)、RDS-202(РДС-202)、RN202、PH202、AH602、大伊凡、大伊万等,其中情局代号为“JOE 111”。Central Intelligence Agency, National Intelligence Estimate 11-2A-62,, (16 May 1962), pages 2 and 13.

新!!: 中子星和沙皇炸彈 · 查看更多 »

波爾

波爾、玻尔或玻耳等可以指:.

新!!: 中子星和波爾 · 查看更多 »

星系

星系(galaxy),或譯為銀河,源自於希臘语的「γαλαξίας」(galaxias)。廣義上星系指無數的恆星系(當然包括恆星的自體)、塵埃(如星雲)組成的運行系統。參考我們的銀河系,是一個包含恆星、星團、星雲、氣體的星際物質、宇宙塵和暗物質,並且受到重力束縛的大質量系統,通常距離都在幾百萬光年以上。星系平均有數百億顆恆星,是構成宇宙的基本單位。。典型的星系,從只有數千萬(107)顆恆星的矮星系到上兆(1012)顆恆星的橢圓星系都有,全都環繞著質量中心運轉。除了單獨的恆星和稀薄的星際物質之外,大部分的星系都有數量龐大的多星系統、星團以及各種不同的星雲。 歷史上,星系是依據它們的形状分類的(通常指它們視覺上的形狀)。最普通的是橢圓星系,有橢圓形狀的明亮外觀;螺旋星系是圓盤的形狀,加上彎曲的塵埃旋渦臂;形狀不規則或異常的,通常都是受到鄰近其他星系影響的結果。鄰近星系間的交互作用,也許會導致星系的合併,或是造成恆星大量的產生,成為所謂的星爆星系。缺乏有條理結構的小星系則會被稱為不規則星系。 在可以看見的可觀測宇宙中,星系的總數可能超過一千億(1011)個以上。大部分的星系直徑介於1,000至100,000秒差距,彼此間相距的距離則是百萬秒差距的數量級。星系際空間(存在於星系之間的空間)充滿了極稀薄的電漿,平均密度小於每立方公尺一個原子。多數的星系會組織成更大的集團,成為星系群或團,它們又會聚集成更大的超星系團。這些更大的集團通常被稱為薄片或纖維,圍繞在宇宙中巨大的空洞週圍。 雖然我們對暗物質的了解很少,但在大部分的星系中它都佔有大約90%的質量。觀測的資料顯示超大質量黑洞存在於星系的核心,即使不是全部,也佔了絕大多數,它們被認為是造成一些星系有著活躍的核心的主因。銀河系,我們的地球和太陽系所在的星系,看起來在核心中至少也隱藏著一個這樣的物體。.

新!!: 中子星和星系 · 查看更多 »

重定向到这里:

Neutron star

传出传入
嘿!我们在Facebook上吧! »