徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

天體命名

指数 天體命名

天體命名就是為天文觀測所見到或發現的天體取名字。 在古老的時候,只有太陽、月球和數百顆恆星以及肉眼可以看見的行星有名字。但在過去的數百年,天文學上辨認出來的天體數量已經從數百顆增加至數十億顆,而且每年還有更多的新天體不斷的被發現。天文學家需要一套辨識系統,能明確且不含糊的分辨出這些天體,同時對令人感興趣的天體給予特別的名字,而且這些名稱必須是有意義的,能夠呈現這些天體的特質。 國際天文學聯合會(IAU)是全球天文學家和其他的科學家認可,能為天體命名的唯一機構。為了能給予任何天體一個明確的名稱,該學會已經建立一套命名系統,能系統化的為各種不同的天體命名與排列順序。.

157 关系: 半人馬座A半人马半人马座十字架三十字架二卡普坦星南十字座南門二南門二Bb史隆數位巡天參宿七參宿四壁宿二天王星天球天秤動天狼星天蝎座天體天鵝座P天鵝座X-1天津增廿九天文学家天文學天文學綱要天文學臨時編號天文電報編輯中心太陽太陽系外行星奚仲四威廉·莎士比亚威廉·赫歇爾婚神星室宿增一導引星表小行星小行星2060小行星231346小行星26858小行星4090小行星5535小行星588小行星884小行星9007小行星帶小行星列表小行星通報尤金·德爾波特尾宿八巴納德星...中國亡神星庫樓五人马座以人名命名的恆星仙女座仙女座星系伽利略·伽利莱伽利略衛星彗星佛蘭斯蒂德命名法土星地球北极星國際天文聯會分點创神星喬治三世傳統古柏帶天體傅說 (恆星)冥王星克卜勒34矮行星火星灶神星球狀星團祝融星科幻小說穀神星系統標準名約翰·路易·埃米爾·德雷耳織女一约翰·波得爱神星疏散星团特洛伊战争蟹狀星雲行星行星體系命名法裸眼飛馬座51b西門·馬里烏斯西方世界變星總表超大質量黑洞超新星轨道共振迷蹤小行星船底座阿波羅 (小行星)阿拉伯语阋神星赤纬赤经钱德拉X射线天文台金星艾女星英国君主陰間附加符号M51NGC 4151NGC天體表PSR B1937+21RX J1131-1231S/2003 S 1S/2010 J 2SDSS J0100+2802SN 1006SN 1054SN 1572SN 1604SN 1987A柯伊伯带林肯近地小行星研究小組恒星恆星亮度列表恆星命名恆星系統恆星黑洞核融合體梅西耶天體氣體巨星水星法厄同法语洛厄爾天文台近地小行星搜尋計畫渦狀星系測天圖木星月球星座星云星等星系星表海山一海石一海王星海王星外天體新视野号斗宿四拜耳命名法拉丁语拉格朗日点智神星2006年行星重定義 扩展索引 (107 更多) »

半人馬座A

半人馬座A,也稱為NGC 5128,是位於半人馬座內距離大約1千4百萬光年遠的一個透鏡星系。它是最靠近地球的電波源之一,也是被專業天文學家廣泛研究的活躍星系核。這個星系也是全天第五亮的星系,所以即使這個星系只能在南半球和北半球的低緯度地區看見,它依然也還是業餘天文學家的理想目標。 相對論性噴流的能量被相信是從在星系核心的超大質量黑洞附近的空間喷射出來的,輻射出X射線和無線電波的波長。以十年的間隔對噴流的電波進行觀察,天文學家確定噴流內側部分的移動速度達到光速的一半。X射線則是噴流內的高能微粒在更遠處與周圍的氣體碰撞所產生的。 如同對其他的星爆星系所做的觀測,碰撞導致恆星的形成和引發強烈的爆炸。使用史匹哲太空望遠鏡,科學家證實了半人馬座 A是經由星系碰撞而被狼吞虎嚥的螺旋星系。.

新!!: 天體命名和半人馬座A · 查看更多 »

半人马

半人马,英文: centaur,亦稱人頭馬、山杜爾族,是希腊神话中一种半人半马的怪物。他们的上半身是人的躯干,下半身则是马身,也包括躯干和四腿。.

新!!: 天體命名和半人马 · 查看更多 »

半人马座

半人马座(Centaurus)是一个巨大的明亮星座,它拥有两颗一等大星,半人马座α星和半人马座β星。半人马座区域内有各种令人感兴趣的天体。.

新!!: 天體命名和半人马座 · 查看更多 »

十字架三

十字架三(β Cru / 南十字座β)是南十字座內第二亮的恆星,英文名Becrux或Mimosa。由於十字架三位於赤緯-60度的天空,所以只有在北回歸線以南的地方才可以看到它。 十字架三距離地球約有353光年,它實際上是一對分光雙星,因為距離太近所以無法用望遠鏡分辨出來,彼此之間距離為8天文單位(AU)。.

新!!: 天體命名和十字架三 · 查看更多 »

十字架二

十字架二(α Cru / 南十字座α)是南十字座內最亮的恆星,也是夜空中第13亮的恆星,視星等0.77。在西方稱為Acrux。 十字架二是出現在澳洲和紐西蘭國旗上的南十字座五顆星中之一,他也出現在巴西國旗上的南十字座內,與旗幟上的26顆星各自分別代表一個州,他代表的是聖保羅州(São Paulo)。 十字架二的位置大約在南緯60°,要在北回歸線以南的地區才能看見。儘管如此,由於地球的晃動,古印度的天文學家稱他為三炫谷(Tri-shanku),古老的印度梵文也以代表吉祥的萬字符號(卍)代表南十字座。在梵文,以意思是非常穩定的Dhruva稱呼北極星,而以意義是不穩定或非常糟糕的Tri-shanku和神話故事來稱呼南十字二,以隱喻其難以捉摸的運動。其實十字架二只是南十字座簡單組合中的一顆星,他是最南邊的一顆亮星,比半人馬座的南門二(半人馬座α)更為偏南。 十字架二是一個距離太陽系320光年遠的三合星系統,但以目視觀測只能分辨出兩顆星。α1和α2之間相距只有4弧秒。α1的光度是1.40等,α2是2.09等,兩顆星都是高溫的B型星(接近O型星),表面溫度分別是28,000和26,000K,個別的亮度分別是太陽的25,000和16,000倍。α1和α2的軌道周期非常長,使得這兩顆星看起來幾乎是靜止不動。由兩顆星最小的距離只有430天文單位估計,軌道周期有1,500年之久,而且可能還會更長。 α1本身還是一顆光譜聯星,兩者的質量分別是太陽的14倍和10倍,以76天的周期在相距1天文單位的距離上互繞。α2和更亮的伴星α1的質量建議這些恆星有一天將會成為超新星。α1比較暗的那一顆伴星,將會成為大質量的白矮星繼續他的餘生。 有一顆距離十字架二三合星系統90弧秒的B型次巨星,可能會對十字架二產生重力上的影響。然而,如果他確實在十字架二的附近,相較於他的光譜類型,光度就顯得太暗了。所以他可能只是一顆光學雙星,與太陽系的距離可能是十字架二的兩倍,也就是與十字架二的距離像太陽系一樣遠。.

新!!: 天體命名和十字架二 · 查看更多 »

卡普坦星

卡普坦星(Kapteyn's Star)也稱為GJ 191、HD 33793或CD -45 1841,位於繪架座,是一顆光譜型 M1 的次矮星,由雅各布斯·卡普坦於1898年所發現,距離太陽僅12.79光年。該恆星視星等9等,必須以望遠鏡觀測。.

新!!: 天體命名和卡普坦星 · 查看更多 »

南十字座

南十字座(Crux,)或稱十字架座,位於半人馬座和蒼蠅座之間,是全天88個星座中最小,但最有特色的一個。它的英文名稱源自拉丁文的十字,它的造型就以十字形為主,在北回歸線以南的地方皆可看到整個星座,因此被稱為南十字,以與北十字(天鵝座的中心部分)有所區別。.

新!!: 天體命名和南十字座 · 查看更多 »

南門二

南門二(α Cen、半人馬座α)位於天空南方的半人馬座,英文名Alpha Centauri或Toliman,雖然肉眼分辨不出來,不過南門二實際上是一個三合星系統,其中一顆恆星是全天空第4明亮的恆星。不過因為其中兩顆恆星距離過近,肉眼無法分辨出來,所以它們的綜合視星等為-0.27等(超過第3亮的大角星),絕對星等為4.4等。南門二也作為南十字星座最外圍的指引而聞名,因為南十字星座的位置太過南邊,所以大部分的北半球都看不到。傳聞當年鄭和下西洋,就是用它來指引方向。 南門二是距離太陽最近的恆星系,只有4.37光年(約277,600天文單位)。比鄰星(Proxima Centauri)通常被認為是這個恆星系的成員,距離太陽只有4.24光年。因為南門二距離地球相對較近,所以在關於星際旅行的冒險小說中,理所當然將它當成「第一個停靠港口」,並預測在人口爆炸時甚至會對這個恆星系進行開發與殖民活動。這些觀點通常也在科幻小說與電子遊戲中出現。 2016年8月24日ESO(欧洲南方天文台)发布了他们的新发现——一颗位于比邻星附近的类地行星。.

新!!: 天體命名和南門二 · 查看更多 »

南門二Bb

#重定向 半人馬座α Bb.

新!!: 天體命名和南門二Bb · 查看更多 »

史隆數位巡天

斯隆数字化巡天(Sloan Digital Sky Survey,縮寫為SDSS)是使用位於新墨西哥州阿帕契點天文台的2.5米口径望遠鏡进行的红移巡天项目。该项目开始于2000年,以阿爾弗雷德·史隆的名字命名,计划观测25%的天空,獲取超过一百萬個天體的多色测光资料和光谱数据。斯隆数字化巡天的星系样本以紅移0.1為中值,对于紅星系的紅移值達到0.4,對于類星體紅移值则達到5,並且希望探测到紅移值大于6的類星體。 2006年,斯隆数字化巡天进入了名为SDSS-II的新阶段,进一步探索銀河系的結構和组成,而斯隆超新星巡天计划搜寻Ⅰa型超新星爆发,以测量宇宙学尺度上的距离。 2008年10月31日,SDSS-II发布了最后一次数据。 斯隆数字化巡天第三期工程SDSS-III已经于2008年7月启动,将持续至2014年。.

新!!: 天體命名和史隆數位巡天 · 查看更多 »

參宿七

參宿七(Rigel A),在拜耳命名法中稱為獵戶座β(β Ori, β Orionis),是獵戶座中最亮的恆星,並且是全天第7亮星,它的視星等為0.12等。從地球上觀察,這是個三合星的系統,主星為參宿七A(Rigel A),是顆絕對星等 -7.84等的超巨星,亮度為太陽的130,000倍,是顆有固定週期的天鵝座α型變星。以小型望遠鏡就可以看見的參宿七B,本身就是光譜聯星,由兩顆光譜類型為B9的藍白色恆星組成。 雖然在拜耳命名法為β星,但它始終比獵戶座α(參宿四)明亮。從1943年以來,它的光譜就被當成其它恆星光譜分類的校準光譜之一。.

新!!: 天體命名和參宿七 · 查看更多 »

參宿四

参宿四(Betelgeuse),也就是拜耳命名法中著名的獵戶座α(α Orionis或α Ori),是全天第九亮星,也是獵戶座第二亮星,只比鄰近的参宿七(獵戶座β)暗淡一點。它有著明顯紅色的半規則變星,視星等在0.2至1.2等之間變化著,是變光幅度最大的一等星。這顆恆星標示著冬季大三角的頂點和冬季六邊形的中心。 在分類上,参宿四是一顆紅超巨星,並且是已知最大和最亮的恆星之一。如果它位於太陽系的中心,它的表面會超越小行星帶,並可能抵達並超越木星的軌道,完全地席捲掉水星、金星、地球和火星。但是,在上個世紀對参宿四的距離估計從180光年至1,300光年不等,因此對其直徑、光度和質量的估計是很難被證實的。目前認為参宿四的距離大約是640光年,平均的絕對星等是-6.05。 而事实上,有关参宿四的质量始终有争议,有的资料显示它的质量不过太阳的14至15倍,但也有的资料认为它的质量达到太阳的18至19倍甚至20倍的,而这种质量的不确定性,正是由于测量距离的不确定性造成的。 在1920年,参宿四是第一顆被測出角直徑的恆星(除太陽之外)。從此以後,研究人員不斷使用不同的技術參數和望遠鏡測量這顆巨星的大小,而且經常產生衝突的結果。目前估計這顆恆星的視直徑在0.043~0.056角秒,作為一個移動的目標,参宿四似乎周期性的改變它的形狀。由於周邊昏暗、光度變化(變星脈動理論)、和角直徑隨著波長改變,這顆恆星仍然充滿了令人費解的謎。参宿四有一些複雜的、不對稱的包層,引起巨大的質量流失,涉及從表面向外排出的龐大冠羽狀氣體,使事情變得更為複雜。甚至有證據指出在它的氣體包層內有伴星環繞著,可能加劇了這顆恆星古怪的行為。 天文學家認為参宿四的年齡只有1,000萬年,但是因為質量大而演化得很快。它被認為是來自獵戶座OB1星協的奔逃星,還包含在獵戶腰帶的参宿一、参宿二、和参宿三等0和B型晚期恆星的集團。以現行恆星演化的晚期階段,預料参宿四在未來的數百萬年將爆炸成為II型超新星,並變成一顆中子星。.

新!!: 天體命名和參宿四 · 查看更多 »

壁宿二

壁宿二(Alpha And / α And / α Andromedae)在英文的固有名稱是 Alpheratz和Sirrah(與Sirah的拼法相通),是在仙女座中最亮的一顆恆星,位置緊鄰在飛馬座的東北部,是構成飛馬四邊形的恆星之一。做為一顆與飛馬座相連接的恆星,它也曾經被稱為飛馬座δ,但這個名稱現在已經不再使用了。另一顆有雙重名稱的恆星是金牛座β ,The Internet Encyclopedia of Science, David Darling.

新!!: 天體命名和壁宿二 · 查看更多 »

天王星

天王星是從太陽系由内向外的第七顆行星,其體積在太陽系排名第三(比海王星大),質量排名第四(比海王星輕)。其英文名稱Uranus來自古希臘神話的天空之神烏拉諾斯(),是克洛諾斯的父親,宙斯的祖父。与在古代就为人们所知的五顆行星(水星、金星、火星、木星、土星)相比,天王星的亮度也是肉眼可見的,但由於較為黯淡以及緩慢的繞行速度而未被古代的觀測者认定为一颗行星。直到1781年3月13日,威廉·赫歇耳爵士宣布發現天王星,从而在太陽系的現代史上首度擴展了已知的界限。這也是第一顆使用望遠鏡發現的行星。天文學符號為、♅(♅,Unicode編碼U+2645) 天王星和海王星的內部和大氣構成不同於更巨大的氣體巨星,木星和土星。同樣的,天文學家設立了不同的「冰巨行星」分類來安置她們。天王星大氣的主要成分是氫和氦,還包含較高比例的由水、氨、甲烷等結成的「冰」,與可以探测到的碳氫化合物。天王星是太陽系內大气层最冷的行星,最低溫度只有49K(−224℃)。其外部的大气层具有複杂的雲層結構,水在最低的雲層內,而甲烷組成最高處的雲層。相比较而言,天王星的内部则是由冰和岩石所构成。 如同其他的巨行星,天王星也有環系統、磁層和許多衛星。天王星的環系統在行星中非常獨特,因為它的自轉軸斜向一邊,幾乎就躺在公轉太陽的軌道平面上,因而南極和北極也躺在其他行星的赤道位置上。從地球看,天王星的環像是環繞著標靶的圓環,它的衛星則像環繞著鐘的指針(雖然在2007年與2008年該環看來近乎水平)。在1986年,來自太空探测器航海家2號的影像资料顯示天王星實際上是一顆平平無奇的行星,在其可見光的影像中沒有出现像在其他巨行星所擁有的雲彩或風暴。然而,近年內,隨著天王星接近晝夜平分點,地球上的觀測者发现天王星有季節變化的迹象和漸增的天氣活動。天王星上的風速可以達到每秒250公尺。 在西方文化中,天王星是太陽系中唯一以希臘神祇命名的行星,其他行星都依照羅馬神祇命名。.

新!!: 天體命名和天王星 · 查看更多 »

天球

天球(英語:Celestial sphere),是在天文學和導航上想出的一個與地球同圓心,並有相同的自轉軸,半徑無限大的球。天空中所有的物體都可以當成投影在天球上的物件。地球的赤道和地理極點投射到天球上,就是天球赤道和天極。天球是位置天文學上很實用的工具。 在亞里斯多德和托勒密的模型,天球想像成實際的物體,而不僅僅是一個幾何的投影(參見天球模型)。.

新!!: 天體命名和天球 · 查看更多 »

天秤動

#重定向 天平動.

新!!: 天體命名和天秤動 · 查看更多 »

天狼星

天狼星(Bd:α CMa)是夜空中最亮的恆星,其視星等為-1.46,幾乎為第二亮恆星老人星的兩倍。它的英文名稱為Sirius,讀法為/sɪɹiəs/,源自古希臘語的Σείριος。天狼星根據拜耳命名法的名稱為大犬座α星。我們肉眼以爲是一顆恆星的天狼星,實際上是一個聯星系統,其中包括一顆光譜型A1V的白主序星和另一顆光譜型DA2的暗白矮星伴星天狼星B(Bd:α CMa B)。 天狼星如此之亮除了因爲其原本就很高的光度以外,還因爲它距離太陽很近。天狼星距離地球約2.6秒差距(約8.6光年),並是最近的恆星之一。天狼星A的質量為太陽的兩倍,而絕對星等為1.42等。它比太陽亮25倍,但光度明顯比其它亮星較暗,如對比老人星或參宿七。此雙星系統有約二億至三億年歷史,而初期是由兩顆藍色的亮星組成。更高質量的天狼星B耗盡了能源,成爲一顆紅巨星,然後又漸漸削去外層,約在一億二千萬年前坍塌成爲今天的白矮星狀態。 中國古代星象學說中,天狼星是「主侵略之兆」的惡星。屈原在《九歌·東君》中寫到:「舉長矢兮射天狼」,以天狼星比擬位於楚國西北的秦國;而蘇軾《江城子》中「會挽雕弓如滿月,西北望,射天狼」,以天狼星比擬威脅北宋西北邊境的西夏。.

新!!: 天體命名和天狼星 · 查看更多 »

天蝎座

天蝎座(Scorpius,天文符号:♏),是一个位于南天球的黄道带星座之一,面积496.78平方度,占全天面积的1.204%,在全天88个星座中,面积排行第三十三。每年6月3日子夜天蝎座中心经过上中天。天蝎座中亮于5.5等的恒星有62颗,最亮星为心宿二(天蝎座α),视星等为0.96,是全天第十五亮星。.

