徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

空间望远镜

指数 空间望远镜

因為地球的大氣層對許多波段的天文觀測影響甚大,天文學家便設想若能將望遠鏡移到太空中,便可以不受大氣層的干擾得到更精確的天文資料。目前已有不少空间望遠鏡在太空中運行,例如:觀測可見光波段的哈勃空间望远镜,觀測紅外波段的史匹哲太空望遠鏡,觀測X光波段的錢卓太空望遠鏡,觀察γ射線波段的康普頓天文台(已於2000年退役)以及觀測暗物质的暗物质--粒子探测卫星等。.

25 关系: 史匹哲太空望遠鏡天文台天文學太陽極大期任務衛星外层空间宇宙背景探測者康普顿伽玛射线天文台地球哈勃空间望远镜光污染紅外線天文衛星紅外線太空天文台电磁辐射行星詹姆斯·韦伯太空望远镜軌道天文台赫雪爾太空望遠鏡钱德拉X射线天文台SPICAX射线天文学XMM-牛顿卫星暗物质暗物质粒子探测卫星星系普朗克卫星

史匹哲太空望遠鏡

斯皮策空间望远镜(Spitzer Space Telescope,缩写为SST),是美國國家航空暨太空總署2003年发射的一颗红外天文卫星,是大型轨道天文台计划的最后一台空间望远镜。.

新!!: 空间望远镜和史匹哲太空望遠鏡 · 查看更多 »

天文台

天文臺又称观象台,是指研究和觀測天文現象的機構。天文臺觀測天文現象時,為了能更加精確地作出觀測結果,天文臺的觀測站都會建於山上,因為地面上的城市燈光過亮,會影響天文望遠鏡觀測的準確性。.

新!!: 空间望远镜和天文台 · 查看更多 »

天文學

天文學是一門自然科學,它運用數學、物理和化學等方法來解釋宇宙間的天體,包括行星、衛星、彗星、恆星、星系等等,以及各種現象,如超新星爆炸、伽瑪射線暴、宇宙微波背景輻射等等。廣義地來說,任何源自地球大氣層以外的現象都屬於天文學的研究範圍。物理宇宙學與天文學密切相關,但它把宇宙視為一個整體來研究。 天文學有著遠古的歷史。自有文字記載起,巴比倫、古希臘、印度、古埃及、努比亞、伊朗、中國、瑪雅以及許多古代美洲文明就有對夜空做詳盡的觀測記錄。天文學在歷史上還涉及到天體測量學、天文航海、觀測天文學和曆法的制訂,今天則一般與天體物理學同義。 到了20世紀,天文學逐漸分為觀測天文學與理論天文學兩個分支。觀測天文學以取得天體的觀測數據為主,再以基本物理原理加以分析;理論天文學則開發用於分析天體現象的電腦模型和分析模型。兩者相輔相成,理論可解釋觀測結果,觀測結果可證實理論。 與不少現代科學範疇不同的是,天文學仍舊有比較活躍的業餘社群。業餘天文學家對天文學的發展有著重要的作用,特別是在發現和觀察彗星等短暫的天文現象上。 http://www.sydneyobservatory.com.au/ Official Web Site of the Sydney Observatory Astronomy (from the Greek ἀστρονομία from ἄστρον astron, "star" and -νομία -nomia from νόμος nomos, "law" or "culture") means "law of the stars" (or "culture of the stars" depending on the translation).

新!!: 空间望远镜和天文學 · 查看更多 »

太陽極大期任務衛星

太陽極大期任務衛星是1980年2月14日發射,用於研究太陽現像,特別是太阳耀斑的衛星。 值得注意的是,為了延長這顆衛星的工作時期,挑戰者號太空梭曾經在1984年將它回收置入貨艙中進行維修,然後再放回軌道上。這顆衛星的錨鉤在設計時就符合太空梭的機械臂夾具,所以能夠回收進行維修。 出人意料的是,攜帶的主動空腔輻射顯示器(Active Cavity Radiometer Irradiance Monitor,縮寫為ACRIM)發現在太陽黑子最活耀的時期,太陽的光度是增亮而非預期的變暗。因為在太陽黑子週圍產生的光斑增加的亮度超過黑子所抵銷掉的。 太陽極大期任務衛星在1989年12月2日重返大氣層,並如預期的燒毀而結束任務。.