新!!: 天體命名和天蝎座 · 查看更多 »

天體

天體(astronomical object,也稱為celestial object)是在可觀測宇宙中,經由科學確認其存在的物體、或是結構。 天體可能像恆星、行星、彗星等結合較緊密的星體或類星體,也可能是指一個複雜的,彼此關聯較鬆散的結構,如星團、星系,其中可能包括許多其他的星體,甚至有其他更小的結構。 天體的例子包括行星系、星团、星云及星系,而小行星、 月球、行星、恒星等則算是星體或類星體。彗星若只考慮其以冰和灰塵組成的彗核,是一個類星體,但若考慮彗核及其彗髮、彗髮,則是一個關聯較鬆散的天體。.

新!!: 天體命名和天體 · 查看更多 »

天鵝座P

#重定向 天津增九.

新!!: 天體命名和天鵝座P · 查看更多 »

天鵝座X-1

天鵝座X-1(簡稱Cyg X-1)是一個银河系内位于天鵝座的双星系统,是著名的X射線源。它在1964年的一次火箭彈道飛行時被發現,是從地球觀測最強的X射綫源之一,其頂峰X射綫通量為2.3 Wm−2Hz−1。天鵝座X-1是最先被廣泛承認為黑洞的候選星體,也是同類星體中最受研究關注的。現在估計其質量為太陽質量的8.7倍,而其密度之高使黑洞成爲唯一一種解釋。如果如此,它的事件視界半徑約為26公里。 天鵝座X-1屬於一個高質量X射線雙星系統,其距離太陽大約6,070光年,另一成員為一顆超巨星變星,編號為HDE 226868。兩者相互圍繞公轉,距離為0.2天文單位,即地球和太陽間距離的20%。該星的星風為X射綫源的吸積盤提供物質。盤的内部溫度達到幾百萬K,因此輻射出X射綫。兩條垂直于吸積盤的相對論性噴流將被吸進的物質噴射出星際空間。 這個系統可能屬於一個名為天鵝座OB3的星協,意味著天鵝座X-1的年齡超過500萬年,並源于一顆質量大於40個太陽質量的原星。這顆原星的大部分質量都散失了,很可能是以星風的形式。如果該星以超新星的形式爆炸,則其威力足以將剩餘物質噴射出這個系統。因此它可能直接坍縮成一個黑洞。 物理學家史蒂芬·霍金和基普·索恩曾拿天鵝座X-1作了一場科學的賭局。當中霍金賭天鵝座X-1不是一顆黑洞。1990年霍金讓步,因爲觀測證據顯示這個系統中存在著引力奇點。.

新!!: 天體命名和天鵝座X-1 · 查看更多 »

天津增廿九

天鵝座61 (英語:61 Cygni)有時也被稱為貝塞爾星(Bessel's Star)或皮亞齊飛行之星(Piazzi's Flying Star),中國傳統名稱天津增廿九,是一個位於天鵝座的雙星系統,由一對K型橙矮星所組成,彼此互相以659年的週期運轉,形成一個目視雙星系統。因為天鵝座61雙星的視星等分別為5及6等,所以它們對於一個沒有使用光學儀器的觀測者而言是非常不顯眼的恆星。 天鵝座61首先引起天文學家的注意是因為它的自行運動相當快速。德國天文學家弗里德里希·威廉·贝塞尔在1838年估算天鵝座61與地球的距離大約為10.4光年,這個數值與實際距離11.4光年已經非常接近,這是天文學家第一次使用恆星視差來測量估算太陽以外的恆星與地球之間的距離。在20世紀中,曾有幾個不同的天文學家提出觀測到大質量行星環繞天鵝座61其中1顆恆星的報告,但最近高精確度的徑向速度觀測顯示這些報告都是錯誤的。直到目前為止,天文學家尚未證實這個恆星系統中存在任何行星,過去所有的發現報告現在都被視為是不可信的。.

新!!: 天體命名和天津增廿九 · 查看更多 »

天文学家

天文学家是研究天文学、宇宙学、天体物理学等相关学科的科学家。因为有些哲学家、物理学家、数学家对天文理论有着不可忽视的影响,所以下面的列表中也包括这些人。.

新!!: 天體命名和天文学家 · 查看更多 »

天文學

天文學是一門自然科學,它運用數學、物理和化學等方法來解釋宇宙間的天體,包括行星、衛星、彗星、恆星、星系等等,以及各種現象,如超新星爆炸、伽瑪射線暴、宇宙微波背景輻射等等。廣義地來說,任何源自地球大氣層以外的現象都屬於天文學的研究範圍。物理宇宙學與天文學密切相關,但它把宇宙視為一個整體來研究。 天文學有著遠古的歷史。自有文字記載起,巴比倫、古希臘、印度、古埃及、努比亞、伊朗、中國、瑪雅以及許多古代美洲文明就有對夜空做詳盡的觀測記錄。天文學在歷史上還涉及到天體測量學、天文航海、觀測天文學和曆法的制訂,今天則一般與天體物理學同義。 到了20世紀,天文學逐漸分為觀測天文學與理論天文學兩個分支。觀測天文學以取得天體的觀測數據為主,再以基本物理原理加以分析;理論天文學則開發用於分析天體現象的電腦模型和分析模型。兩者相輔相成,理論可解釋觀測結果,觀測結果可證實理論。 與不少現代科學範疇不同的是,天文學仍舊有比較活躍的業餘社群。業餘天文學家對天文學的發展有著重要的作用,特別是在發現和觀察彗星等短暫的天文現象上。 http://www.sydneyobservatory.com.au/ Official Web Site of the Sydney Observatory Astronomy (from the Greek ἀστρονομία from ἄστρον astron, "star" and -νομία -nomia from νόμος nomos, "law" or "culture") means "law of the stars" (or "culture of the stars" depending on the translation).

新!!: 天體命名和天文學 · 查看更多 »

天文學綱要

天文學是源於地球大氣層之外天體(如:恆星、行星、彗星、和星系)的科學和現象。天文學是最古老的科學之一,早期文明的天文學家有條不紊地在夜晚觀測天空,並且在早期就已經發現許多天體的組織結構。但是,直到望遠鏡發明之後,天文學才發展成為現代的科學。 下面的綱要提供天文學的專題指南的條目和概述。.

新!!: 天體命名和天文學綱要 · 查看更多 »

天文學臨時編號

天文學臨時編號是天體在被發現后即時給予的命名。當計算出可靠的軌道資料后,臨時編號就會被一個正式编号取代。但由於小行星被發現的數量太多了,因此絕大部分在發現之後的短時間(數年至數十年)內都不會計算出軌道,因此會有很長的時間都使用臨時的名稱,而不會有正式的命名。.

新!!: 天體命名和天文學臨時編號 · 查看更多 »

天文電報編輯中心

#重定向 天文电报中央局.

新!!: 天體命名和天文電報編輯中心 · 查看更多 »

太陽

#重定向 太阳.

新!!: 天體命名和太陽 · 查看更多 »

太陽系外行星

太陽系外行星或系外行星,指在太陽系之外的行星。截至2018年5月5日,已經被確認的系外行星總共有3767顆(另有超過2300顆尚未被確認),當中至少有77%是透過凌日現象發現的;這些行星分屬2816個行星系,其中有628個多行星系。克卜勒任務已經檢測到18,000顆行星候選者,包括262顆位於潛在適居帶的候選者。 在銀河系,估計有數十億顆恆星(若每顆恆星都至少有一顆行星,將導致有1,000億至4,000億顆行星),不只在恆星周圍有行星,也有自由移動的行星質量天體,而已知最靠近的系外行星是比鄰星b。 幾乎所有已經發現的系外行星都在我們自己的銀河系內,但是有少量的銀河系外行星可能可以被檢測出來。哈佛-史密松天體物理中心在2013年1月提出的一份報告中提到:估計在銀河系內「至少有170億顆」地球尺度的系外行星。 數百年來,許多哲學家和科學家都認為在太陽系以外應該也有行星的存在,但是沒有辦法知道行星有多普遍,或是與太陽系行星的相似度又是如何。在19世紀,許多的偵測方法被提出來,但最終所有的天文學家得到的結果都是否定的。第一個被確認的檢測出現在1992年,發現有幾顆質量類似地球的天體環繞著脈衝星PSR B1257+12。在主序帶恆星發現行星的第一個偵測結果出現在1995年,在鄰近的飛馬座51發現了以4天週期公轉一週的巨大行星。由於觀測技術的進步,自此之後偵測到的數量與效率迅速的增加。有些系外行星被大望遠鏡直接拍攝到影像,但絕大多數的系外行星都是經由徑向速度測量檢出的。除了系外行星,「系外彗星」(在太陽系之外的彗星)也被發現,也許在銀河系內也是很普遍的。 最常見的系外行星是巨大的行星,相信是類似於木星或海王星,但這也反應了取樣偏差,因為大質量的行星比較容易被觀察到。一些相對比較輕的系外行星,質量只有地球的幾倍(現在所謂的超級地球);如眾所周知,在統計上的研究表明它們的數量應該超過巨大的行星。雖然現在已經發現一小撮包括地球大小和更小的行星,似乎表現出其它的地球類似體屬性。也存在著有這行星質量的天體環繞著棕矮星和不受到恆星拘束在太空中自由移動的行星;然而,「行星」這個名詞尚未應用在這些天體上。 發現的太陽系外行星,特別是軌道位於適居帶,極有可能有液態水存在表面的那些行星(還因此可能有生命),提高了搜尋外星生命的興趣。因此,尋找太陽系外的行星還包括適居行星,在太陽系外的行星適合承載生命的研究中,被考慮的因素相當廣泛。 在2013年1月7日,來自克卜勒任務太空天文台的天文學家宣布發現了KOI-172.02,一顆像地球的系外行星候選者,在一顆類似太陽的恆星的適居帶中環繞著,可能是「存在著外星生命的主要候選者」。.

新!!: 天體命名和太陽系外行星 · 查看更多 »

奚仲四

奚仲四(天鵝座16,天鵝座c,16 Cygni)是位於天鵝座的一個三合星系統,距離地球約69光年。這三顆恆星當中有兩顆是與太陽相似的黃矮星: 奚仲四A (天鵝座16A)與奚仲四B (天鵝座16B),以及一顆質量較低的紅矮星。1996年,人們發現有一顆太陽系外行星,以橢圓軌道繞著系統中的奚仲四B公轉。.

新!!: 天體命名和奚仲四 · 查看更多 »

威廉·莎士比亚

威廉·莎士比亚(William Shakespeare,1564年4月26日(受洗日)-儒略曆1616年4月23日;華人社會常尊稱為莎翁,清末民初鲁迅在《摩羅詩力說》(1908年2月)稱莎翁為「狹斯丕爾」)是英国文学史上最杰出的戏剧家,也是西方文艺史上最杰出的作家之一,全世界最卓越的文学家之一。他流传下来的作品包括38部戏剧、154首十四行诗、两首长叙事诗和其他诗歌。他的戏剧有各種主要语言的譯本,且表演次数远远超过其他戏剧家的作品。 莎士比亚在雅芳河畔斯特拉特福出生长大,18岁时与安妮·哈瑟维结婚,两人共生育了三个孩子:苏珊娜、双胞胎哈姆内特和朱迪思。16世纪末到17世纪初的20多年期间莎士比亚在伦敦开始了成功的职业生涯,他不仅是演员、剧作家,还是宫内大臣剧团的合伙人之一,后来改名为国王剧团。1613年左右,莎士比亚退休回到雅芳河畔斯特拉特福,3年后逝世。有关莎士比亚私人生活的记录流传下来很少,关于他的性取向、宗教信仰、以及他的著作是否出自他人之手都依然是谜,有人认为是英国女王伊丽莎白一世 1590年到1613年是莎士比亚的创作的黄金时代。他的早期剧本主要是喜剧和历史剧,在16世纪末期达到了深度和艺术性的高峰。接下来到1608年他主要创作悲剧,莎士比亞崇尚高尚情操,常常描写犧牲與復仇,被认为属于英语最佳范例。在他人生最后阶段,他开始创作悲喜剧,又称为传奇剧,并与其他剧作家合作。在他有生之年,他的很多作品就以多种版本出版,质素和准确性参差不齐。1623年,他所在剧团两位同事出版了《第一对开本》,除两部作品外,目前已经被认可的莎士比亚作品均收录其中。 莎士比亚在世时被尊为诗人和剧作家,但直到19世纪他的声望才达到今日的高度。并在20世纪盛名传至亚,非,拉丁美洲三大地區,使更多人了解其盛名。浪漫主义时期赞颂莎士比亚的才华,维多利亚时代像英雄一样地尊敬他,被萧伯纳称为莎士比亚崇拜。20世纪,他的作品常常被新学术运动改编并重新发现价值。他的作品直至今日依旧广受欢迎,在全球以不同文化和政治形式演出和诠释。.

新!!: 天體命名和威廉·莎士比亚 · 查看更多 »

威廉·赫歇爾

弗里德里希·威廉·赫歇爾爵士,FRS,KH(Friedrich Wilhelm Herschel,Frederick William Herschel,),出生於德國漢諾威,英國天文學家及音樂家,曾作出多項天文發現,包括天王星等。被譽為「恆星天文學之父」。.

新!!: 天體命名和威廉·赫歇爾 · 查看更多 »

婚神星

婚神星(英语:3 Juno)是人类發現的第三顆小行星,也是小行星帶中最大的小行星之一,是由較重的石質組成的S-型小行星。它在1804年9月1日被德國天文學家卡尔·路德维希·哈丁以一架普通的2英吋口徑望遠鏡發現的,以羅馬神話中位階最高的婚姻之神朱諾來命名。.

新!!: 天體命名和婚神星 · 查看更多 »

室宿增一

#重定向 飛馬座51.

新!!: 天體命名和室宿增一 · 查看更多 »

導引星表

導引星表(GSC),有稱為GSC導星星表或哈伯太空望遠鏡導星星表(HSTGC),它是編譯來支援哈伯太空望遠鏡的離軸目標恆星目錄。GSC-I 包含二千万顆視星等從6至15等的恆星;GSC-II包含945,592,683 顆涵蓋至21等的恆星。並盡可能的將聯星和非星天體排除在外或標記為不符合精細導星感測器需求的目標。這是第一份專門為外太空導航創建的全天星體目錄。.

新!!: 天體命名和導引星表 · 查看更多 »

小行星

小行星是太陽系内類似行星環繞太陽運動,但體積和質量比行星小得多的天體。 至今為止在太陽系內一共已經發現了約127萬顆小行星,但這可能僅是所有小行星中的一小部分,只有少數這些小行星的直徑大於100公里。到1990年代為止最大的小行星是穀神星,但近年在古柏帶內發現的一些小行星的直徑比穀神星要大,比如2000年發現的伐樓拿(Varuna)的直徑為900公里,2002年發現的誇歐爾(Quaoar)直徑為1280公里,2004年發現的厄耳枯斯的直徑甚至可能達到1800公里。2003年發現的塞德娜(小行星90377)位於古柏帶以外,其直徑約為1500公里。 根據估計,小行星的數目應該有數百萬,詳見小行星列表,而最大型的小行星現在開始重新分類,被定義為矮行星。.

新!!: 天體命名和小行星 · 查看更多 »

小行星2060

2060 凱龍 (,或是Χείρων),是查爾斯·科瓦爾在1977年於外太陽系發現的小行星(回溯發現影像已追溯到1895年),它是第一顆被發現軌道在土星和天王星之間的新族群半人馬小行星的一員。 雖然他最初被分類為小行星,稍後發生它究竟是小行星還是彗星的爭議。如今,它被分在這兩類當中,做為彗星的名稱是 95P/開朗 。 凱龍是依據希臘神話中的半人馬-zh-hans:喀戎;zh-hk:奇倫;zh-tw:凱隆;-(英文:Chiron)命名的。在1978年發現的冥王星衛星名為凱倫(英文:Charon),不要將兩者搞混了。.

新!!: 天體命名和小行星2060 · 查看更多 »

小行星231346

是鹿林天文台發現的第7顆小行星,時間是2006年3月10日,分類上是一顆主帶小行星。.

新!!: 天體命名和小行星231346 · 查看更多 »

小行星26858

26858 Misterrogers 是一顆主帶小行星,它以熱門的兒童電視節目弗雷德·羅傑斯命名。羅傑斯,他終身迷戀天空和天文學-還在高中就獲得飛行員的執照- 還製做了一個天象儀節目,稱為羅傑斯先生鄰居的天空,並在美國許多的天象館演出過。.

新!!: 天體命名和小行星26858 · 查看更多 »

小行星4090

小行星4090(4090 Risehvezd)是一颗围绕太阳公转的小行星。1986年9月2日,安東寧·姆爾科斯在克列特发现了此天体。 这颗小行星的绝对星等为4.155259608370242等。.

新!!: 天體命名和小行星4090 · 查看更多 »

小行星5535

小行星5535是一颗位于小行星主带内侧的奥古斯塔族小行星。它是在1942年由德国天文学家卡尔·雷恩缪斯发现,但一直没有命名,直到1995年才以死在纳粹德国集中营犹太人、著名的安妮日记作者安妮·法兰克命名。 2002年11月2日,执行维尔特二号彗星探测任务的星尘号曾经顺道造访过这颗小行星,最近距离只有3079千米。星尘号拍摄的照片显示小行星5535的大小为6.6×5.0×3.4千米,是之前估计的两倍,形状像一个三棱镜,表面有几个明显的陨石坑。根据照片计算出其反照率在0.18–0.24之间。对小行星5535的初步分析显示它有可能是一颗相接双星,这个结构使其形成三棱镜形状,但这个解释并不是唯一的,对于它的形状也有其他可能的解释。 后来地面对小行星5535进行光学曲线观测,试图计算出它的自转周期。最后得出的结果是小行星5535的自转周期可能为0.5、0.63或0.95天,其中,0.63天和观测数据最为拟合。光学曲线还表明,小行星5535并非是朗伯漫反射体,这意味者它的表面特征如环形山或巨石的阴影都对它的亮度做出贡献,而并非只有大小。.

新!!: 天體命名和小行星5535 · 查看更多 »

小行星588

小行星588(588 Achilles),是由德国天文学家马克斯·沃夫于1906年2月22日在德国海德堡王座山天文台利用照相法发现的木星特洛伊小行星。 小行星588位于太阳和木星系统的引力平衡点拉格朗日点L4(即木星轨道之前60°角处),它是人类历史上发现的首颗特洛伊小行星。最初,小行星588是以发现者马克斯·沃夫的朋友奥地利天文学家约翰·帕利扎命名。但随着类似特征的天体被发现,天文学家将其归类为特洛伊小行星,并规定这种特征的小行星需以参与特洛伊战争的人物命名,而且规定位于拉格朗日点L4以希腊阵营的人物命名,而位于于拉格朗日点L5(即木星轨道之后60°角处)的以特洛伊阵营的人物命名。最终小行星588以古希腊神话和文学作品中的英雄人物,参与了特洛伊战争,被称为“希腊第一勇士”的阿喀琉斯命名。.

新!!: 天體命名和小行星588 · 查看更多 »

小行星884

小行星884(普里阿摩斯星,884 Priamus)是一颗绕太阳运动的小行星,是馬克斯·沃夫在1917年9月22日于海德堡发现的。它是一颗特洛伊小行星,它與木星共用軌道,并位于拉格朗日点L5。 小行星884的命名来自于特洛伊戰爭時的特洛伊王普里阿摩斯 。.