新!!: 空间望远镜和太陽極大期任務衛星 · 查看更多 »

外层空间

-- --(outer space),於中國大陸稱外層空間,指的是地球大氣層及其他天體之外的虛空區域。 與真空有所不同的是,外太空含有密度很低的物質,以等離子態的氫為主。其中還有電磁輻射、磁場等。理論上,外層空間可能還包含暗物質和暗能量。 外太空與地球大气层並沒有明確的界線,因為大氣隨著海拔增加而逐漸變薄。假設大氣層温度固定,大氣壓會由海平面的大約1013毫巴,隨著高度增加而呈指數化減少至零為止。 国际航空联合会定義在100公里的高度為卡門線,為現行大氣層和太空的界線定義。美國認定到達海拔80公里的人為太空人,在太空船重返地球的過程中,120公里是空氣阻力開始發生作用的界線。.

新!!: 空间望远镜和外层空间 · 查看更多 »

宇宙背景探測者

宇宙背景探測者(COBE),也稱為探險家66號 ,是建造來探索宇宙論的第一顆衛星。他的目的是調查宇宙間的宇宙微波背景輻射(CMB),而測量和提供的結果將可以協助提供我們了解宇宙的形狀,這工作也將可以鞏固宇宙的大霹靂理論。根據諾貝爾獎委員會的看法:「宇宙背景探測的計畫可以視為宇宙論成為精密科學的起點。」 這個計劃的兩位主要研究員,乔治·斯穆特和约翰·马瑟在2006年獲得諾貝爾物理獎。.

新!!: 空间望远镜和宇宙背景探測者 · 查看更多 »

康普顿伽玛射线天文台

康普顿伽玛射线天文台(Compton Gamma Ray Observatory,缩写为CGRO)是美国宇航局于1991年发射的一颗伽玛射线天文卫星,是大型轨道天文台计划的第二颗卫星。它以在伽玛射线领域做出重要贡献的美国物理学家康普顿的名字命名,目的是观测天体的伽玛射线辐射。 康普顿伽玛射线天文台于1991年4月5日由亚特兰蒂斯号航天飞机搭载升空,运行在450公里高的近地轨道上,为的是避免范艾伦辐射带的影响。 康普顿伽玛射线天文台重约17吨,其中天文仪器重约7吨,在当时是用航天飞机发射的最重的民用航天器。卫星上搭载的主要观测仪器有:.

新!!: 空间望远镜和康普顿伽玛射线天文台 · 查看更多 »

地球

地球是太阳系中由內及外的第三顆行星,距离太阳约1.5亿公里。地球是人類已知宇宙中唯一存在生命的天体,也是人類居住的星球,共有74.9億人口。地球质量约为5.97×1024公斤,半径约6,371公里,密度是太阳系中最高。地球同时进行自转和公转运动,分别产生了昼夜及四季的变化更替,一太陽日自转一周,一太陽年公转一周。自转轨道面称为赤道面,公转轨道面称为黄道面,两者之间的夹角称为黄赤交角。地球仅擁有一顆自然卫星,即月球。 地球表面有71%的面积被水覆盖,称为海洋或可以成为湖或河流,其余是陆地板块組成的大洲和岛屿,表面分布河流和湖泊等水源。南极的冰盖及北极存有冰。主體包括岩石圈、地幔、熔融态金属的外地核以及固态金属的內地核。擁有由外地核產生的地磁场。外部被氣體包圍,称为大氣層,主要成分為氮、氧、氬。 地球诞生于约45.4亿年前,42億年前開始形成海洋。并在35亿年前的海洋中出现生命,之后逐步涉足地表和大气,并分化为好氧生物和厌氧生物。早期生命迹象产生的具體证据包括格陵兰岛西南部中拥有约37亿年的历史的石墨,以及澳大利亚大陆西部岩石中约41亿年前的 Early edition, published online before print.。此后除去数次生物集群灭绝事件,生物种类不断增多。根据学界测定,地球曾存在过的50亿种物种中,已经绝灭者占约99%,据统计,现今存活的物种大约有1,200至1,400万个,其中有记录证实存活的物种120万个,而余下的86%尚未被正式发现。2016年5月,有科学家认为现今地球上大概共出现过1--种物种,其中人类正式发现的仅占十万分之一。2016年7月,科学家称现存的生物共祖中共存在有355种基因。地球上有约74亿人口,分成了约200个国家和地区,藉由外交、旅游、贸易、传媒或战争相互联系。.