新!!: 天體命名和小行星884 · 查看更多 »

小行星9007

德(正式名稱:9007 James Bond)是1983年10月5日由安東寧·姆爾科斯(Antonín Mrkos)在捷克克列特天文台發現的小行星。 它的名字是為了紀念英國小說家伊恩·佛萊明(Ian Fleming),佛萊明在1953年至1964年間寫了一系列12本小說和9個短篇故事描述虛構的英國間諜詹姆士·龐德。龐德也是1968年後數十本其他作者延伸出版的小說,與持續在歷史中成為最受歡迎和盈利最豐的系列電影的中心人物。這顆小行星的序號,9007,是龐德在英國秘密情報局服務的代碼。.

新!!: 天體命名和小行星9007 · 查看更多 »

小行星帶

#重定向 主小行星帶.

新!!: 天體命名和小行星帶 · 查看更多 »

小行星列表

以下是太陽系中的小行星列表,以數字編號排序。截至2014年末,已編號的微型行星有415,688顆,其餘未編號的微型行星數量相當。當中大部分並不重要,而已命名的微型行星只有18,977顆。 若需較為重要的小行星列表,請參見值得關注的小行星列表,或是外海王星天體列表與類冥矮行星候選者列表。目前已有5顆微型行星被歸為矮行星,另外有幾顆小行星也有可能被列入該分類。.

新!!: 天體命名和小行星列表 · 查看更多 »

小行星通報

小行星通報 (MPCs) 是一份科學期刊, 小行星中心通常在每個滿月的日子發行。這份通報的內容包含天文觀測、小行星、彗星和一些天然衛星的軌道要素。彗星的天體測量觀測是完整的發表,但是小行星的部分只是列出天文台的代碼和摘要 (小行星中心正在考慮是否要提供完整的觀測資料)。在通報中還會發布新編號和命名的小行星,以及週期彗星的編號。新彗星和天然衛星的軌道也會在通報中發布;在小行星和彗星的軌道增補資料中也會出現新的小行星軌道。.

新!!: 天體命名和小行星通報 · 查看更多 »

尤金·德爾波特

尤金·約瑟夫·德爾波特,比利時天文學家。.

新!!: 天體命名和尤金·德爾波特 · 查看更多 »

尾宿八

尾宿八(λ Sco / 天蝎座λ) 是天蝎座的第二亮星,也是夜空中最亮的星之一。虽然尾宿八是天蝎座第二亮星,但其在拜耳命名法中被命名为λ。其英文俗名Shaula来自阿拉伯语الشولاء al-šawlā´,意为“翘起的尾巴”,因为其形成了蝎子(天蝎座)的尾巴。.

新!!: 天體命名和尾宿八 · 查看更多 »

巴納德星

巴納德星(英语:Barnard's Star)是一顆質量非常小的紅矮星,位在蛇夫座β星附近,蛇夫座66星的西北側,距離地球僅約6光年遠。美國天文學家愛德華·愛默生·巴納德在1916年測量出它的自行為每年10.3角秒,是已知相對太陽自行最大的恆星。為紀念巴納德的發現,後來稱這顆恆星為巴納德星。巴納德星距離太陽約1.8秒差距(6光年),是蛇夫座內距離我們最近、宇宙中第二接近太陽的恆星系統,也是第四接近太陽的恆星,前三接近太陽的恆星都是半人馬座α系統的成員。儘管它如此的接近地球,但是人類裸眼仍然看不見巴納德星。 由於它相當接近太陽,而且位於容易觀測的天球赤道附近,所以M型矮星巴納德星比任何恆星受到天文學家更多的研究和注意。天文學家的研究曾經聚焦在恆星的特徵、天體測量和推敲系外行星可能存在的極限。雖然這是一顆古老的恆星,天文學家仍然觀測到巴納德星發生過耀斑爆發。 天文學家曾對這顆恆星的一些研究題材發生爭議。從1960年代初至1970年代初長達十年之久,天文學家彼得·范德坎普(Peter van de Kamp)曾聲稱有一顆巨大的氣體行星環繞著巴納德星,一些天文學家也接受他的說法。天文學家後來認為恆星附近可能存在類似地球的小型行星,所以巨大行星存在的可能性就大為降低,范德坎普的主張被推翻。天文學家十分注意這顆恆星,它是無人旅行到鄰近的恆星系統可以快速前往研究的一個目標。 因為巴納德星擁有幾點與眾不同的特徵,所以它成為天文學家相當矚目的恆星。巴納德星是目前所有已知恆星中自行運動最快的恒星,因此有時候也被稱為巴納德「逃亡之星」(Runaway Star),它的自行速度比大熊座的飛行之星快一倍。恒星通常每年的自行速度還不到1角秒,牧夫座大角星自行運動算是比較明顯的,但是一年也不到2角秒,而巴納德星每年的自行運動卻高達10.31角秒。巴納德星距離太陽系只有5.96光年,除了南門二系統(半人馬座α三合星)外,它是距離地球最近的恒星。巴納德星最吸引人的地方是這顆恒星周圍很可能有兩顆大小約等於木星和土星的行星圍繞它公轉,是一個距離地球很近的恆星系。.

新!!: 天體命名和巴納德星 · 查看更多 »

中國

中國是位於東亞的國家或地理區域,此名稱最早见于西周,用來指以洛陽盆地為中心的中原地區,與四夷相對,之後逐漸用來指稱從夏朝起延續傳承至今的各政權。其疆域隨著歷史演變而有所增減,但大多不脫以中原王朝根基所在的汉地九州為中心。民族構成上以漢族為主體,文化上透過歷代王朝政權與周邊各民族政權的交流與征戰,而融入不少周邊民族的文化。現今國際上廣泛承認代表中國的政權是中华人民共和国。 中國文明是世界上最早的文明之一。 新石器时期,中原地区开始出现聚落组织;公元前27世纪左右出现方国,以共主為首的制度;前20世纪开始,古代中国进入世袭的封建皇朝阶段;公元前2世紀,秦滅六國,完成中國第一次大一統。此後幾千年來,中國的政治制度以半傳統的夏代為基礎的世襲君主制以朝代更換政權運作。此後经多次擴大,破裂,重組,朝代更迭,經過數次统一与分裂交替进行。直到1911年辛亥革命後,中國废除君主制,实行共和制,清朝被1912年成立的中华民国取代。1945年第二次國共內戰爆發後,中國共產黨逐漸控制中國的大部分領土,最終於1949年10月1日建立中华人民共和国,形成了中华民国與中华人民共和国双方相隔台灣海峽对峙的局面;惟做為國際關係核心場域的聯合國系統內,中華民國政府仍持擁有中國代表權,直到1971年聯合國大會2758號決議通過後,才被中華人民共和國政府完全取代。 中國經濟曾经在相当长的历史时期中在世界上占有重要的地位,其周期通常与王朝的兴衰与更替相對應。中國經濟史可分为几个階段:第一階段為遠古至西晉末年,其中以三國孫吳時轉變較大;第二階段為東晉至北宋末年,其中以唐安史之亂劃分為前後;第三階段為南宋建立至鴉片戰爭張家駒,《兩宋經濟重心的南移》,湖北人民出版社,1957年。工业革命後,西方國家的工業成品,無論在數量和質量上,相較於當時中国純手工業經濟出産的商品,佔有壓倒性的優勢。而且,由于明清兩代以來,中國對外政策趨於保守,並對外實行海禁,使得西方工業化的影响步伐在中国国門前站住了腳,中国在19世紀末以前,一直沒有很好地進行工業化,經濟遂落後於西方。1978年改革開放施行後,中国经济發展迅速,對世界經濟的影響也日漸顯著。 中国文化歷經上千年的歷史演變,是各區域、各民族古代文化長期相互交流、借鉴、融合的結果。其中汉文化对日本、朝鮮半島和东南亚有深远影响,形成漢字文化圈。中国的传统艺术形式有国乐、相声、戏曲、书法、国画、文學、陶瓷藝術、雕刻等,传统娱乐活动有象棋、围棋、麻将、中国武术等。茶、酒、菜和筷子等为中国的特色饮食文化,春节(舊曆新年)、元宵、清明、端午、七夕、中秋、重阳、冬至等为传统节日。中国传统上是一个儒学国家,以夏历为历法,以五伦为道德准则。春秋时期孔子「有教无类,因材施教」开始办私塾培养人才,汉朝时采用察举推选政府官员,隋朝起实行科举在平民中选拔人才。此外,中国歷朝歷代都设有史官,因此保存有十分详尽的历史资料,如《二十四史》、《资治通鉴》等。古代中國在科學領域上有豐厚的成就。.

新!!: 天體命名和中國 · 查看更多 »

亡神星

亡神星(小行星90482,奧迦斯)是柯伊伯带的天體,被發現時的臨時編號為2004 DW,發現者是加州理工學院的米高·布朗、雙子星天文台的乍德·特魯希略和耶魯大學的大衛·拉比諾維茨。據以認定發現的影像是在2004年2月17日取得的,但往回則追溯到了1951年11月8日的影像。.

新!!: 天體命名和亡神星 · 查看更多 »

庫樓五

库楼五(HD 117440,半人马座d,d Cen)是半人马座的一个双星系统。距离地球约1250光年。 该双星系统的两颗成员星都是黄色G型亮巨星。主星半人马座d A的视星等为+4.5,而其伴星半人马座d B的视星等为+4.7。两颗恒星绕着它们公共的质量中心以78.7年的周期绕行,伴星的半长轴为0.165弧秒。两子星均比太阳大的多,质量各约为太阳的6.8和6.5倍,直径则是太阳的82和71倍。两子星辐射出的总光度各约为太阳的3500和2900倍.这对双星预计年龄不足1亿年,将继续朝赫罗图右上方演化,最后则会成为大质量的白矮星。 Centauri, d Category:双星 Category:半人马座 117440 Category:G-型巨星 Category:库楼 (星官).

新!!: 天體命名和庫樓五 · 查看更多 »

人马座

人马座(Sagittarius,天文符号:♐),又稱射手座,是一个南天黄道带星座,面积867.43平方度,占全天面积的2.103%,在全天88个星座中,面积排行第十五。人马座中亮于5.5等的恒星有65颗,最亮星为箕宿三(人马座ε),视星等为1.85。每年7月7日子夜人马座中心经过上中天。.

新!!: 天體命名和人马座 · 查看更多 »

以人名命名的恆星

在過去幾個世紀中,只有很少數的恆星能在符合天體命名慣例下,被以人名來命名。多數的恆星不是使用傳統的名稱(主要來自各民族的傳統或阿拉伯文),就是採用星表的編號。.

新!!: 天體命名和以人名命名的恆星 · 查看更多 »

仙女座

仙女座,88個現代星座之一,也是2世紀希臘羅馬天文學家托勒密列出的48個星座之一,位於天球赤道以北。在希臘神話中,仙女座象征被拴在岩石上待海怪刻托吞噬的女神安德洛墨達。仙女座在北半球秋季夜晚最易觀賞,同時出現的還有象征珀耳修斯神話中其他神祇的星座。由於其赤緯偏北,仙女座只有在南緯40度線以北的地區能夠看到,在40度以南的地區則會位於地平線之下。仙女座是天球上最大的星座之一,面積為722平方度,即是滿月大小的1400倍,最大星座長蛇座面積的55%,亦是最小星座南十字座面積的十倍以上。 仙女座中的最亮恆星壁宿二(仙女座α)是一對聯星,同時可歸為飛馬座的一部分。天大將軍一(仙女座γ)也是一對聯星,色彩鮮艷,是受業餘天文學家青睞的觀測對象。奎宿九(仙女座β)比壁宿二少暗一些,屬於紅巨星,用肉眼能看到它呈紅色。肉眼可見的仙女座星系(梅西爾31)是仙女座內最明顯的深空天體。它是距離銀河系最近的螺旋星系,也是亮度最高的梅西爾天體之一。一些較暗的星系,包括M31的伴星系M110和M32、可用望遠鏡觀測的藍雪球星雲以及更遙遠的NGC 891,都在仙女座的範圍以內。 在中國天文學中,組成仙女座的各個恆星分別屬於四個不同的星宿;印度神話中也有對應於仙女座的星座。仙女座流星雨是每年11月發生、量度較低的流星雨,其輻射點位於仙女座之內。.

新!!: 天體命名和仙女座 · 查看更多 »

仙女座星系

仙女座星系(Andromeda Galaxy,國際音標為:,也稱為梅西爾31、星表编号为M31和NGC 224,在舊文獻中曾經稱為仙女座星雲)是一個螺旋星系,距離地球大約250萬光年,是除麦哲伦云(地球所在的银河系的伴星系)以外最近的星系。位於仙女座的方向上,是人類肉眼可見(3.4等星)最遠的深空天體。 仙女座星系被相信是本星系群中最大的星系,直径约20万光年,外表颇似银河系。本星系群的成員有仙女星系、銀河系、三角座星系,還有大約50個小星系。但根據改進的測量技術和最近研究的數據結果,科學家現在相信銀河系有許多的暗物質,並且可能是在這個集團中質量最大的。 然而,史匹哲太空望遠鏡最近的觀測顯示仙女座星系有將近一兆(1012)顆恆星,數量遠比我們的銀河系為多。在2006年重新估計銀河系的質量大約是仙女座星系的50%,大約是7.1M☉.

新!!: 天體命名和仙女座星系 · 查看更多 »

伽利略·伽利莱

伽利略·伽利莱(Galileo Galilei, ;)Drake(1978, p.1).伽利略出生日期用的是儒略曆,當時所有基督教國家都使用這個曆法。義大利及幾個天主教國家於1582年改用公曆。除非特別註明,條目中的日期皆為公曆。,義大利物理學家、數學家、天文學家及哲學家,科學革命中的重要人物。其成就包括改進望遠鏡和其所帶來的天文觀測,以及支持哥白尼的日心说。伽利略做实验证明,感受到引力的物体并不是呈等速運動,而是呈加速度運動;物體只要不受到外力的作用,就會保持其原來的靜止狀態或勻速運動狀態不變。他又發表惯性原理阐明,未感受到外力作用的物体会保持不变其原来的静止状态或匀速运动状态。伽利略被譽為“現代觀測天文學之父”、“現代物理學之父”、“科學之父”及“現代科學之父”。Finocchiaro (2007).

新!!: 天體命名和伽利略·伽利莱 · 查看更多 »

伽利略衛星

伽利略衛星是木星的四個大型衛星,由伽利略於1610年1月7日首次發現。這四個衛星可以用低倍率望遠鏡來觀測到,如果沒有光害,且環境極好,甚至可用肉眼勉強看到木衛三和木衛四,利用數位單眼相機搭配合適的望遠鏡頭也可以輕易的在較無光害的地方拍下這幾顆伽利略衛星。.

新!!: 天體命名和伽利略衛星 · 查看更多 »

彗星

彗星(Comet,有時也被誤記為慧星)是由冰構成的太陽系小天體(SSSB),當他朝向太陽接近時,會被加熱並且開始釋氣,展示出可見的大氣層,也就是彗髮,有時也會有彗尾。這些現象是由太陽輻射和太陽風共同對彗核作用造成的。彗核是由鬆散的冰、塵埃、和小岩石構成的,大小從P/2007 R5的數百米至海爾博普彗星的數十公里不等,但大部分都不會超過16公里。 彗星的軌道週期範圍也很大,可以從幾年到幾百萬年。短週期彗星來自超越至海王星軌道之外的柯伊伯帶,或是與離散盤有所關聯 。長週期彗星被認為起源於歐特雲,這是在古柏帶外面,伸展至最近恆星一半距離上,由冰凍天體構成的球殼。長週期彗星受到路過恆星和銀河潮汐的引力攝動而直接朝向太陽前進。雙曲線軌道的彗星可能在進入內太陽系之前曾經被沿著雙曲線軌跡被拋射至星際空間,則只會穿越太陽系一次。來自太陽系外,在銀河系內可能是常見的系外彗星也曾經被檢測到。 彗星與小行星的區別只在於存在著包圍彗核的大氣層,未受到引力的拘束而擴散著。這些大氣層有一部分被稱為彗髮(在中央包圍著彗核的大氣層),其它的則是彗尾(受到來自太陽的太陽風電漿和光壓作用,從彗髮被剝離的氣體、塵埃、和帶電粒子,通常呈線性延展的部分)。然而,熄火彗星因為已經接近太陽許多次,幾乎已經失去了所有可揮發的氣體和塵埃,所以就顯得類似於小的小行星。小行星被認為與彗星有著不同的起源,是在木星軌道內側形成的,而不是在太陽系的外側。主帶彗星和活躍的半人馬小行星的發現,已經使得小行星和彗星之間的差異變得模糊不清。 ,已經知道的彗星有4,894顆,其中大約有1,500顆是克魯茲族彗星和大約484顆短週期彗星,而且這個數量還在穩定的增加中。然而,這只是潛在彗星族群中微不足道的數量:估計在外太陽系的儲藏所內類似的彗星體數量可能達到一兆顆。儘管大多數的彗星都是暗淡和不夠引人注目的,但平均大概每年會有一顆裸眼可見的彗星,其中特別明亮的就會被稱為"大彗星"。 在2014年1月22日,ESA科學家的報告首次明確的指出在矮行星穀神星,也是小行星帶中最大的天體,有水氣存在。這項檢測是通過赫歇爾太空望遠鏡使用遠紅外線技術完成的。此一發現是出人意料之外的,因為彗星,不是小行星,才會有這種典型的"噴流萌芽和羽流"。根據其中一位科學家的說法:"彗星和小行星之間的區隔是越來越模糊了"。 古代也有彗星出现的记录,古人一般認為彗星是凶兆。.

新!!: 天體命名和彗星 · 查看更多 »

佛蘭斯蒂德命名法

恆星的佛蘭斯蒂德命名法(Flamsteed designations)與拜耳命名法類似,除了以數字取代希臘字母外,每顆恆星還是以數字和拉丁文所有格的星座名稱結合在一起。(參見星座列表列出的星座名稱和所有格的形式) 在每一個星座中,數字起初是隨著赤經的增加而增加,但是因為歲差影響,現在有些地方已經不合規定了。這種命名法最早出現在約翰·佛蘭斯蒂德的《不列颠星表》(Historia coelestis Britannica),是哈雷與牛頓未經約翰·佛蘭斯蒂德同意就在1712年出版的。在約翰·佛蘭斯蒂德過世後,1725年的最後一版,包含了約3,000顆恆星,比過去的星表都要巨大,準確度也更高,但卻略去了佛氏的編號。 這種命名法在18世紀獲得普遍的認同,沒有拜耳名稱的恆星幾乎都會以這種數字來標記,但有拜耳名稱的恆星全部依然繼續沿用舊名,而佛氏編號就幾乎完全被捨棄不用。有些著名的恆星都是使用佛氏編號標示的,例如,飛馬座51(參見太陽系外行星)、天鵝座61(參見視差),都是採用佛氏編號命名的。 當現代的星座界限在草擬時,有些已經有佛氏編號的恆星被分割到沒有被編號過的星座內,或是因為已經有了拜耳的名稱,而省略了編號。但需要特別注意的是佛氏編號只涵蓋到在大不列顛可以看見的星星,因此偏向南天的星座都沒有佛氏編號。(南天的球狀星團杜鵑座47的编号来自约翰·波得;鄰近的波江座82不是佛蘭斯蒂德命名法而是古德命名法的编号。) 在佛蘭斯蒂德的目錄上有些錯誤的記載,例如,佛蘭斯蒂德在1690年記錄了天王星,但他沒有認出那是顆行星,而將他登錄為金牛座34。.