新!!: 空间望远镜和地球 · 查看更多 »

哈勃空间望远镜

哈勃太空望遠鏡(Hubble Space Telescope,HST),是以天文學家愛德溫·哈伯為名,在地球軌道的望遠鏡。哈勃望远镜接收地面控制中心(美国马里兰州的霍普金斯大学内)的指令并将各种观测数据通过无线电传输回地球。由于它位于地球大氣層之上,因此獲得了地基望遠鏡所沒有的好處:影像不受大氣湍流的擾動、視相度絕佳,且无大氣散射造成的背景光,還能觀測會被臭氧層吸收的紫外線。於1990年發射之後,已經成為天文史上最重要的儀器。它成功弥补了地面觀測的不足,幫助天文學家解決了許多天文学上的基本問題,使得人类对天文物理有更多的認識。此外,哈勃的超深空視場则是天文學家目前能獲得的最深入、也是最敏銳的太空光學影像。 哈勃太空望遠鏡和康普頓γ射線天文台、錢德拉X光天文台、史匹哲太空望遠鏡都是美國太空總署大型轨道天文台计划的一部分。哈勃空间望远镜由NASA和ESA合作共同管理。.

新!!: 空间望远镜和哈勃空间望远镜 · 查看更多 »

光污染

#重定向 光害.

新!!: 空间望远镜和光污染 · 查看更多 »

紅外線天文衛星

紅外線天文衛星(Infrared Astronomical Satellite,IRAS)是在太空中的天文台,以紅外線巡天,執行勘查整個天空的任務。.

新!!: 空间望远镜和紅外線天文衛星 · 查看更多 »

紅外線太空天文台

紅外線太空天文台 (ISO)是歐洲太空總署(ESA)設計在紅外線波段工作的太空望遠鏡,共同合作的單位還有美国国家航空航天局與日本宇宙科学研究所(研究所在2003年并入日本宇宙航空研究開發機構)。ISO 的觀察波段從2.5~240微米的紅外線。 計劃開始於1979年,於1995年11月發射升空,一直工作到所攜帶的氦在1998年5月耗盡為止,比預期多工作了8個月之久。.

新!!: 空间望远镜和紅外線太空天文台 · 查看更多 »

电磁辐射

電磁辐射,又稱電磁波,是由同相振盪且互相垂直的電場與磁場在空間中以波的形式傳遞能量和動量,其傳播方向垂直於電場與磁場構成的平面。 電磁輻射的載體為光子,不需要依靠介質傳播,在真空中的傳播速度为光速。電磁輻射可按照頻率分類,從低頻率到高頻率,主要包括無線電波、微波、紅外線、可見光、紫外線、X射線和伽馬射線。人眼可接收到的電磁輻射,波長大約在380至780nm之間,稱為可見光。只要是本身溫度大於絕對零度的物體,除了暗物質以外,都可以發射電磁輻射,而世界上並不存在温度等於或低於絕對零度的物體,因此,人們周邊所有的物體時刻都在進行電磁輻射。儘管如此,只有處於可見光频域以内的電磁波,才可以被人們肉眼看到,對於不同的生物,各種電磁波頻段的感知能力也有所不同。.

新!!: 空间望远镜和电磁辐射 · 查看更多 »

行星

行星(planet;planeta),通常指自身不發光,環繞著恆星的天體。其公轉方向常與所繞恆星的自轉方向相同(由西向東)。一般來說行星需具有一定質量,行星的質量要足夠的大(相對於月球)且近似於圓球狀,自身不能像恆星那樣發生核聚變反應。2007年5月,麻省理工學院一組空间科學研究隊發現了已知最熱的行星(2040攝氏度)。 隨著一些具有冥王星大小的天體被發現,「行星」一詞的科學定義似乎更形迫切。歷史上行星名字來自於它們的位置(与恒星的相对位置)在天空中不固定,就好像它們在星空中行走一般。太陽系内肉眼可見的5顆行星水星、金星、火星、木星和土星早在史前就已經被人類發現了。16世紀後日心说取代了地心说,人類瞭解到地球本身也是一顆行星。望遠鏡被發明和萬有引力被發現後,人類又發現了天王星、海王星,冥王星(2006年后被排除出行星行列,2008年被重分類為类冥天体,属于矮行星的一种)還有為數不少的小行星。20世紀末人類在太陽系外的恆星系統中也發現了行星,截至2013年7月12日,人類已發現2000多顆太陽系外的行星。.