新!!: 天體命名和佛蘭斯蒂德命名法 · 查看更多 »

土星

土星,為太陽系八大行星之一,至太阳距离(由近到远)位於第六、体积則僅次於木星。並與木星、天王星及海王星同属氣體(類木)巨星。古代中国亦称之填星或鎮星。 土星是中国古代人根据五行学说结合肉眼观测到的土星的颜色(黄色)来命名的(按照五行学说即木青、金白、火赤、水黑、土黄)。而其他语言中土星的名称基本上来自希臘/羅馬神話传说,例如在欧美各主要语言(英语、法语、西班牙语、俄语、葡萄牙语、德语、意大利语等)中土星的名称来自于羅馬神話中的农业之神萨图尔努斯(拉丁文:Saturnus),其他的还有希臘神話中的克洛諾斯(泰坦族,宙斯的父親,一说其在罗马神话中即萨图尔努斯)、巴比倫神话中的尼努尔塔和印度神话中的沙尼。土星的天文学符號是代表农神萨图尔努斯的鐮刀(Unicode: )。 土星主要由氫組成,還有少量的氦與微痕元素,內部的核心包括岩石和冰,外圍由數層金屬氫和氣體包覆著。最外層的大氣層在外观上通常情况下都是平淡的,雖然有时会有長时间存在的特徵出現。土星的風速高達1,800公里/時,明顯的比木星上的風快速。土星的行星磁場強度介於地球和更強的木星之間。 土星有一個顯著的環系統,主要的成分是冰的微粒和較少數的岩石殘骸以及塵土。已經確認的土星的衛星有62顆。其中,土卫六是土星系統中最大和太陽系中第二大的衛星(半徑2575KM,太陽系最大的衞星是木星的木衛三,半徑2634KM),比行星中的水星還要大;並且土卫六是唯一擁有明顯大氣層的衛星。.

新!!: 天體命名和土星 · 查看更多 »

地球

地球是太阳系中由內及外的第三顆行星,距离太阳约1.5亿公里。地球是人類已知宇宙中唯一存在生命的天体,也是人類居住的星球,共有74.9億人口。地球质量约为5.97×1024公斤,半径约6,371公里,密度是太阳系中最高。地球同时进行自转和公转运动,分别产生了昼夜及四季的变化更替,一太陽日自转一周,一太陽年公转一周。自转轨道面称为赤道面,公转轨道面称为黄道面,两者之间的夹角称为黄赤交角。地球仅擁有一顆自然卫星,即月球。 地球表面有71%的面积被水覆盖,称为海洋或可以成为湖或河流,其余是陆地板块組成的大洲和岛屿,表面分布河流和湖泊等水源。南极的冰盖及北极存有冰。主體包括岩石圈、地幔、熔融态金属的外地核以及固态金属的內地核。擁有由外地核產生的地磁场。外部被氣體包圍,称为大氣層,主要成分為氮、氧、氬。 地球诞生于约45.4亿年前,42億年前開始形成海洋。并在35亿年前的海洋中出现生命,之后逐步涉足地表和大气,并分化为好氧生物和厌氧生物。早期生命迹象产生的具體证据包括格陵兰岛西南部中拥有约37亿年的历史的石墨,以及澳大利亚大陆西部岩石中约41亿年前的 Early edition, published online before print.。此后除去数次生物集群灭绝事件,生物种类不断增多。根据学界测定,地球曾存在过的50亿种物种中,已经绝灭者占约99%,据统计,现今存活的物种大约有1,200至1,400万个,其中有记录证实存活的物种120万个,而余下的86%尚未被正式发现。2016年5月,有科学家认为现今地球上大概共出现过1--种物种,其中人类正式发现的仅占十万分之一。2016年7月,科学家称现存的生物共祖中共存在有355种基因。地球上有约74亿人口,分成了约200个国家和地区,藉由外交、旅游、贸易、传媒或战争相互联系。.

新!!: 天體命名和地球 · 查看更多 »

北极星

北極星是指最靠近北天極的恆星,是北半球能见到的極星。現在的北極星是小熊座α星。 由於歲差的關係,不同时期的北極星是不同的。約4800年前,當時的北極星是天龍座α星。古希臘時代,北極星是小熊座β星。到2100年左右,目前的小熊座α和北極的夾角才會變成最小(只有27'38")。到31世紀後,少衛增八(仙王座γ)將會成為北極星。14000年左右,天琴座α星(織女星)將成為北極星。.

新!!: 天體命名和北极星 · 查看更多 »

國際天文聯會

國際天文學聯合會(International Astronomical Union,缩写为IAU;法語:Union astronomique internationale,縮寫為UAI),由博士以上的專業天文學家所組成,積極參與天文學研究與教育。於1919年7月28日在比利時的布魯塞爾成立,由當時的國際天文星圖計畫(Carte du Ciel)、太陽天文聯合會(Solar Union)和國際時間局(Bureau International de l'Heure)等數個組織合併而成。其後,世界各國的國家級天文組織陸續加入,构成今日的規模。該會是國際科學理事會(ICSU)的國際科學聯合成員,也是國際上承認的權威机构,負責統合恆星、小行星、衛星、彗星等新天體以及天文學名詞的定義與英文命名。2014年7月10日宣布「外星世界命名」(NameExoWorlds)活動啟動,開放公眾參與系外行星的命名。 IAU下分成數個工作單位,IAU也負責天文訊息全球電報通報系統,實際工作由中央天文電報局(Central Bureau for Astronomical Telegrams,CBAT)汇总整理天文訊息的匯報及電報的發布。 總會共有90個不同國家或地區共10144位會員,其中美國最多,有2579位會員,其次为法國(700位)、日本(598位)、義大利(568位)、德國(532位)和英國(523位)。.

新!!: 天體命名和國際天文聯會 · 查看更多 »

分點

分點(equinox,或稱二分點)是想像中天球赤道在天球上的位置,是每年太陽穿過天球赤道和黃道在天球上交點的天文事件,這造成地球上各地的白天和夜晚幾乎等長。只有在分點的瞬間,地球上的日夜分界線(白天和夜晚分界之處)才會垂直於赤道。其結果是地球的南北兩半球得到相同的照明。 換言之,分點是日下點正好落在赤道上的唯一時刻,意味著在赤道上會看見太陽位在頭頂正上方。分點每年會出現兩次,大約分別在3月21日(春分)和9月23日(秋分)。在春分,日下點由南向北通過赤道,而秋分則是日下點由北向南通過赤道。 分點和至點直接關係到每年的季節。在北半球,多數的文明在傳統上以三月的春分點(vernal equinox)標示著春季的開始,以九月的秋分點(autumnal equinox)標示著秋季的開始。在南半球,春分點在九月,而秋分點在三月。 追溯equinox這個字的源頭來自拉丁文的aequi nox,意思是日夜等分。實際上只是近似如此,當太陽經過分點時,陽光平均的照射在南北兩半球,地球上各地的日照時間都是一樣的長(不是日夜等長)。 由於歲差的影响,分點每年沿着赤道向西移動七分之一弧秒。.

新!!: 天體命名和分點 · 查看更多 »

创神星

創神星,正式名称为50000 Quaoar,中文音譯為--欧尔,是由美国加州理工学院的两位天文学家布朗和特鲁希略于2002年10月7日发现的柯伊伯带天体。“--欧尔”(Quaoar)一词,源自美国原住民通格瓦部族(Tongva)神话的创世之神,所以中文的正式译名為創神星。国际天文联会之前给予这颗天体临时编号为,也叫小行星50000。 天文學家对創神星的了解甚少,根据天文學家估計,創神星直径介於800至1300公里之間,約相等于地球的十分之一。根據天文學家初步计算,創神星距离地球约41至45天文单位,公轉一周需时286年。.

新!!: 天體命名和创神星 · 查看更多 »

喬治三世

喬治三世(George III,),全名喬治·威廉·腓特烈(George William Frederick),1760年10月25日登基為大不列顛國王及愛爾蘭國王,至1801年1月1日後因大不列顛及爱尔兰組成聯合王國而成為聯合王國國王,直到1820年駕崩為止。喬治三世同時為不倫瑞克公爵,因此在1814年10月12日成為漢諾威國王以前,也是神圣罗马帝国漢諾威的選帝侯。喬治三世為漢諾威王朝的第三位不列顛君主,是首位以英语為母語的漢諾威王朝君主,而事實上,喬治三世從未到訪過德意志地區。 喬治三世漫長的統治,見證了其王國與大片歐洲大陸進行的一連串軍事衝突。在他的統治初期,大不列顛在七年战争中擊敗法国,並使大不列顛壓倒歐洲各國、成功支配著北美洲及印度地區。不過,隨著大不列顛在美國獨立戰爭的戰敗,喬治三世在美洲失去了大量殖民地,這些殖民地的獨立最終促成美國立國。此後,喬治三世參與了一連串的反法戰爭,反抗拿破崙及革命後的法國,這些戰爭最後以拿破崙在1815年被擊敗而作結。 喬治三世晚年的管治倍受精神問題困擾,其精神病最初僅反覆出現,但後來卻演變成永久性的精神失常。喬治三世的病情曾令當時的醫學界大惑不解,但現今學者一般相信他所患的是噗瑳症(Porphyria)。噗瑳症是血液病的一種,能夠透過服用毒藥砒霜而引發,而根據近世研究,亦的確發現喬治三世留存後世的頭髮樣本中,存有高含量的砒霜。喬治三世在1810年最後一次病發後,其太子威爾斯親王喬治以攝政王身份代為統治。喬治三世在1820年駕崩後,威爾斯親王繼位,是為喬治四世。歷史學界對喬治三世的生平研究往往猶如「萬花筒般觀點多變」(kaleidoscope of changing views),這很大程度是因為受到歷來傳記作者的個人偏見所局限,以及受有限的歷史史料所影響的。.

新!!: 天體命名和喬治三世 · 查看更多 »

傳統古柏帶天體

在天文學中,QB1天體(Cubewano)是指運行軌道在海王星之外,且不與大行星產生軌道共振的古柏帶天體。這類天體的半長軸在40-50天文單位之間,且不會切入海王星的軌道,有時也稱為傳統的古柏帶天體。軌道接近圓形(離心率在0.15以下) 這個奇特的名稱來自被發現的第一顆海王星外天體(除了冥王星與卡戎),(15760) 1992 QB1,此後發現的類似天體均稱作QB1天體(原文為「QB1-o's」或直接發音為「Cubewanos」)。 歸屬於QB1天體者如下:.

新!!: 天體命名和傳統古柏帶天體 · 查看更多 »

傅說 (恆星)

傅說,即天蠍座G(G Scorpii),HD 161892,又名CD-3711907,SAO 209318、HR 6630,是一颗位於天蠍座的恒星,视星等为3.21,位于銀經353.5,銀緯-4.94,其B1900.0坐标为赤經,赤緯。拜耳命名法將該恆星編號為望遠鏡座γ,但現已劃入天蠍座。.

新!!: 天體命名和傅說 (恆星) · 查看更多 »

冥王星

冥王星(小行星序号:134340 Pluto。天文代號:♇,Unicode編碼U+2647)是柯伊伯带中的矮行星。冥王星是第一颗被发现的柯伊伯带天体。冥王星是太阳系内已知体积最大、质量第二大的矮行星。在直接围绕太阳运行的天体中,冥王星体积排名第九,质量排名第十。冥王星是体积最大的海王星外天体,其质量仅次于位于离散盘中的阋神星。与其他柯伊伯带天体一样,冥王星主要由岩石和冰组成。冥王星相对较小,仅有月球质量的六分之一、月球体积的三分之一。冥王星的轨道离心率及倾角皆较高,近日点为30天文单位(44亿公里),远日点为49天文单位(74亿公里)。冥王星因此周期性进入海王星轨道内侧。海王星与冥王星因相互的轨道共振而不会碰撞。在冥王星距太阳的平均距离上阳光需要5.5小时到达冥王星。 1930年克莱德·汤博发现冥王星,并将其视为第九大行星。1992年后在柯伊伯带发现的一些质量与冥王星相若的冰制天体挑战冥王星的行星地位。2005年发现的阋神星质量甚至比冥王星质量多出27%,国际天文联合会(IAU)因此在翌年正式定义行星概念。新定义将冥王星排除行星范围,将其划为矮行星(類冥矮行星)。 冥王星目前已知的卫星总共有五颗:冥卫一、冥卫二、冥卫三、冥卫四、冥卫五。冥王星与冥卫一的共同质心不在任何一天体内部,因此有时被视为一联星系统。IAU并没有正式定义矮行星联星,因此冥卫一仍被定义为于冥王星的卫星。 2015年7月14日新视野号探测器成为首架飞掠冥王星的宇宙飞船。在飞掠的过程中,新视野号对冥王星及其卫星进行细致的观测。.

新!!: 天體命名和冥王星 · 查看更多 »

克卜勒34

克卜勒34(Kepler-34)是一顆位於天鵝座的食聯星。系統中的兩顆恆星質量分別與太陽幾乎相同,且都是光譜G型的恆星。兩顆恆星距離0.22天文單位,在橢圓軌道上以週期27日環繞兩者質量中心。.

新!!: 天體命名和克卜勒34 · 查看更多 »

矮行星

行星(別稱中行星、準行星、侏儒行星)是具有行星級質量,但既不是行星,也不是衛星的太陽系天體。也就是說,它是直接環繞著太陽,並且自身的重力足以達成流體靜力平衡的形狀(通常是球體),但未能清除鄰近軌道上的其它小天體和物質。 矮行星這個項目是國際天文學聯合會在2006年8月通過環繞太陽天體的三種分類定義的一部分,導致新增加了發現的比海王星離太陽更遠的天體,其大小足以和冥王星匹敵,並且最後質量超過冥王星的天體,例如鬩神星。2006年,在國際天文學聯合會的行星定義上決議將矮行星排除在外,對此學界評價兩極。天文學家麥克·布朗認為這是正確的決定,而他是鬩神星和其它新矮行星的發現者。但拒絕接受這樣定義的阿蘭·斯特恩(Alan Stern),卻是在1991年4月創造矮行星這個名詞的天文學家。 國際天文學聯合會(IAU)目前承認的矮行星有5顆:、冥王星、、和。布朗批評官方的認可:「一個理性的人可能會認為,太陽系裡面只有5顆符合IAU定義的已知矮行星,但這些理性的人將無從修正。」 在另一份有數百顆已知的天體列在其中的清單,被懷疑都是太陽系的矮行星,估計在完整的探索過整個古柏帶之後,可能會發現200顆矮行星,而在探索過古柏帶以外的區域後,矮行星的總數可能超過10,000顆。個別的科學家認定的還有一些,麥克-布朗在2011年8月發表的清單中,從幾乎可以肯定到有可能是矮行星,就有390顆候選天體。布朗目前標示的11顆已知天體 -除5顆是已經被IAU認可的之外,還有(225088) 2007 OR10、、、、(307261) 2002 MS4和—是「幾乎可以確定」的,另外還有12顆是極有可能的Mike Brown, Accessed 2013-11-15。斯特恩也指出還有十多顆已知的矮行星Alan Stern,, August 24, 2012。 然而,只有兩顆天體,穀神星和冥王星,有足夠詳細的觀測資料可以確定它們符合國際天文學聯合會的定義。國際天文學聯合會接受鬩神星是矮行星,是因為它比冥王星更大。他們附帶決議尚未命名的海王星外天體,它們的絕對星等必須大於 +1(這意味著假設幾何反照率 ≤ 1,直徑就必須≥838公里),就會據以假設是矮行星來命名。目前,只有鳥神星和妊神星是依據這個程序被承認是矮行星。國際天文學聯合會還沒有討論其它可能是矮行星天體的相關問題。 在其它行星系統的分類中,並未列出矮行星的特徵。.

新!!: 天體命名和矮行星 · 查看更多 »

火星

火星(Mars, 天文符號♂),是離太陽第四近的行星,為太陽系中四顆類地行星之一。西方稱火星為瑪爾斯,是羅馬神話中的戰神;古漢語中則因为它荧荧如火,位置、亮度時常變動讓人無法捉摸而稱之為熒惑。火星在太陽系的八大行星中,第二小的行星,其質量、體積仅比水星略大。火星的直徑約為地球的一半,自轉軸傾角、自轉週期則與地球相當,但繞太陽公轉周期是地球的兩倍。在地球上,火星肉眼可見,亮度可達-2.91,只比金星、月球和太陽暗,但在大部分時間裡比木星暗。 火星大气以二氧化碳为主,既稀薄又寒冷。火星在視覺上呈現為橘紅色是由其地表所廣泛分佈的氧化鐵造成的。火星地表沙丘、砾石遍布且没有稳定的液态水,火星南半球是古老、充满陨石坑的高地,北半球则是较年轻的平原。 火星有兩個天然衛星:火衛一和火衛二,形狀不規則,可能是捕獲的小行星。火星目前有四艘在軌運行的探測船,分別是火星奧德賽號、火星快車號和火星偵察軌道器以及2014年9月22日抵达的MAVEN轨道器,地表還有很多火星車和著陸器,包括兩台火星車:機會號和好奇號,和已經結束任務的精神號和鳳凰號。根據觀測的證據,火星以前可能覆蓋大面積的水。亦觀察到最近十年內類似地下水湧出的現象。 火星全球勘測者則觀察到南極冠有部份退縮。火星快車號和火星偵察軌道器的雷達資料顯示兩極和中緯度地表下存在大量的水冰Water ice in crater at Martian north pole http://www.esa.int/SPECIALS/Mars_Express/SEMGKA808BE_0.html。2008年7月31日,鳳凰號直接於表土之下證實水冰的存在。2013年9月26日,火星探測車好奇號發現火星土壤含有豐富水分,大約為1.5至3重量百分比,顯示火星有足夠的水資源供給未來移民使用。2015年9月證實火星有間歇流動的液態水(液態鹽水)。.

新!!: 天體命名和火星 · 查看更多 »

灶神星

星, 小行星序號為4 Vesta,是太陽系最大的小行星之一,平均直徑。它是海因里希·歐伯斯在1807年3月29日發現的,以羅馬神話中家和壁爐的女神Vesta命名,中文翻譯為灶神星。 灶神星是繼矮行星穀神星之後,質量第二大的主帶小行星 ,佔有主小行星帶總質量的9%。 質量雖然比智神星多一點點,但體積卻比較小,是體積第三大的小行星。灶神星形成岩質行星剩餘的原行星(內部分異)。一、二億年前,灶神星曾經被撞擊,產生了許多碎片,並留下兩個巨大的撞擊坑,而且南半球有著很高的密度。這次事件的一些碎片已經墬落到地球,成為HED隕石,提供了有關灶神星的豐富資訊來源。 灶神星是從地球可以看見的最亮的小行星,它距離太陽最遠時的距離只比穀神星最近的距離遠了一點,不過灶神星的軌道完全都在穀神星的軌道之內。 NASA的''黎明號''太空船在2011年7月16日至2012年9月5日進入環繞灶神星的軌道,進行了將近一年的探測,然後前往穀神星。研究人員繼續分析黎明號收集到的資訊,期望能更了解灶神星的形成和歷史。.

新!!: 天體命名和灶神星 · 查看更多 »

球狀星團

球狀星團是外觀呈球形,在軌道上繞著星系核心運行,很像衛星的恆星集團。球狀星團因為被重力緊緊束縛,使得恆星高度的向中心集中,因此外觀呈球形。 球狀星團被發現多在星系的暈之中,遠比在星系盤中被發現的疏散星團擁有更多的恆星,但球狀星團的數量相較疏散星團相對的稀少,在銀河系內迄今只發現大約150個至158個。在銀河系內也許還有10- 20個或更多個尚未被發現。這些球狀星團環繞星系公轉的半徑可以達到40,000秒差距(大約130,000光年)或更遠的距離。越大的星系擁有越多:以仙女座星系為例,可能有500個球狀星團。有些巨大的橢圓星系,特別是位於星系團中心的,像是M87,有多達13,000個球狀星團。 在本星系群擁有足夠質量的星系,都有關聯性的球狀星團,並且幾乎每個曾經探測過的大質量星系都被發現擁有球狀星團的系統。人馬座矮橢球星系和有 爭議的大犬座矮星系似乎正在將它們的球狀星團(像是帕羅馬12)捐贈給銀河系。這表明這個星系的許多球狀星團在之前是如何取得的。 雖然這些球狀團看起來包含一些最初在銀河系產生的恆星,但它們的起源和在銀河系演化中扮演的角色仍不清楚。球狀星團看起來和矮橢圓星系有著顯著的不同,它是母星系形成恆星時的一部分,而不是一個獨立的星系。然而,由天文學家最近的推測顯示,球狀星團和矮橢球可能不能很明確的區分為兩種不同類型的天體。.

新!!: 天體命名和球狀星團 · 查看更多 »

祝融星

祝融星(又稱火神星;Vulcain;Vulcan)是一個假設在太陽與水星之間運行的行星,這個19世紀的假設被愛因斯坦的廣義相對論排除。 祝融星的中文名称来源于中国上古神话人物火神祝融,西方名稱则源自羅馬神話的鍛冶之神武尔坎努斯(Vulcanus)。.

新!!: 天體命名和祝融星 · 查看更多 »

科幻小說

#重定向 科幻小说.

新!!: 天體命名和科幻小說 · 查看更多 »

穀神星

星(Ceres,; 小行星序號:1 Ceres)是在火星和木星軌道之間的主小行星帶中最亮的天體。它的直徑大約是,使它成為海王星軌道以內最大的小行星。在太陽系天體大小列表排名第35,是在海王星軌道內唯一被標示為矮行星的天體。穀神星由岩石和冰組成,估計它的質量佔整個主小行星帶的三分之一。穀神星也是主小行星帶唯一已知自身達到流體靜力平衡的天體。從地球看穀神星,它的視星等範圍在+6.7至+9.3之間,因此即使在最亮時,除非天空是非常的黑暗,否則依然是太暗淡而難以用肉眼直接看見。1801年1月1日意大利人朱塞普·皮亞齊在巴勒莫首先發現了穀神星。最初被當成一顆行星,随着越來越多的小天體在相似的軌道上被發現,因此在1850年代被重分類為小行星。 穀神星顯示已經有區分成岩石、核和冰的地函,並且在冰層之下可能留有液態水的內部海洋。表面可能是水冰和不同的水合物礦物,像是黏土和碳酸鹽,的混合。在2014年1月,在穀神星的幾個地區都檢測到排放出的水蒸氣。這是出乎意料之外的,在主小行星帶的大天體床不會發出水蒸氣,因為這是彗星的特徵。 美國NASA的機器人曙光號在2015年3月6日進入繞行穀神星的軌道。從2015年1月,曙光號就以前所未見的高解析度傳回影像,顯示表面有著坑坑窪窪。兩個獨特的亮點(或高反照率特徵)出現在撞擊坑內(不同於早些時候哈伯太空望遠鏡在一個撞擊坑中觀測到的影像。);出現於2015年2月19日的影像,導致考慮可能有冰火山 或釋氣的發想。在2015年3月3日,NASA的一位發言人說,這些點符合含冰或鹽的反光物質,但不太可能是冰。在2015年5月11日,NASA釋放出高解析的影像,顯示不是一個或兩個點,實際上在高解析的影像上有好幾個。在2015年12月9日,NASA的科學家報導,穀神星的亮斑可能是一種類型的鹽類,特別是“滷水”,包括硫酸鎂等硫酸水合物(MgSO4·6H2O);也發現這些斑點與富含氨的黏土相關聯。2015年10月,NASA釋出了由曙光號拍攝的真實色彩穀神星影像。.

新!!: 天體命名和穀神星 · 查看更多 »

系統標準名

系統標準名是一種以系統的方式為具體的獨一無二的群體、有機體、物件或化學物質,給定名稱。系統的名字通常是名稱的一部分。 半系統標準名 或半種名是至少有一種或部分有系統標準名。 。 系統標準名的創建可以很簡單,只是為每個物件分配字首 (在這種情況下,它們的類型是編碼制),或是為每一個物體分配複雜的編碼和完整結構的名稱。許多系統會結合一些額外的序號,使之成為有關命名物件的一個唯一識別碼。 系統標準名經常會與系統建立之前的名稱共存。例如,許多常見的化合物被提到時,仍會共同使用種名,甚至化學家的名字。.

新!!: 天體命名和系統標準名 · 查看更多 »

約翰·路易·埃米爾·德雷耳

約翰·路易·埃米爾·德雷耳(John Louis Emil Dreyer,Johan Ludvig Emil Dreyer,),生於丹麥,已故愛爾蘭天文學家。.

新!!: 天體命名和約翰·路易·埃米爾·德雷耳 · 查看更多 »

織女一

織女一又稱為織女星或天琴座α(α Lyr,α Lyrae),是天琴座中最明亮的恆星,在夜空中排名第五,是北半球第二明亮的恆星,僅次於大角星。它與大角星及天狼星一樣,是非常靠近地球的恆星,距離地球只有25.3光年;它也是太陽附近最明亮的恆星之一。在中國古代的「牛郎織女」神話中,織女為天帝孫女,故亦稱天孫。 天文學家對織女星進行過大量的研究,因此它「無疑是天空中第二重要的恆星,僅次於太陽」。織女星大約在西元前12,000年曾是北半球的極星,但因歲差現象地球自轉軸傾斜,再加上日月對地球各部份的引力並不一致,使地球自轉軸緩慢轉圈,週期約兩萬六千年,稱為歲差現象。,它在13,727年會再度成為北極星,屆時它的赤緯會達到+86°14'。織女星是太陽之外第一顆被人類拍攝下來的恆星,也是第一顆有光譜記錄的恆星。它也是第一批經由視差測量估計出距離的恆星之一。織女星也曾是測量光度亮度標尺的校準基線,是UBV測光系統用來定義平均值的恆星之一。在北半球的夏天,觀測者多半可在天頂附近的位置見到織女星,因為身為天文學上星等的標準,其視星等被定義為0等,因此天文學家會以織女星作為光度測定的標準。 織女星的年齡只有太陽的十分之一,但是因為它的質量是太陽的2.1倍,因此它的預期壽命也只有太陽的十分之一;這兩顆恆星目前都在接近壽命的中點上。織女星的光譜分類為A0V,其溫度比天狼星的A1V高一點。它仍处於主序星階段,透過把核心內的氫聚變成氦來發光發熱。織女星比氦重(原子序數較大)的元素豐度異常的低,織女星光度有輕微的周期性變化,因此天文學家懷疑它是一顆變星。它的自轉相當快速,赤道自轉速度是每秒274公里。離心力的影響導致恆星的赤道向外突起,溫度的變化通過光球表面在極點達到最大值。地球上的觀測者視線正朝著織女星的極點。天文學家經過測定後,得知織女星每12.5小時自轉一周,整顆恆星呈扁平狀,赤道直徑比兩極大了23%。 天文學家觀測到織女星紅外線輻射超量,顯示織女星似乎有塵埃組成的拱星盤。這些塵粒可能類似於太陽系的柯伊伯带,是岩屑盤中的天體碰撞產生的結果。這些由於塵埃盤造成紅外線輻射超量的恆星被歸類為類織女恆星。織女星盤的分布並不規則,顯示至少有一顆大小類似木星的行星環繞著織女星公轉。.

新!!: 天體命名和織女一 · 查看更多 »

约翰·波得

约翰·波得(Johann Elert Bode,),德国天文學家,他以归纳和宣传提丢斯-波得定则而出名。他最早計算出天王星的軌道,并以Uranus命名。波得还發現了M81星系,因而該星系被称为“波得星系”。 波得1747年出生於德國的漢堡,父親是商人。1785年至1825年期间,波得任柏林天文台台長。1801年,柏林天文台出版了著名的Uranographia星圖,将精美的星座圖案和高精度的恆星位置结合在一起。此後,以藝術形式呈現星座的星圖愈來愈少,取而代之的是著重準確性,由點與線組成的科學化星圖。 波得还為業餘天文愛好者出版了一些天文年鑑、小型星圖(Vorstellung der Gestirne)及介紹星座神話故事的書籍,該書曾再版十數次。 1826年,波得在柏林逝世,享壽79歲。为纪念他,月球一座環形山(北緯6.7°,西經2.4°,直徑18.0千米)以及第998号小行星都以他的名字命名。.

新!!: 天體命名和约翰·波得 · 查看更多 »

爱神星

433爱神星是环绕太阳运行的一颗近地小行星。由2000年4月至2001年2月,美國太空總署的會合-舒梅克號探测器圍繞爱神星探測,並拍攝大量照片。在2001年2月12日任務完結時,探測器更在其表面登陸,成為第一顆有探測器登陸的小行星。.

新!!: 天體命名和爱神星 · 查看更多 »

疏散星团

疏散星團,也稱為銀河星團,是由同一個巨分子雲中的數百顆至數千顆恆星形成的集團。在銀河系中發現的疏散星團已經超過1,100個,並且被認為還存在更多。它們環繞著銀河中心運轉時,只靠著微弱的引力吸引維繫在一起,並且很容易因為與其它集團或氣體雲的近距離接觸而瓦解。疏散星團的壽命通常只有幾億年,但少數質量特別大的可以存活數十億年。相較之下,質量更大的球狀星團,擁有更多的恆星,成員彼此間的引力極為強大,可以存活的時間也更長。只有在星系的螺旋臂和不規則星系能發現疏散星團,它們只存在於恆星形成活躍區。 年輕的疏散星團可能仍然在它們形成的分子雲中,照亮它們在分子雲內創造出來的H II區。隨著時間推移,來自星團的輻射壓會將分子雲吹散。通常情況下,在輻射壓將氣體驅散之前,大約有10%質量的氣體能凝聚形成恆星。 疏散星團是研究恆星演化的關鍵天體。因為集團中的恆星成員年齡和化學成分都相仿,它們的特性(像是距離、年齡、金屬量和消光)也比單獨的恆星容易測量。有些疏散星團,像是昴宿星團、畢宿星團或英仙α星團,都可以用裸眼直接看見。還有一些,例如雙星團,則幾乎不用儀器也可以察覺它們的存在,而使用雙筒望遠鏡或光學望遠鏡還可以看見更多,野鴨星團,M11,就是個例子。.

新!!: 天體命名和疏散星团 · 查看更多 »

特洛伊战争

特洛伊战争(Trojan war)以荷马史诗之伊里亞德為中心,加上索福克勒斯的悲劇埃阿斯、菲洛克忒忒斯,歐里庇得斯的悲劇在陶里斯的伊菲革涅亚、安德洛玛刻、赫卡柏,維吉爾的史詩埃涅阿斯紀、奧維德等多部著作而成,故事詳细地描述了特洛伊战争的情况。 特洛伊戰爭是以爭奪世上最漂亮的女人海倫為中心,道出以阿伽门农及阿喀琉斯為首的希臘聯合遠征軍進攻以帕里斯及赫克托耳為首的特洛伊軍的十年攻城戰。 现代考古和历史研究在對特洛伊的「神話」「傳說」幾百年的嘲諷和忽略之後,证实特洛伊和特洛伊战争的确存在。但現代科學否認特洛伊战争是如幾千年前荷马史诗中記載的一場复仇战争,而是古希腊为争夺特洛伊的重要地理位置和贸易权益联合赫梯发动的侵略战争。.

新!!: 天體命名和特洛伊战争 · 查看更多 »

蟹狀星雲

蟹状星云(M1,NGC 1952或金牛座 A)是位于金牛座ζ星(天關)东北面的一个超新星残骸和脉冲风星云。蟹状星云距地球约6,500光年(2,000秒差距),直径达11光年(3.4秒差距),并以每秒约1,500公里的速度膨胀。它是银河系英仙臂的一部分。 该星云由约翰·贝维斯于1731年发现,它对应于中国、阿拉伯和日本天文学家於公元1054年记录的一次超新星爆发(编号SN 1054,中国称天关客星)。1969年天文学家发现星云的中心是一颗脉冲星,它的直径约28–30公里,每秒自转30.2次,并发射出从γ射线到无线电波的宽频率范围电磁波。它也是首顆被确认为历史上超新星爆发遗迹的天体。 蟹状星云的X射线和γ射线辐射能量超过30 keV,最高可达10 TeV,而且非常稳定,因此天文学家将蟹状星云看成是宇宙中最稳定的高能辐射源之一,并将其作为一种标准来测量宇宙其他輻射源的能量。此星云是一个很好的辐射源,通过其他天体的掩星可以研究它與其他的天體。20世纪50和60年代时,天文学家曾借助穿过日冕的蟹状星云辐射对太阳日冕进行密度和成分测定。2003年,土卫六阻挡了蟹状星云的X射线辐射,天文学家借此机会测量土卫六的大气层的厚度。.

新!!: 天體命名和蟹狀星雲 · 查看更多 »

行星

行星(planet;planeta),通常指自身不發光,環繞著恆星的天體。其公轉方向常與所繞恆星的自轉方向相同(由西向東)。一般來說行星需具有一定質量,行星的質量要足夠的大(相對於月球)且近似於圓球狀,自身不能像恆星那樣發生核聚變反應。2007年5月,麻省理工學院一組空间科學研究隊發現了已知最熱的行星(2040攝氏度)。 隨著一些具有冥王星大小的天體被發現,「行星」一詞的科學定義似乎更形迫切。歷史上行星名字來自於它們的位置(与恒星的相对位置)在天空中不固定,就好像它們在星空中行走一般。太陽系内肉眼可見的5顆行星水星、金星、火星、木星和土星早在史前就已經被人類發現了。16世紀後日心说取代了地心说,人類瞭解到地球本身也是一顆行星。望遠鏡被發明和萬有引力被發現後,人類又發現了天王星、海王星,冥王星(2006年后被排除出行星行列,2008年被重分類為类冥天体,属于矮行星的一种)還有為數不少的小行星。20世紀末人類在太陽系外的恆星系統中也發現了行星,截至2013年7月12日,人類已發現2000多顆太陽系外的行星。.

新!!: 天體命名和行星 · 查看更多 »

行星體系命名法

行星體系命名法,就像為地面命名一樣,是標示行星和衛星表面特徵的唯一系統,使其能輕鬆介紹、描述和討論。特徵的名稱和分配是1919年成立的國際天文學聯合會(IAU)的任務。.

新!!: 天體命名和行星體系命名法 · 查看更多 »

裸眼

#重定向 肉眼.

新!!: 天體命名和裸眼 · 查看更多 »

飛馬座51b

飞马座51b(也被称为柏勒洛丰)是一颗位于飞马座、距离地球约50光年的系外行星。它是被发现的第一颗围绕类似太阳的恒星(飞马座51)运转的系外行星,同时也是热木星的原型。.

新!!: 天體命名和飛馬座51b · 查看更多 »

西門·馬里烏斯

西門·馬里烏斯(Simon Marius,)是一位德国天文学家和医生。.

新!!: 天體命名和西門·馬里烏斯 · 查看更多 »

西方世界

西方世界(Western World),也称西洋、西方国家、西方文化区,旧称泰西,在不同场合和不同时间有不同定义。这些国家文化與文字皆是一脉相承。 西方的概念根源於希臘文明、羅馬帝國及後來的基督教,經由文藝復興、宗教改革、啟蒙時代及通過帝国主义和殖民主义擴張形成當今西方世界。冷战時期,西方的觀點確立於深受基督教文化及自由主義思想影響,反對共產主義的资本主義國家,形成反共陣營,有別於政治經濟方面不同的共產主義國家。 這個詞原本字面意思是一個地理概念,15世紀以來西歐人相對於將看到的西亚、南亚與东亚當作東方。在當代文化含義裡,這句西方世界除包括歐洲也包括歐洲殖民時期源自大量歐洲的祖先人口移民至美洲及大洋洲的國家。 西方世界也是古代中国人以中国为中心的一个地理概念,现代用法则与“西方世界”同义,明朝初期以婆罗洲島中间为界,以东称为东洋,以西称为西洋,故过去所称南海之处,明朝称为东洋、西洋,且暹罗湾之海,称为“涨海”。.

新!!: 天體命名和西方世界 · 查看更多 »

變星總表

變星總表(General Catalogue of Variable Stars) (GCVS)是變星的列表。它的第一版包含10,820顆恆星,是B.

新!!: 天體命名和變星總表 · 查看更多 »

超大質量黑洞

超大質量黑洞是黑洞的一種,其質量是10^5至10^9倍的太陽質量。現時一般相信,在所有的星系的中心,包括銀河系在內,都會有超大質量黑洞。.

新!!: 天體命名和超大質量黑洞 · 查看更多 »

超新星

超新星是某些恒星在演化接近末期时经历的一种剧烈爆炸。这种爆炸都极其明亮,过程中所突发的电磁辐射经常能够照亮其所在的整个星系,并可持续几周至几个月才会逐渐衰减变为不可见,而期间内一颗超新星所辐射的能量可以与太阳在其一生中辐射能量的总和相當。恒星通过爆炸会将其大部分甚至几乎所有物质以可高至十分之一光速的速度向外抛散,并向周围的星际物质辐射激波。这种激波会导致形成一个膨胀的气体和尘埃构成的壳状结构,这被称作超新星遗迹。超新星是星系引力波潛在的強大來源。初級宇宙射線有很大的比例來自超新星 。 超新星比新星更有活力。超新星的英文名稱為 supernova,nova在拉丁語中是“新”的意思,這表示它在天球上看上去是一顆新出現的亮星(其實原本即已存在,因亮度增加而被認為是新出現的);字首的super-是為了將超新星和一般的新星有所區分,也表示超新星具有更高的亮度。超新星這個名詞是沃爾特·巴德和弗裡茨·茲威基在1931年創造的。 超新星可以用兩種方式之一觸發:突然重新點燃核融合之火的簡併恆星,或是大質量恆星核心的重力塌陷。在第一種情況,一顆簡併的白矮星可以透過吸積從伴星那兒累積到足夠的質量,或是吸積或是合併,提高核心的溫度,點燃碳融合,並觸發失控的核融合,將恆星完全摧毀。在第二種情況,大質量恆星的核心可能遭受突然的引力坍縮,釋放重力位能,可以創建一次超新星爆炸。 最近一次觀測到銀河系的超新星是1604年的克卜勒之星(SN 1604);回顧性的分析已經發現兩個更新的殘骸 。對其它星系的觀測表明,在銀河系平均每世紀會出現三顆超新星,而且以現在的天文觀測設備,這些銀河超新星幾乎肯定會被觀測到 。它們作用的角色豐富了星際物質與高質量的化學元素。此外,來自超新星向外膨脹的激波可以觸發新恆星的形成。.