新!!: 空间望远镜和行星 · 查看更多 »

詹姆斯·韦伯太空望远镜

詹姆斯·韦伯空间望远镜(James Webb Space Telescope, JWST)是计划中的紅外線太空望遠鏡,原计划耗费5亿美元并于2007年发射升空。但由于各种原因,导致项目严重超支,发射時間数次推迟,最新预估总耗费高达96.6亿美元,发射时间改为2021年3月30日。它是歐洲太空總署和美国宇航局的共用计划。这是哈勃太空望远镜和史匹哲太空望遠鏡的后继计划。它拥有一个直径6.5公尺(21 英尺),分割成18面鏡片的主鏡,放置于太陽─地球的第二拉格朗日點。不像哈勃空间望远镜那样围绕地球上空旋轉,詹姆斯·韋伯太空望遠鏡飘荡在地球背向太陽的後面150萬公里的太空。一个大型遮阳板将保持它的镜片和四个科学仪器低于。 此项目曾经称为“新一代太空望远镜”(Next Generation Space Telescope),2002年以美国宇航局第二任局长詹姆斯·韦伯的名字命名。1961年至1968年詹姆斯·韦伯担任局长期间曾领导阿波罗计划等一系列美国重要的太空探测项目。 望远镜的地面控制和协调机构是位于约翰霍普金斯大学的太空望远镜研究所(STScI)。.

新!!: 空间望远镜和詹姆斯·韦伯太空望远镜 · 查看更多 »

軌道天文台

軌道天文台(OAO)是美國國家航空暨太空總署在1966年至1972年間,共發射四顆衛星的一系列太空觀測計畫,提供了許多天體的第一批紫外線觀測的優質資料。其中有兩次軌道天文台是失敗的,而成功的其他兩次則在天文學的領域內為太空觀測的優點提供了良好的認識,並鼓舞了後續的哈勃太空望遠鏡。.

新!!: 空间望远镜和軌道天文台 · 查看更多 »

赫雪爾太空望遠鏡

赫歇尔空间天文台(Herschel Space Observatory)是歐洲太空總署的一顆空间天文卫星,已在2009年5月14日和普朗克衛星一起於位於法屬圭亞那的太空中心由亞利安五號火箭發射升空,將進入距離地球150萬公里環繞著L2拉格朗日點,直徑70萬公里的利薩如軌道(Lissajous orbit)。2013年4月29日,它因液氦冷却剂耗尽,已停止工作。 赫歇尔空间天文台原名“遠紅外線和次毫米波望遠鏡”(Far Infrared and Submillimetre Telescope,簡稱FIRST),为紀念發現紅外線的英国天文学家赫歇爾而命名为“赫歇尔空间天文台”。它將是第一個在太空中對整個遠紅外線和次毫米波進行觀測的天文台,安装有太空中最大的反射望遠鏡,直徑3.5米。他將專門蒐集來自遙遠的不知名天體的微弱光线,例如數十億光年遠的年轻星系。光線將聚焦在維持在2K低溫的三件儀器上。 2013年4月29日,赫歇尔空间天文台因為致冷劑耗盡而結束任務。.

新!!: 空间望远镜和赫雪爾太空望遠鏡 · 查看更多 »

钱德拉X射线天文台

钱德拉X射线天文台(Chandra X-ray Observatory,缩写为CXO),是美国宇航局(NASA)于1999年发射的一颗X射线天文卫星,以美国籍印度物理学家苏布拉马尼扬·钱德拉塞卡命名,為大型轨道天文台计划的第三颗卫星,目的是观测天体的X射线辐射。其特点是兼具极高的空间分辨率和谱分辨率,被认为是X射线天文学上具有里程碑意义的空间望远镜,标志着X射线天文学从测光时代进入了光谱时代。.