新!!: 天體命名和超新星 · 查看更多 »

轨道共振

軌道共振是天體力學中的一種效應與現象,是當在軌道上的天體於週期上有簡單(小數值)的整數比時,定期施加的引力影響到對方所產生的。軌道共振的物理原理在概念上類似於推動兒童盪的鞦韆,軌道和擺動的鞦韆之間有著一個自然頻率,其它機制和“推”所做的動作週期性的重複施加,產生累積性的影響。軌道共振大大的增加了相互之間引力影響的機構,即它們能夠改變或限制對方的軌道。在多數的情況下,這導致“不穩定”的互動,在其中的兩者互相交換動能和轉移軌道,直到共振不再存在。在某些情況下,一個諧振系統可以穩定和自我糾正,所以這些天體仍維持著共振。例如,木星衛星佳利美德、歐羅巴、和埃歐軌道的1:2:4共振,以及冥王星和海王星之間的2:3共振。土星內側衛星的不穩定共振造成土星環中間的空隙。1:1的共振(有著相似軌道半徑的天體)在特殊的情況下,造成太陽系大天體將共享軌道的小天體彈射出去;這是清除鄰居最廣泛應用的機制,而此一效果也應用在目前的行星定義中。 除了拉普拉斯共振圖(見下文)中指出,在這篇文章中的共振比率應被解釋為在相同的時間間隔內完成軌道數的比例,而不是作為公轉週期比(其中將會呈反比關係)。上面2:3的比例意味著在冥王星完成兩次完整公轉的時間,海王星要完成三次完整的公轉。.

新!!: 天體命名和轨道共振 · 查看更多 »

迷蹤小行星

迷蹤小行星或迷蹤行星是曾經觀測過但已失去它們蹤影的小行星。在1980年代和1990年代,曾經找回許多失蹤的小行星,但是仍有許多的小行星和其它類型的太陽系小天體仍然繼續留在失蹤的名單上lost asteroid.

新!!: 天體命名和迷蹤小行星 · 查看更多 »

船底座

船底座(Carina IPA:, 意為龍骨)是天舟座的一部份,到十八世紀法國人拉卡伊把天舟座分成三個星座:船底座、船帆座和船尾座,他是在南天的星座,原本是古老的南船座的一部份。他擁有全天第二亮的老人星,和鑲嵌在卡利納星雲(NGC 3372)中的超重巨星海山二(船底座η星)。.

新!!: 天體命名和船底座 · 查看更多 »

阿波羅 (小行星)

(1862) 阿波羅是卡爾·雷恩繆斯在1932年發現的一顆Q-型小行星,但是一度遺失,直到1973年才再被發現,它的名稱是希臘的太陽神。 它是第一顆被發現的阿波羅型小行星,並以他命名該型小行星,但因為它曾失蹤過,因此序號為1862,比其他的阿波羅型小行星,例如(1566) 伊卡洛斯,的序號更高。分析它的自轉提供了YORP效應的觀測證據。 它是第一顆被確認會穿越地球軌道的小行星,它也會穿越金星和火星的軌道。.

新!!: 天體命名和阿波羅 (小行星) · 查看更多 »

阿拉伯语

阿拉伯语( al-ʻarabīyah 或者 ʻarabī )是除了英語、法語和西班牙語之外最多國家使用的官方語言。阿拉伯語源自公元6世纪的古典阿拉伯语。它包括书面语及流通于中东、北非和非洲之角(即索马里半岛)的各种口语。阿拉伯语属于亚非语系。 阿拉伯语的书面语称为“现代标准阿拉伯语”或“书面阿拉伯语”。书面阿拉伯语是目前唯一在官方及正式场合使用的阿拉伯语,用于大多数书面文件和讲座、新闻广播等正式讲话。但这亦因国家而异。1912年,在摩洛哥加入阿拉伯国家联盟之前,曾在正式场合使用过一段时间。 阿拉伯语属于,与亚拉姆语、希伯来语、乌加里特语和腓尼基语相近。阿拉伯语书面语不同于其所有地方的口语,且更为传统和保守。两者是双层语言的关系,用于不同的场合。 一些地方的阿拉伯语无论是书写还是口头形式,都无法互通。而所有地方的阿拉伯语被当作是一个整体。即是说,纯粹从语言学的角度来说,它们是不同的语言;但是从政治及民族的角度来说,他们又是一个整体。如果阿拉伯语被当作一个整体,则世界上估计有4.22亿人以其为母语。如果各地的阿拉伯语当作是不同的语言,则很难估计到底有多少种,因为它们是方言连续体,之间没有明确的界线。其中埃及阿拉伯语的使用人数最多,大约五千四百万人以其为母语——多于其他任何一种闪米特语言。 阿拉伯语是美国使用人数第12多的语言。 现代的书面语(现代标准阿拉伯语)源于古兰经的语言(即古典阿拉伯语),用于学校教学及工作、政府、媒体等场合。两者合起来被称为书面阿拉伯语,是伊斯兰教的。现代标准阿拉伯语的语法与古典阿拉伯语大体相同,词汇也有相同之处。但古典阿拉伯语的一些语法结构在现代标准阿拉伯语中不再使用,在口语中不使用的词汇也不在现代书面语中使用。而且现代书面语从口语中借入了一些词汇和语法现象。新的词汇大多用来表达近现代出现的概念。 阿拉伯语用阿拉伯字母从右往左书写。有时在非正式场合也可用拉丁字母从左往右书写,但没有统一的形式。 阿拉伯语往伊斯兰世界的语言(如波斯语、土耳其语、索马里语、波斯尼亞語、哈萨克语、孟加拉语、乌尔都语、马来语和豪萨语)輸出了大量词汇。中世纪时期,书面阿拉伯语成了欧洲文化的重要载体,特别是在科学、数学和哲学领域。这导致许多欧洲语言也从阿拉伯语中借入了大量词汇。阿拉伯语在词汇和语法方面对羅曼語族的语言(特别是西班牙语、葡萄牙语、加泰羅尼亞語和西西里語)影响很大。 阿拉伯语也从其他语言中借入了大量词汇,如早期从希伯来语、希腊语、波斯语、叙利亚语,中期从土耳其语,当代从欧洲语言(主要是英语和法语)。.

新!!: 天體命名和阿拉伯语 · 查看更多 »

阋神星

鬩神星(小行星序號:136199 Eris)是現已知太陽系中第二大的矮行星,在所有直接圍繞太陽運行的天體中質量排名第九。它估測直徑約為公里 ,比冥王星重約27%(但冥王星的體積更大一些),質量約為地球質量的0.27%。它由米高·布朗、乍德·特魯希略和大衛·拉比諾維茨在2005年1月5日,從一堆於2003年10月21日拍攝的相片中發現,並在2005年7月29日與2003 EL61一起公佈,當時它的暫時編號為2003 UB313,名字暫稱為齊娜(Xena,美国电视剧《战士公主西娜》的女主角)。 鬩神星於2005年7月位於距離太陽97個天文單位遠的位置,而它的軌道極為傾斜,公轉周期為557年。它被分類為黃道離散天體(偏離地球軌道平面的星體)。在2006年8月之「第26屆國際天文學大會」上,把2003 UB313劃入矮行星之列,賦與小行星編號136199號,並以希臘神話中的鬩神厄里斯(Ἒρις)命名。 因为阋神星看起来比冥王星要大,所以一开始它的发现者和NASA 把其称之为太阳系的第十大行星。但隨著其他类似大小天体的陸續發現,符合行星定義的太陽系天體數量驟增,促使国际天文联合会第一次重新进行行星定义。根据2006年8月24日的IAU的行星定义 ,阋神星是一个同冥王星、谷神星、妊神星、鸟神星一样的矮行星。 2010年11月6日,对阋神星掩星的初步结果显示,其直径约2326公里,誤差±12公里,只和冥王星相当 。从标准差来估计,现在还很难确定阋神星和冥王星哪个更大。估计两者固体直径大约在2330公里。.

新!!: 天體命名和阋神星 · 查看更多 »

赤纬

赤纬(英文Declination;縮寫為Dec;符號為δ)是天文学中赤道座標系統中的两个坐标数据之一,另一个坐标数据是赤经。赤纬与地球上的纬度相似,是纬度在天球上的投影。赤纬的单位是度,更小的单位是“角分”和“角秒”,天赤道为0度,天北半球的赤纬度数为正数,天南半球的赤纬的度数为负数。天北极为+90°,天南极为-90°。值得注意的是正号也必须标明。 例如,织女星的确切赤纬(曆元2000.0)为+38°47'01"。 在观测者天顶的赤纬与該觀測地的纬度相同。.

新!!: 天體命名和赤纬 · 查看更多 »

赤经

赤經(英文Right ascension;縮寫為RA;符號為α)是天文學使用在天球赤道座標系統內的座標值之一,通过天球两极并与天赤道垂直,另一個座標值是赤緯。.

新!!: 天體命名和赤经 · 查看更多 »

钱德拉X射线天文台

钱德拉X射线天文台(Chandra X-ray Observatory,缩写为CXO),是美国宇航局(NASA)于1999年发射的一颗X射线天文卫星,以美国籍印度物理学家苏布拉马尼扬·钱德拉塞卡命名,為大型轨道天文台计划的第三颗卫星,目的是观测天体的X射线辐射。其特点是兼具极高的空间分辨率和谱分辨率,被认为是X射线天文学上具有里程碑意义的空间望远镜,标志着X射线天文学从测光时代进入了光谱时代。.

新!!: 天體命名和钱德拉X射线天文台 · 查看更多 »

金星

金星(英語、拉丁語:Venus,天文符號:♀),在太陽系的八大行星中,是從太陽向外的第二顆行星,軌道公轉週期為224.7地球日,它沒有天然的衛星。在中國古代稱為太白、明星或大囂,另外早晨出現在東方稱啟明,晚上出現在西方稱長庚。到西漢時期,《史記‧天官書》作者天文學家司馬遷從實際觀測發現太白為白色,與「五行」學說聯繫在一起,正式把它命名為金星。它的西文名稱源自羅馬神話的愛與美的女神,维纳斯(Venus),古希腊人称为阿佛洛狄忒,也是希腊神话中爱与美的女神。金星的天文符号用维纳斯的梳妆镜来表示。 它在夜空中的亮度僅次於月球,是第二亮的天然天體,視星等可以達到 -4.7等,足以照射出影子。由於金星是在地球內側的內行星,它永遠不會遠離太陽運行:它的離日度最大值為47.8°。 金星是一顆類地行星,因為它的大小、質量、體積與到太陽的距離,均與地球相似,所以經常被稱為地球的姊妹星。然而,它在其它方面則明顯的與地球不同。它有著四顆類地行星中最濃厚的大氣層,其中超過96%都是二氧化碳,行星表面的大氣壓力是地球的92倍。表面的平均溫度高達,是太陽系最熱的行星,比最靠近太陽的水星還要熱。金星沒有將碳吸收進入岩石的碳循環,似乎也沒有任何有機生物來吸收生物量的碳。金星被一層高反射、不透明的硫酸雲覆蓋著,阻擋了來自太空中,可能抵達表面的可見光。它在過去可能擁有海洋,並且外觀與地球極為相似,但是隨著失控的溫室效應導致溫度上升而全部蒸發掉了B.M. Jakosky, "Atmospheres of the Terrestrial Planets", in Beatty, Petersen and Chaikin (eds), The New Solar System, 4th edition 1999, Sky Publishing Company (Boston) and Cambridge University Press (Cambridge), pp.

新!!: 天體命名和金星 · 查看更多 »

艾女星

艾女星(小行星243)是一顆位于主小行星帶的鴉女星族小行星,由约翰·帕利扎于1884年9月29日發現。其名來源於希臘神話中的一位寧芙。通過天文望遠鏡的觀測,艾达星被歸類于S-型小行星,内小行星帶中成員最多的一類。1993年8月28日,前往觀測木星的伽利略號探測器接近艾达星。它是第二顆有太空探測器接近的小行星,也是第一顆人们发现擁有衛星的小行星。 就如其他主帶小行星,艾达星的軌道位于火星及木星的軌道之間。其公轉周期為4.84年,自轉周期為4.63小時。艾达星的平均直徑為。它不規則、橢長形的形狀,明顯由兩個大物體連接而成,形如牛角麵包。它是太陽系中表面隕石坑最多的星體之一,擁有不同大小及年齡的隕石坑。 艾达星的衛星「艾卫」,是由任務成員從伽利略號發回的圖片中發現的,其名取自希臘神話中居住在伊達山上的達克堤利。艾卫的直徑只有,是艾女星的20分之一。人们不能準確定出它圍繞艾女星的軌道數據。不過,我們可以根据幾條軌道粗略計算出艾女星的密度,其結果表明艾女星沒有金屬礦物。艾女星和其衛星有許多共同點,这意味它們有着共同的來源。 根据伽利略號發回的照片,加上之後對艾女星質量的測量,人們對S-型小行星的地質有了更深的認識。在伽利略號掠過艾女星之前,有着許多不同的理論來解釋這些小行星的礦物成分。知道了它們的成分,我們就能找出掉落地球的隕石與小行星帶天體的關係。傳回的數據顯示,S-型小行星是普通球粒隕石的源頭。普通球粒隕石是地球表面最常見的一種隕石。.

新!!: 天體命名和艾女星 · 查看更多 »

英国君主

英国君主(Monarch of the United Kingdom)是英国及其海外领地的君主立宪制国家元首。君主的头衔为“国王”(King)或“女王”(Queen)。现任君主和国家元首为伊丽莎白二世,1952年继承其父乔治六世登基为英国女王。 君主及其近亲具有一系列的官方、礼仪、外交和代表性权力。在君主立宪体系之下,君主的职责仅限于授勋及嘉奖和任命首相。根据传统,君主亦为。现今英国政府的行政权力名义上仍旧通过君主的皇家特权来行使,但事实上这一权力仅能根据国会立定的法律行使,并且受到传统与先例的限制。 英国的君主政体可以追溯至及盎格鲁-撒克逊英格兰的诸多。这些政权至公元10世纪已统一为英格兰和苏格兰两个王国。1066年在诺曼征服英格兰的过程中,最后一位加冕盎格鲁-撒克逊君主哈罗德二世于黑斯廷斯战役中战败并战死,英格兰王权由此转移至胜者威廉及其后裔手中。 13世纪,威尔士公国成为英格兰的从属国。同一时期,《大宪章》开始对英格兰君主的政治权力进行限制。 1603年,苏格兰君主詹姆斯六世继承英格兰王位,称詹姆斯一世,由此英格兰与苏格兰开始为同一君主统治。1649年至1660年,英国君主制传统为共和制的英格兰联邦所打断。1701年的《》(现今仍旧有效)将信仰罗马天主教或与天主教徒结合者排除于王位继承顺位之外。1707年,英格兰和苏格兰王国合并成为大不列颠王国。1801年,爱尔兰王国加入联邦,大不列颠及爱尔兰联合王国由此成立。英国君主成为大英帝国的名义元首,这一帝国于1921年达到其领土最大范围,囊括了全球近四分之一的领土。 1920年代,爱尔兰六分之五的领土宣布脱离联邦,成立爱尔兰自由邦。1926年的《》承认帝国各自治领将各自发展为独立自治国家,但仍旧为英联邦的一部分。第二次世界大战之后,大多数的英国殖民地和领地独立,基本宣告了帝国时代的终结。乔治六世及其继承者伊丽莎白二世使用了英联邦元首这一称号,象征其独立成员国的自由联合。 英国和十五个英联邦国家共享一个君主,称英联邦王国。“英国君主”一词仍旧用于形容这一体系下的君主和政体,但事实上每个国家都为独立主权国家,在不同国家君主的官方亦有所不同。.

新!!: 天體命名和英国君主 · 查看更多 »

陰間

間,又稱幽冥、陰司、陰府,或又稱幽都,是神話和宗教中的概念,指人死後居住的世界。.

新!!: 天體命名和陰間 · 查看更多 »

附加符号

加符号或稱變音符號(diacritic、diacritical mark、diacritical point、diacritical sign),是指添加在字母上面的符號,以更改字母的發音或者以區分拼寫相似詞語。例如汉语拼音字母「ü」上面的两个小点,或「á」、「à」字母上面的标调符。 变音符号可以放在字母的上方或下方,也可以放在其他的位置。但是注意,並不是所有這些符號都是变音符号。例如字母i和j上面的點是字母本身的一部分,而不是变音符号。另外,在一種語言中,一個符號是变音符号,但是在另外一種語言中則不是。例如,在加泰罗尼亚语、葡萄牙语和西班牙语中,「u」和「ü」是相同的字母,但是在德语、爱沙尼亚语、匈牙利语、土耳其语、波兰语、维吾尔语和阿塞拜疆语中,它們表示不同的字母。.

新!!: 天體命名和附加符号 · 查看更多 »

M51

M51可以指:.

新!!: 天體命名和M51 · 查看更多 »

NGC 4151

NGC 4151是位於獵犬座的帶有疏鬆內環結構的中間螺旋西佛星系,距離地球,天球上位於獵犬座。該星系由威廉·赫歇爾於1787年3月17日首次記錄;它0也是定義西佛星系的論文中提及的兩個星系之一 。NGC 4151是核心中擁有快速成長中的超大質量黑洞星系中距離地球最近的其中一個。天文學家推測NGC 4151的核心可能存在環繞質量中心旋轉中的雙黑洞,質量分別為4000萬和1000萬倍太陽質量,軌道週期15.8年。不過,該系統是否存在仍持續爭論中。 部分天文學家就NGC 4151的外觀,稱呼它為《索倫之眼》。.

新!!: 天體命名和NGC 4151 · 查看更多 »

NGC天體表

星雲和星團新總表(New General Catalogue of Nebulae and Clusters of Stars,縮寫:NGC) 是在天文學上非常著名的深空天體目錄,它收錄了7,840個天體。它由約翰·德雷耳编纂,它是作为威廉·赫歇爾星雲和星團總表的新版本。星雲和星團新總表是最大的一個綜合目錄,它包含所有類型的深空天體,並無被侷限在某一類,例如星系。德雷耳後來在1895年和1908年擴編了兩份NGC索引星表,增加了描述5,386個天體。 目錄中對南半球天空中的天體並沒有完整的調查,多數都只是約翰·赫歇耳或詹姆士·丹露帕的觀測。NGC有許多的錯誤,但是比較嚴重和明顯的錯誤在後續的NGC/IC計划中已經消除。後續未完成的修訂新總表(RNGC) 有1973年Sulentic和Tifft的版本,還有Sinnott在1988年的NGC2000.0。修訂的新總表和索引目錄由Wolfgang Steinicke編譯於2009年。.

新!!: 天體命名和NGC天體表 · 查看更多 »

PSR B1937+21

PSR B1937+21 是一颗位于狐狸座的脉冲星,离人类历史上发现的第一颗脉冲星PSR B1919+21仅有数度的距离。PSR B1937+21的命名是根据脉冲星的命名规则而定的:PSR是脉冲星英文pulsar的缩写,1937是指该脉冲星位于赤经19 h 37 m,+21是指其位于赤纬+21°,B意味着赤经赤纬值是归算到历元1950年的值。PSR B1937+21是在1982年由美国天文物理学家唐纳德·贝克和他的合作者所发现的。它是人类历史上发现的第一颗毫秒脉冲星,其自转周期为1.557708毫秒,每秒自转约642圈。这颗不同寻常的毫秒脉冲星自转周期要远远小于天文学家之前估计的脉冲星自转最低极限,无法用已有的理论来解释它的特性,使得人们知道处于双星系统脉冲星可以通过吸积其伴星的物质而使自身的转速不断加快。PSR B1937+21以及之后发现的毫秒脉冲星自转周期都非常稳定(减慢的速率非常慢),可以和原子钟相媲美。PSR B1937+21有一个不寻常的特性,它是少数几颗可以偶然发射出强脉冲的脉冲星中的一颗,这是目前观察到的最明亮的无线电波。PSR B1937+21的这些特点,以及发现过程的未预见性,为脉冲星的相关研究开启了新的窗口。.

新!!: 天體命名和PSR B1937+21 · 查看更多 »

RX J1131-1231

RX J1131-1231是一個距離地球約60億光年,並且核心有超大質量黑洞存在的類星體,在天球上位於巨爵座。 2014年,天文學家在該類星體發現它的X射線輻射來自於位於事件視界3倍半徑區域的吸積盤內。這項發現代表中心的黑洞旋轉速度極高,讓吸積盤可在極小半徑區域內存在。這也是天文學家得以第一次直接量測黑洞的旋轉速度。 這項發現是由密歇根大学天文學家魯本斯·雷斯(Rubens Reis)的團隊以NASA的钱德拉X射线天文台、哈伯太空望遠鏡、歐洲太空總署的 XMM-牛顿卫星影像進行分析而獲得。該團隊觀測到X射線在黑洞周圍旋轉並且讓物質落入黑洞,使類星體發出強烈輻射的吸積盤最內側區域。藉由量測吸積盤的半徑,天文學家得以計算黑洞的旋轉速度,結果是幾乎達到光速的一半。如此高速旋轉顯示有大量氣體和塵埃正落入黑洞中。 然而,如果不是因為RX J1131-1231和地球之間有一個巨大橢圓星系這樣難得的位置關係,就可能無法進行黑洞旋轉速度量測。該橢圓星系成為讓該類星體的光放大為原本四倍的重力透鏡。如此強烈的重力透鏡效應也產生時間延遲,也就是說,該類星體的其中一個影像尖會比其他影像更早被觀測到。.

新!!: 天體命名和RX J1131-1231 · 查看更多 »

S/2003 S 1

#重定向 土卫三十一.

新!!: 天體命名和S/2003 S 1 · 查看更多 »

S/2010 J 2

#重定向 木衛五十二.

新!!: 天體命名和S/2010 J 2 · 查看更多 »

SDSS J0100+2802

SDSS J0100+2802(SDSS J010013.02+280225.8)是一个光度非常大的类星体,天球上的位置在雙魚座靠近仙女座的邊界,红移值z.

新!!: 天體命名和SDSS J0100+2802 · 查看更多 »

SN 1006

SN 1006是地球上的人們在1006年普遍記錄到的一顆超新星;與地球的距離是7,200光年。它是歷史上記錄到的最明亮的恆星事件,估計視星等達到-7.5等,最早的紀錄是在1006年4月30日與5月1日之間出現在豺狼座。在中國、埃及、伊拉克、日本、瑞士都有這顆「客星」的觀測紀錄,甚至北美洲可能也有。.

新!!: 天體命名和SN 1006 · 查看更多 »

SN 1054

天關客星(編號:SN 1054),是1054年金牛座內爆發的一顆超新星,古代中國和阿拉伯的天文學家在史書中對這顆星留下了詳細的記錄。因該星星突然出現在天關星(金牛座ζ)附近,故名天關客星。 《宋史‧天文志》中載: 至和元年五月己丑也就是1054年7月4日。 《宋史‧仁宗本紀》中載: 《續資治通鑒長編》卷一七六中載: 《宋會要》卷五十二中記載: 根據中國史籍中的記錄可以推斷,這顆超新星在23天的時間內白天都可以見到,在夜晚可見的時間則持續了一年十個月。據研究,這顆星可能是Ⅱ型超新星。天關客星爆炸後的遺骸形成了蟹狀星雲,在1774年收錄在梅西耶天體列表中成為第1號天體(蟹狀星雲M1,NGC 1952)。 在人类有文字记载的历史上,观测到银河系内的超新星爆发的机会非常少。除了蟹状星云以外,还有被第谷和他的学生开普勒观测到的第谷超新星与开普勒超新星。据天文学家推算,银河系内的超新星爆发平均20-50年出现一次。但是大都发生在银核内部,或者在银盘的另一半完全被银核遮挡。蟹状星云的超新星爆发,恰巧发生在银河系内与太阳同一侧银盘上但是比太阳系更远离银核的外侧。这样的部位发生超新星爆发,从地球上观测完全没有遮挡,但是这样机会就极为罕见。 20世纪早期,对早期间隔数年的星雲照片进行分析表明,它正在不断膨胀。根据其膨胀速度反推可得,该星云在地球上开始可见的时间至少在900年以前。而中国天文学家1054年的记录过在天空的相同区域产生过一颗亮星,甚至白天都可观测到。由于距离十分遥远,当时中国人观测到的白天的“客星”只可能是超新星。这是一种核聚变已耗尽能量并自行坍缩,从而发生爆炸的巨大恒星。 近期对历史记载的分析表明,产生蟹状星云的超新星爆发时间为4月或5月上旬,到了7月最亮时视星等升至−7到−4.5之间(比夜空中除了月球以外的任何天体都亮)。该超新星在首次发现大约两年之内都可用肉眼看到。归功于东亚地区和中东地区天文学家1054年记录的观测,蟹状星云成为第一个被确认与超新星爆发有关的天体。.

新!!: 天體命名和SN 1054 · 查看更多 »

SN 1572

SN 1572,又名“第谷超新星”,“仙后座B”,是一顆於仙后座出現的超新星,也是少數能以肉眼看見的超新星之一。它於1572年11月11日由丹麦天文学家第谷·布拉赫首度觀測,當時它比金星光亮,隨著光度轉暗,至兩年後的1574年3月,它已經無法再以肉眼看到。仙后座还有另外一颗著名的超新星遗迹:仙后座A。 第谷·布拉赫可能不是这个超新星的首位发现者,倒可能是Wolfgang Schuler ,后者于1572年11月6日首次发现它。意大利天文学家Francesco Maurolico也可能先于第谷·布拉赫发现它。 作为一个暗淡的星云,这个超新星遗址于二十世纪六十年代被科学家用帕洛马天文台的望远镜观察到;之后,为倫琴衛星 (ROSAT) 的望远镜所拍摄到。这个超新星可能属于Ia超新星:它原本是一颗白矮星,因为从伴星取得物质,使质量超过钱德拉塞卡极限,从而发生爆发,也可能是两颗白矮星并合而产生。Ia型超新星爆发后不会留下中子星或者黑洞,因此最后将不会产生像蟹状星云那样的脉冲风星云。SN 1572的冲击波目前仍以大约每秒数千公里的速度向外扩张。.

新!!: 天體命名和SN 1572 · 查看更多 »

SN 1604

超新星1604(編號: SN 1604,或稱克卜勒超新星)是位於銀河系內的一顆超新星,位置在蛇夫座內。到目前為止,SN 1604是銀河系內最後一顆肉眼可见的超新星,距地球僅4,000秒差距(約13,000光年)。高峰時曾成為全天最亮的恒星,也比金星外的其他行星亮,視星等為−2.5。 此超新星在1604年10月9日首次被人發現。到10月17日,德國天文學家克卜勒發現是次現象,他深入研究後寫了一本書鉅細無遺地記錄此事,書名為《De Stella nova in pede Serpentarii》(蛇夫座足部的新星)。 而在《明史》中對此次超新星爆發也有記載: 超新星1604是當代看見的第二次超新星爆發,前一次發生在1572年(第谷新星)。此後,再無觀測到銀河系內的超新星爆發,但是河外的超新星則屢見不鮮,最矚目的有超新星1987A。 超新星1604爆發後的遺骸成為了往後發現的同類物體的原型,在四百年後的今天仍然是常常被深入研究的天體。.

新!!: 天體命名和SN 1604 · 查看更多 »

SN 1987A

SN 1987A是1987年2月24日在大麥哲倫雲內发现的一次超新星爆发,是自1604年开普勒超新星(SN 1604)以来观测到的最明亮的超新星爆發,肉眼可见,位於蜘蛛星雲的外圍,距離地球大約51,400秒差距(約168,000光年)。由於是在1987年發現的第一顆超新星,因此被命名為「1987A」。SN 1987A爆發的光線於1987年2月23日到達地球,亮度於5月左右到達頂峰,視星等達3等,之後漸漸轉暗。这是现代的天文学家在近距离观测到一颗超新星的第一次机会,提供了核心坍缩超新星的许多深入了解。.

新!!: 天體命名和SN 1987A · 查看更多 »

柯伊伯带

柯伊伯带(Kuiper belt),又稱作倫納德-柯伊伯带,另譯庫柏帶、--,是位於太陽系中海王星軌道(距離太陽約30天文单位)外側的黃道面附近、天體密集的圓盤狀區域。柯伊伯带的假說最先由美国天文學家弗雷德里克·倫納德提出,十几年後杰拉德·柯伊伯證實了该观点。柯伊伯帶类似于小行星带,但大得多,它比小行星帶宽20倍且重20至200倍。如同主小行星帶,它主要包含小天体或太阳系形成的遗迹。虽然大多数小行星主要是岩石和金属构成的,但大部分柯伊伯带天体在很大程度上由冷冻的挥发成分(称为“冰”),如甲烷,氨和水组成。柯伊伯带至少有三顆矮行星:冥王星,妊神星和鸟神星。一些太阳系中的衛星,如海王星的海卫一和土星的土卫九,也被认为起源于该区域。 柯伊伯带的位置處於距離太陽40至50天文单位低傾角的軌道上。該處過去一直被認為空無一物,是太陽系的盡頭所在。但事實上這裡滿佈着直徑從數公里到上千公里的冰封微行星。柯伊伯带的起源和確實結構尚未明確,目前的理論推測是其來源於太陽原行星盤上的碎片,這些碎片相互吸引碰撞,但最後只組成了微行星帶而非行星,太陽風和物質會在在此處減速。 柯伊伯带有时被误认为是太陽系的邊界,但太阳系还包括向外延伸两光年之远的奥尔特星云。柯伊伯带是短周期彗星的來源地,如哈雷彗星。自冥王星被發現以來,就有天文學家認為其應該被排除在太陽系的行星之外。由於冥王星的大小和柯伊伯带內大的小行星大小相近,20世紀末更有主張該其應被歸入柯伊伯带小行星的行列当中;而冥王星的卫星则應被當作是其伴星。2006年8月,国际天文学联合会將冥王星剔出行星類別,并和谷神星与新发现的阋神星一起归入新分类的矮行星。 柯伊伯带不应该与假设的奥尔特云相混淆,后者比前者遥远一千倍以上。柯伊伯带内的天体,连同离散盘的成员和任何潜在的奥尔特云天体被统称为海王星外天体(TNOs)。冥王星是在柯伊伯带中最大的天體,而第二大知名的海王星外天体,則是在离散盘的阋神星。.

新!!: 天體命名和柯伊伯带 · 查看更多 »

林肯近地小行星研究小組

林肯近地小行星研究小組(Lincoln Near-Earth Asteroid Research,LINEAR) 計畫是由美國空軍、美國太空總署及麻省理工大學的林肯實驗室所組成,而其簡稱多譯為「麗妮兒或林尼爾」。該小組成立於1998年,其目的是尋找及記錄對地球存在威脅的近地小行星。從1998年起,很負責的檢測出大部份的小行星,直到被卡特林那巡天系統超越。迄2007年12月31日,LINEAR已經檢測到226,193顆新天體,其中包括2019顆近地小行星和236顆彗星。LINEAR所有的發現都是使用機器人望遠鏡。 最初的測試場所可以回溯到1972年,而在1980年代初期,原型建設完成,林肯實驗室的實驗測試系統:ETS(新墨西哥州,MPC天文台代碼704)。1996年,LINEAR計畫開始運作一個近地天體(NEO) 的發現裝置,使用1米口徑的地基光電深空監控(Ground-based Electro-Optical Deep Space Surveillance,GEODSS)望遠鏡。這種廣角的光學望遠鏡是空軍設計來觀察地球軌道上的太空船。LINEAR計畫使用的GEODSS是林肯實驗室實驗測試網站位於新墨西哥州索柯洛白砂導彈靶場的儀器,然後資料送至位於麻塞諸塞州列星頓漢斯科姆空軍基地的林肯實驗室。 在1997年3月至7月,一個1024 × 1024 像素的電荷耦合元件(CCD)檢測器進行視野測試,而這個探測器的視野僅約望遠鏡視野的五分之一,就發現了4顆近地天體。在1997年10月,一個由1960 X 2560像素構成的CCD,完整的涵蓋了望遠鏡2平方度的視野,在使用中共成功的發現9顆新的近地天體。從1997年11月至1998年1月的,在這兩個大型和小型的CCD檢測器的使用期間,又增加了5顆近地天體。 從1999年10月開始,第2架1米望遠鏡也加入搜尋的工作。在2002年,第3架口徑0.5米的望遠鏡被加入線上以提供這兩架1米望遠鏡發現天體的後續追蹤。目前,LINEAR望遠鏡每天晚上沿著黃道觀察預測中最可能有近地天體進入的區域五次,以搜尋這些區域內的近地天體。CCD的靈敏度,和相對快速的資料輸出,使LINEAR每個夜晚的檢測都可以覆蓋大部份的天空。目前,LINEAR計畫仍然負責近地天體的主要發現。 這個計畫的首席研究員是格蘭特·斯托克,共同研究員包括珍妮佛·埃文斯和埃里克·皮爾斯。 除了發現數以萬計的小行星(迄2007年12月31日為225,957顆小行星),LINEAR也發現、共同發現或再發現一些週期彗星,包括:11P/坦普爾-斯威夫特-林尼爾彗星、146P/Shoemaker-LINEAR、148P/Anderson-LINEAR、156P/Russell-LINEAR、158P/Kowal-LINEAR、160P/林尼爾(LINEAR 43)、165P/林尼爾(LINEAR 10)、和176P/LINEAR(LINEAR 52,118401 LINEAR:在分類上暨是彗星也是小行星的5顆天體之一)。.

新!!: 天體命名和林肯近地小行星研究小組 · 查看更多 »

恒星

恆星是一種天體,由引力凝聚在一起的一顆球型發光電漿體,太陽就是最接近地球的恆星。在地球的夜晚可以看見的其他恆星,幾乎全都在銀河系內,但由於距離非常遙遠,這些恆星看似只是固定的發光點。歷史上,那些比較顯著的恆星被組成一個個的星座和星群,而最亮的恆星都有專有的傳統名稱。天文學家組合成的恆星目錄,提供了許多不同恆星命名的標準。 至少在恆星生命的一段時期,恆星會在核心進行氫融合成氦的核融合反應,從恆星的內部將能量向外傳輸,經過漫長的路徑,然後從表面輻射到外太空。一旦核心的氫消耗殆盡,恆星的生命就即將結束。有一些恆星在生命結束之前,會經歷恆星核合成的過程;而有些恆星在爆炸前會經歷超新星核合成,會創建出幾乎所有比氦重的天然元素。在生命的盡頭,恆星也會包含簡併物質。天文學家經由觀測其在空間中的運動、亮度和光譜,確知一顆恆星的質量、年齡、金屬量(化學元素的豐度),和許多其它屬性。一顆恆星的總質量是恆星演化和決定最終命運的主要因素:恆星在其一生中,包括直徑、溫度和其它特徵,在生命的不同階段都會變化,而恆星周圍的環境會影響其自轉和運動。描繪眾多恆星的溫度相對於亮度的圖,即赫羅圖(H-R圖),可以讓我們測量一顆恆星的年齡和演化的狀態。 恆星的生命是由氣態星雲(主要由氫、氦,以及其它微量的較重元素所組成)引力坍縮開始的。一旦核心有了足夠的密度,氫融合成氦的核融合反應就可以穩定的持續進行,釋放過程中產生的能量。恆星內部的其它部分會進行組合,形成輻射層和對流層,將能量向外傳輸;恆星內部的壓力能防止其因自身的重力繼續向內坍縮。一旦耗盡了核心的氫燃料,質量大於0.4太陽質量的恆星,會膨脹成為一顆紅巨星,在某些情況下,在核心或核心周圍的殼層會融合成更重的元素。然後這顆恆星會演化出簡併型態,並將一些物質回歸至星際空間的環境中。這些釋放至間中的物質有助於形成新一代的恆星,它們會含有比例較高的重元素。與此同時,核心成為恆星殘骸:白矮星、中子星、或黑洞(如果它有足夠龐大的質量)。 聯星和多星系統包含兩顆或更多受到引力束縛的恆星,通常彼此都在穩定的軌道上各自運行著。當這樣的兩顆恆星在相對較近的軌道上時,其间的引力作用可以對它們的演化產生重大的影響。恆星可以構成更巨大的引力束縛結構,像是星團或是星系。.

新!!: 天體命名和恒星 · 查看更多 »

恆星亮度列表

亮星之所以亮是因为它们的光度较高且/或离地球距离较近。以下是在可见光波段从地球看起来视星等亮于+2.5的恒星列表。由于随着视星等的增加,可观测恒星的数目将大大增加,因此此处只列出前100颗。实际上,整个天空亮过视星等+11的恒星几乎都记录在案了,对更暗天体的探索也在持续之中。 相較之下,太陽系中非恆星的天體最亮光度在視星等+2.50等以下有月球(-12.7)、金星(-4.6)、木星(-2.9)、火星(-2.9)、水星(-1.9)、土星(-0.2)。 以下列表中的恆星視星等無法準確判定有如下原因:.