新!!: 空间望远镜和钱德拉X射线天文台 · 查看更多 »

SPICA

SPICA(Space Infra-Red Telescope for Cosmology and Astrophysics,即宇宙学与天体物理空间红外望远镜的缩写)是日本宇宙航空研究开发机构和美国国家航空航天局、歐洲太空總署的合作项目,它将取代AKARI红外望远镜,成为新一代的中远红外波段望远镜。SPICA将和以近中红外波段为主要观测区间的詹姆斯·韦伯太空望远镜(JWST)在红外太空观测项目中形成互补之势。 SPICA计划在2009年仍然处于会议讨论阶段。预计SPICA将在2017年由日本H-2A运载火箭发射升空,并与JWST一样放置于地球背向太阳的后面150万千米的第二拉格朗日点。.

新!!: 空间望远镜和SPICA · 查看更多 »

X射线天文学

X射线天文学是以天体的X射线辐射为主要研究手段的天文学分支。X射线天文学中常以电子伏特(eV)表示光子的能量,观测对象为0.1keV到100keV的X射线。其中又将0.1keV-10keV的X射线称为软X射线,10keV-100keV称为硬X射线。由于X射线属于电磁波谱的高能端,因此X射线天文学与伽玛射线天文学同称为高能天体物理学。 宇宙中辐射X射线的天体包括X射线双星、脉冲星、伽玛射线暴、超新星遗迹、活动星系核、太阳活动区,以及星系团周围的高温气体等等。由于地球大气层对于X射线是不透明的,只能在高空或者大气层以外观测天体的X射线辐射,因此空间天文卫星是X射线天文学的主要工具。.

新!!: 空间望远镜和X射线天文学 · 查看更多 »

XMM-牛顿卫星

XMM-牛顿卫星(X-ray Multi-Mirror Newton)是欧洲空间局1999年发射的一颗X射线天文卫星,具有极高的谱分辨本领。 XMM-牛顿计划始于1984年,1997年3月开始建造,原名为“高通量X射线分光任务”(The High-Throughput X-ray Spectroscopy Mission),为了纪念发明了分光镜的Isaac Newton而命名XMM-牛顿卫星,其中XMM是X-ray Multi-Mirror Mission(X射线多镜面任务)的缩写。1999年12月10日,XMM-牛顿卫星在法属圭亚那的库鲁发射场用-zh-hans:阿里亚娜5型火箭; zh-hant:亞利安五號火箭;-发射升空。它的轨道是椭圆形,近地点7,000公里,远地点114,000公里,轨道倾角40度,周期48小时。XMM-牛顿卫星原计划寿命为两年,但是至少 将延長任務期至2010年。 XMM-牛顿卫星重3.8吨,长10米,太阳能电池帆板展开后宽16米。卫星上搭载的主要科学仪器有:.

新!!: 空间望远镜和XMM-牛顿卫星 · 查看更多 »

暗物质

在宇宙学中,暗物质(Dark matter),是指無法通過电磁波的觀測進行研究,也就是不與电磁力產生作用的物质。人们目前只能透过重力产生的效应得知,而且已經發现宇宙中有大量暗物质的存在。 现代天文学經由引力透镜、宇宙中大尺度结构的形成、微波背景辐射等方法和理论来探测暗物质。而根据ΛCDM模型,由普朗克卫星探测的数据得到:整个宇宙的构成中,常規物質(即重子物質)占4.9%,而暗物质則占26.8%,还有68.3%是暗能量(质能等价)。暗物质的存在可以解决大爆炸理论中的不自洽性(inconsistency),对结构形成也非常关键。暗物质很有可能是一种(或几种)粒子物理标准模型以外的新粒子所構成。对暗物质(和暗能量)的研究是现代宇宙学和粒子物理的重要课题。 2015年11月,NASA噴射推進實驗室的科學家蓋瑞‧普里茲奧(Gary Prézeau)以ΛCDM模型模擬銀河系內暗物質流過地球與木星等行星的情形,發現這會使該暗物質流的密度明顯上升(地球:10^7倍、木星:10^8倍),並呈現毛髮狀的向外輻射分佈結構。.

新!!: 空间望远镜和暗物质 · 查看更多 »

暗物质粒子探测卫星

暗物质粒子探测卫星(DArk Matter Particle Explorer,简称DAMPE),命名为“悟空”,是中国第一个空间望远镜,用于探测暗物质,由中科院花費1亿美元研製。悟空於2015年12月17日在酒泉卫星发射中心搭載長征二號丁運載火箭升空。探測衛星裝有塑闪阵列探测器、硅阵列探测器、BGO量能器、中子探测器,是現今觀測能段範圍最寬、能量解析度最優的暗物质粒子空間探測器,它的觀測能段是安置於國際太空站的阿爾法磁譜儀的10倍(5GeV-10TeV),能量分辨率比其它同類探測器還要高出3倍以上(優於1.5%)。 2017年11月30日,中國科學院發布,悟空卫星發現可能是暗物質存在的證據。.

新!!: 空间望远镜和暗物质粒子探测卫星 · 查看更多 »

星系

星系(galaxy),或譯為銀河,源自於希臘语的「γαλαξίας」(galaxias)。廣義上星系指無數的恆星系(當然包括恆星的自體)、塵埃(如星雲)組成的運行系統。參考我們的銀河系,是一個包含恆星、星團、星雲、氣體的星際物質、宇宙塵和暗物質,並且受到重力束縛的大質量系統,通常距離都在幾百萬光年以上。星系平均有數百億顆恆星,是構成宇宙的基本單位。。典型的星系,從只有數千萬(107)顆恆星的矮星系到上兆(1012)顆恆星的橢圓星系都有,全都環繞著質量中心運轉。除了單獨的恆星和稀薄的星際物質之外,大部分的星系都有數量龐大的多星系統、星團以及各種不同的星雲。 歷史上,星系是依據它們的形状分類的(通常指它們視覺上的形狀)。最普通的是橢圓星系,有橢圓形狀的明亮外觀;螺旋星系是圓盤的形狀,加上彎曲的塵埃旋渦臂;形狀不規則或異常的,通常都是受到鄰近其他星系影響的結果。鄰近星系間的交互作用,也許會導致星系的合併,或是造成恆星大量的產生,成為所謂的星爆星系。缺乏有條理結構的小星系則會被稱為不規則星系。 在可以看見的可觀測宇宙中,星系的總數可能超過一千億(1011)個以上。大部分的星系直徑介於1,000至100,000秒差距,彼此間相距的距離則是百萬秒差距的數量級。星系際空間(存在於星系之間的空間)充滿了極稀薄的電漿,平均密度小於每立方公尺一個原子。多數的星系會組織成更大的集團,成為星系群或團,它們又會聚集成更大的超星系團。這些更大的集團通常被稱為薄片或纖維,圍繞在宇宙中巨大的空洞週圍。 雖然我們對暗物質的了解很少,但在大部分的星系中它都佔有大約90%的質量。觀測的資料顯示超大質量黑洞存在於星系的核心,即使不是全部,也佔了絕大多數,它們被認為是造成一些星系有著活躍的核心的主因。銀河系,我們的地球和太陽系所在的星系,看起來在核心中至少也隱藏著一個這樣的物體。.

新!!: 空间望远镜和星系 · 查看更多 »

普朗克卫星

普朗克巡天者是歐洲太空總署在視野2000年的第三個中型的科學計畫。她的設計目標為以史無前例的高靈敏的角解析力獲取宇宙微波背景輻射在整個天空的的各向異性圖。普朗克巡天者將提供幾個宇宙學和天體物理學的主要訊息,例如,測試早期宇宙的理論和宇宙結構的起源。在計畫獲准之前的企畫案名稱為宇宙背景輻射各向異性衛星和背景各向異性測量(Cosmic Background Radiation Anisotropy Satellite and Satellite for Measurement of Background Anisotropies.,縮寫為COBRAS/SAMBA) 在任務被核准後,更改為現在的名稱以尊崇在1918年獲得諾貝爾物理獎的德國科學家馬克斯·普朗克(1858-1947)。 普朗克巡天者已於2009年5月14日由亞利安五號火箭和赫歇爾太空天文臺一起發射升空。這是和美國國家航空暨太空總署合作的計畫,將補全WMAP探測器測量大尺度連漪的不足之處。.

新!!: 空间望远镜和普朗克卫星 · 查看更多 »

重定向到这里:

太空天文台太空望远镜空間望遠鏡

传出传入
嘿!我们在Facebook上吧! »