新!!: 天體命名和恆星亮度列表 · 查看更多 »

恆星命名

國際天文聯合會(IAU)是國際上認可唯一能為恆星和各類天體分配與指定名稱的機構。在IAU成立之前,已經有許多恆星的名字被使用,其他的名字,主要是變星(包括新星、超新星)則一直在增加,但是多數的恆星在被提到時還是沒有名字,只能用星表中的编号來稱呼。這篇文章將簡要述說恆星命名的方法。.

新!!: 天體命名和恆星命名 · 查看更多 »

恆星系統

恆星系統或恆星系是少數幾顆恆星受到引力的拘束而互相環繞的系統,為數眾多的恆星受到引力的約束一般稱為“星團”或“星系”,但是概括來說都可以稱為恆星系統。恆星系統有時也會用在單獨但有更小的行星系環繞的恆星。.

新!!: 天體命名和恆星系統 · 查看更多 »

恆星黑洞

恆星黑洞(Stellar black hole)是一種大質量恆星(大約20倍太陽質量,但其真實質量並未證實,而且也取決於其他變數)引力坍塌後所形成的黑洞,可以藉由伽瑪射線暴或超新星來發現它的蹤跡,其質量是五至數十倍的太陽質量。目前已知質量最大的恆星黑洞是15.65±1.45倍太陽質量。另外,也有証據證明IC 10 X-1 X-ray是一個擁有24至33倍太陽質量的恆星黑洞。 根據廣義相對論,可以存在任何質量的黑洞。質量越少,形成黑洞所需的密度就越高(參看史瓦西半徑)。直至目前為止,還沒有發現任何可以製造少於1太陽質量的黑洞方法。但如果它們存在,它們極有可能是微黑洞。 恆星的引力坍塌是一個形成黑洞的自然過程。當恆星寿终正寝时,即所有能量耗盡後,引力坍塌是無可避免的事態。如果恆星的坍塌質量低於臨介值時,將會生成白矮星或中子星的緻密星。這些星體擁有最大的質量,所以,如果緻密星的質量超過此臨介值時,引力坍塌會繼續,然後突變為重力坍塌,形成黑洞。雖然還沒證實到中子星的最大質量,但估計也有3倍太陽質量。直至目前為止,質量最小的黑洞大約有3.8倍太陽質量。 另外,也有觀察証據證明有兩種質量比恆星黑洞更大的黑洞,它們是中介質量黑洞(位於球狀星團的中心)和超大質量黑洞(位於銀河系和活動星系核的中心)。 一個黑洞最多只能擁有以下三個特性:質量、電荷和角動量(旋轉)。所有自然生成的黑洞都會旋轉,但並沒有確實觀察旋轉狀況。恆星黑洞的旋轉是因為恆星的角動量守恆而造成的。.

新!!: 天體命名和恆星黑洞 · 查看更多 »

核融合體

核融合體(fusor)是加州柏克萊大學的教授Gibor Basri向國際天文聯合會建議,用來協助說明天體的術語。根據他的定義,一個核融合體是在"生命週期中能在核心進行核融合的天體"。這個定義包含任何一種形式的核融合,一個核融合體的最低質量大約是木星質量的13倍,在這個點是有可能上進行氘的融合,但遠低於進行氫的融合所需要的可能:大約是木星質量的60倍。而直到木星質量75倍以上的天體,即當重力收縮,也就是引力產生的收縮受到內部核反應產生的熱能抑制,才可能被視為恆星。.

新!!: 天體命名和核融合體 · 查看更多 »

梅西耶天體

梅西爾天體 是一套110個深空天體表,其中的103個是法國天文學家夏爾·梅西耶在1771年和1781年發表的名單。梅西爾是一位彗星獵人,常被那些類似但不是彗星的天體所困惑,所以他編輯了梅西爾天體表,其中也羅列了其競爭者皮埃爾·梅尚發現的,以避免在這些天體上浪費時間。除了梅西爾發表的這103個之外,還有7個也被認為是梅西爾發現與觀測過的,也已經被後來的天文學家加入這份表單中。 最近才注意到在1654年發表了一份較簡短的,但梅西爾可能不知道。.

新!!: 天體命名和梅西耶天體 · 查看更多 »

氣體巨星

#重定向 氣態巨行星.

新!!: 天體命名和氣體巨星 · 查看更多 »

水星

水星(Mercurius),中國古稱辰星;到西漢時期,《史記‧天官書》作者天文學家司馬遷從實際觀測發現辰星呈灰色,與「五行」學說聯繫在一起,以黑色配水星,因此正式把它命名為水星。 水星是太陽系的八大行星中最小和最靠近太陽的行星,但有著八大行星中最大的離心率 ,軌道週期是87.969 地球日。從地球上看,它大约116天左右與地球會合一次,公转速度遠遠超過太阳系的其它星球。水星的快速運動使它在羅馬神話中被稱為墨丘利,是快速飛行的信使神。由于大氣層极为稀薄,无法有效保存热量,水星表面昼夜温差极大,为太阳系行星之最。白天时赤道地區温度可达430°C,夜间可降至-170°C。極區气温則終年維持在-170°C以下。水星的軸傾斜是太陽系所有行星中最小的(大約度),但它有最大的軌道偏心率。水星在遠日點的距離大約是在近日點的1.5倍。水星表面充滿了大大小小的坑穴(環形山),外觀看起來與月球相似,顯示它的地質在數十億年來都處於非活動狀態。 水星无四季变化。它也是唯一被太陽潮汐鎖定的行星。相對於恆星,它每自轉三圈的時間與它在軌道上繞行太陽兩圈的時間几乎完全相等。從太陽看水星,參照它的自轉與軌道上的公轉運動,是每兩個水星年才一個太陽日。因此,对一位在水星上的觀測者来说,一天相当于兩年。 因為水星的軌道位於地球的內側(金星也一樣),所以它只能在晨昏之際與白天出現在天空中,而不會在子夜前後出現。同時,也像金星和月球一樣,在它繞著軌道相對於地球,會呈現一系列完整的相位。雖然从地球上觀察,水星會是一顆很明亮的天體,但它比金星更接近太陽,因此比金星還難看見。 從地球看水星的亮度有很大的變化,視星等從-2.3至5.7等,但是它與太陽的分離角度最大只有28.3°。當它最亮時,从技術角度上讲應該很容易就能從地球上看見它,但由于其距离太阳过近,實際上並不容易找到。除非有日全食,否則在太陽光的照耀下通常是看不見水星的。在北半球,只能在凌晨或黃昏的曙暮光中看見水星。當大距出現在赤道以南的緯度時,在南半球的中緯度可以在完全黑暗的天空中看見水星。 水星軌道的近日點每世紀比牛頓力學的預測多出43角秒的進動,這種現象直到20世紀才從愛因斯坦的廣義相對論得到解釋。.

新!!: 天體命名和水星 · 查看更多 »

法厄同

法厄同(Phaëthon)在希腊神话中一般认为是太阳神赫利俄斯的儿子。也有说是曙光女神厄俄斯与刻法罗斯的儿子,后被阿佛羅狄忒偷来看护她的神庙。 传说中,法厄同对人夸耀自己是太阳神的儿子,别人不信。他去向父亲太阳神请求,得后者发誓给他想要的任何东西。他于是要求:驾驶父亲的太阳车一天,从东方天边日出处到西方日落处。太阳神百般劝解说你没有这个能力,这样反会给自身和人类带来祸害。法厄同不听。结果到了那天,他慌乱中失去了对拉车白马的控制。太阳车先是升得太高,大地骤然变冷;然后又突然降低,烧焦了地上的草木,非洲的大片地方变为沙漠,把埃塞俄比亚居民的皮肤烧黑。最后,宙斯不得不亲自动手,用闪电把法厄同击死。法厄同的尸体掉进一条大河(天上的波江座或意大利的波河)。 他的密友Cycnus悲伤不已,神同情之下把他变成了一只天鹅。他的姐妹们也被变成了赤杨树,其眼泪成了琥珀。.

新!!: 天體命名和法厄同 · 查看更多 »

法语

法語(le français 或 la langue française)属于印欧语系罗曼语族,法語是除英語、西班牙語和阿拉伯語之外最多國家的官方語言也是聯合國工作語言之一,法語也是聯合國、歐盟、北約、奧運會、世貿和國際紅十字會等的官方語言及正式行政語言。法語在11世纪曾是除了中古漢語以外,當時世界上使用人口最多的语言。現時全世界有約一億人将法语作为母语,另有2.8億人使用法语(包括把它作为第二语言的人);这些数字目前仍在增長中,尤其是在非洲大陸。法語被广泛使用,其程度位居世界第二,僅次於英語。法国法语和魁北克法语是世界上最主要的两大法语分支,尽管它们從同一法语方言分化而成,但以两者互相溝通时则会有障礙,这是因為兩者在發音以及少数语法上有所区别。.

新!!: 天體命名和法语 · 查看更多 »

洛厄爾天文台近地小行星搜尋計畫

洛厄尔天文台近地小行星搜尋計畫(LONEOS)是NASA和洛厄尔天文台共同執行的發現近地小行星計畫。計畫開始於1993年,主要的研究員是特德·鮑威爾。 LONEOS是被設計來發現掠地小行星(ECAs)和彗星,共同稱為近地天體(NEOs)的系統。這些天體偶爾可能會與地球碰撞而造成破壞性的結果,發現大的近地天體是避免碰撞的第一步。估計大約有1,600個直徑超過1公里的近地天體,但目前已經知道的僅有100個左右。感謝LONEOS計畫的效率,由於CCD攝影機和數據處理軟體的升級,在1990-200年發現的近地天體數量已經明顯的增加。.

新!!: 天體命名和洛厄爾天文台近地小行星搜尋計畫 · 查看更多 »

渦狀星系

渦狀星系(Whirlpool Galaxy),又叫做M51或是NGC 5194,位在天空北方的獵犬座(Canes Venaciti),長度約有65000光年,距離地球2300萬光年。.

新!!: 天體命名和渦狀星系 · 查看更多 »

測天圖

測天圖(Uranometria)是德國天文學家約翰·拜耳出版星圖的簡短標題。測天圖於1603年在今日德國的奧格斯堡出版,完整全名:「測天圖,包含以新的方式繪製並雕刻於銅版上的所有星座的圖表。」(Uranometria: omnium asterismorum continens schemata, nova methodo delineata, aereis laminis expressa.)。測天圖是第一個繪製範圍包含整個天球的星圖Asimov, Asimov's Biographical Encyclopedia of Science and Technology 2nd Revised edition。.

新!!: 天體命名和測天圖 · 查看更多 »

木星

|G1.

新!!: 天體命名和木星 · 查看更多 »

月球

没有描述。

新!!: 天體命名和月球 · 查看更多 »

星座

弗雷德里克·德·威特在1670年绘制的星座图 星座是指天上一群群的恒星组合。自从古代以来,人类便把三五成群的恒星与他们神话中的人物或器具联系起来,称之为“星座”。星座几乎是所有文明中确定天空方位的手段,在航海领域应用颇广。对星座的划分完全是人为的,不同的文明对于其划分和命名都不尽相同。星座一直没有统一规定的精确边界,直到1930年,國際天文學聯合會为了统一繁杂的星座划分,用精確的邊界把天空分為八十八個正式的星座,使天空多数恆星都屬於某一特定星座。這些正式的星座大多都以中世紀傳下來的古希臘傳統星座為基礎。与此相对地,有一些广泛流传但是沒有被认可为正式星座的星星的组合叫做星群,例如北斗七星(参见恒星统称列表)。 在三維的宇宙中,這些恆星其實相互間不一定有實際的關係,不過其在天球這一個球殼面上的位置相近,而其实它们之间可能相距很远。如果我们身处银河中另一太阳系,我们看到的星空将会完全不同。自古以來,人们对于恆星的排列和形狀很感興趣,並很自然地把一些位置相近的星聯繫起來組成星座。.

新!!: 天體命名和星座 · 查看更多 »

星云

星雲(源自拉丁文的:nebulae或nebulæ,與ligature或nebulas,意思就是“雲”)是塵埃、氫氣、氦氣、和其他電離氣體聚集的星際雲。原本是天文學上通用的名詞,泛指任何天文上的擴散天體,包括在銀河系之外的星系(一些過去的用法依然留存著,例如仙女座星系依然使用愛德溫·哈伯發現它是星系之前的名稱,被稱為仙女座星雲)。星雲通常也是恆星形成的區域,例如鷹星雲,這個星雲刻畫出NASA最著名的影像,即創生之柱。在這個區域形成的氣體、塵埃和其他材料擠在一起,聚集了巨大的質量,這吸引了更多的質量,最後大到足以形成恆星。據了解,剩餘的材料還可以形成行星和行星系的其它天體。.

新!!: 天體命名和星云 · 查看更多 »

星等

星等(magnitude),為天文学术语,是指星体在天空中的相对亮度。一般而言,这也指“视星等”,即为从地球上所见星体的亮度。在地球上看起来越明亮的星体,其视星等数值就越低。常见情况下人们使用可见光来衡量视星等,但在科学探测中,红外线等其它波段也有用到。不同波段探测到的星等数据会有所不同。一颗星星的星等,取决于它离地球的距离、它本身的光度(即为绝对星等)、星际尘埃遮蔽等多重因素。一般人的肉眼能够分辨的极限大约是6.5等。.

新!!: 天體命名和星等 · 查看更多 »

星系

星系(galaxy),或譯為銀河,源自於希臘语的「γαλαξίας」(galaxias)。廣義上星系指無數的恆星系(當然包括恆星的自體)、塵埃(如星雲)組成的運行系統。參考我們的銀河系,是一個包含恆星、星團、星雲、氣體的星際物質、宇宙塵和暗物質,並且受到重力束縛的大質量系統,通常距離都在幾百萬光年以上。星系平均有數百億顆恆星,是構成宇宙的基本單位。。典型的星系,從只有數千萬(107)顆恆星的矮星系到上兆(1012)顆恆星的橢圓星系都有,全都環繞著質量中心運轉。除了單獨的恆星和稀薄的星際物質之外,大部分的星系都有數量龐大的多星系統、星團以及各種不同的星雲。 歷史上,星系是依據它們的形状分類的(通常指它們視覺上的形狀)。最普通的是橢圓星系,有橢圓形狀的明亮外觀;螺旋星系是圓盤的形狀,加上彎曲的塵埃旋渦臂;形狀不規則或異常的,通常都是受到鄰近其他星系影響的結果。鄰近星系間的交互作用,也許會導致星系的合併,或是造成恆星大量的產生,成為所謂的星爆星系。缺乏有條理結構的小星系則會被稱為不規則星系。 在可以看見的可觀測宇宙中,星系的總數可能超過一千億(1011)個以上。大部分的星系直徑介於1,000至100,000秒差距,彼此間相距的距離則是百萬秒差距的數量級。星系際空間(存在於星系之間的空間)充滿了極稀薄的電漿,平均密度小於每立方公尺一個原子。多數的星系會組織成更大的集團,成為星系群或團,它們又會聚集成更大的超星系團。這些更大的集團通常被稱為薄片或纖維,圍繞在宇宙中巨大的空洞週圍。 雖然我們對暗物質的了解很少,但在大部分的星系中它都佔有大約90%的質量。觀測的資料顯示超大質量黑洞存在於星系的核心,即使不是全部,也佔了絕大多數,它們被認為是造成一些星系有著活躍的核心的主因。銀河系,我們的地球和太陽系所在的星系,看起來在核心中至少也隱藏著一個這樣的物體。.

新!!: 天體命名和星系 · 查看更多 »

星表

星表是天文學上的目錄。在天文學中,許多恆星都只有在星表中有簡單的編號;而為了許多不同的目的,有許多巨大的星表在費時多年後才編輯完成,但其中僅有少數的會經常被引用到。許多近年編輯完成的星表是使用電子格式編輯完成,可以直接由美国国家航空航天局天文資料中心或其他網站上免費下載。(參見文末的連結。) 隨著人們發明強大的新型望遠鏡,看到的星星也越來越多,可見星星的數量數以億計,因此現階段根本不可能把數百億顆恆星收錄在單一星表中,而使用不同性質的星表來分類。常用的星表有:HD/HDE,SAO,,AC,,ADS,BS,BSC,HR,GJ,Gliese,Gl,GCTP,HIP。.

新!!: 天體命名和星表 · 查看更多 »

海山一

海山一(船底座s),又名HD 90853,CP-58 2227,SAO 238085、HR 4114,是一颗恒星,视星等为3.82,位于銀經285.22,銀緯-0.9,其B1900.0坐标为赤經,赤緯。.

新!!: 天體命名和海山一 · 查看更多 »

海石一

海石一(ε Car / 船底座ε)是船底座的一颗恒星,视星等+1.86,是天空中最亮的恒星之一,但在北半球无法看见。 海石一有一个广为人知的、但非经典的名字:Avior,这个名字在20世纪30年代后期由英國航海星曆局(HM Nautical Almanac Office)为皇家空军发行的航空星曆中命名。在这本包含57个恒星的新航空星曆中,有2颗恒星没有经典的命名:海石一(船底座ε)和孔雀座α。但皇家空军坚持所有的恒星必须有专名,因此创造了两个新名称:孔雀座α被命名为孔雀,同时船底座ε被命名为Avior。 海石一是一个双星系统,主星是一颗濒临死亡的橙巨星,光谱型K3III,伴星为一颗炽热的蓝矮星,光谱型B2V。两颗星有规则的互相掩食,导致0.1星等的光度变化。.

新!!: 天體命名和海石一 · 查看更多 »

海王星

海王星是太陽系八大行星中距离太阳最远的,體積是太陽系第四大,但質量排名是第三。海王星的質量大約是地球的17倍,而類似雙胞胎的天王星因密度較低,質量大約是地球的14倍。海王星以羅馬神話中的尼普顿(Neptunus)命名,因為尼普顿是海神,所以中文譯為海王星。天文學的符號(♆,Unicode編碼U+2646),是希臘神話的海神波塞頓使用的三叉戟。 作爲一個冰巨行星,海王星的大氣層以氫和氦為主,還有微量的甲烷。在大氣層中的甲烷,只是使行星呈現藍色的一部分原因。因為海王星的藍色比有同樣份量的天王星更為鮮豔,因此應該還有其他成分對海王星明顯的顏色有所貢獻。 海王星有太陽系最強烈的風,測量到的風速高達每小時2,100公里。 1989年航海家2號飛掠過海王星,對南半球的大黑斑和木星的大紅斑做了比較。海王星雲頂的溫度是-218 °C(55K),因為距離太陽最遠,是太陽系最冷的地區之一。海王星核心的溫度約為7,000 °C,可以和太陽的表面比較,也和大多數已知的行星相似。 海王星在1846年9月23日被發現, 是唯一利用數學預測而非有計畫的觀測發現的行星。天文學家利用天王星軌道的攝動推測出海王星的存在與可能的位置。迄今只有航海家2號曾經在1989年8月25日拜訪過海王星。2003年,美國國家航空暨太空總署提出有如卡西尼-惠更斯號科學水準的海王星軌道探測計畫,但不使用熱滋生反應提供電力的推進裝置;這項計劃由噴射推進實驗室和加州理工學院一起完成。.

新!!: 天體命名和海王星 · 查看更多 »

海王星外天體

海王星外天体(Trans-Neptunian object),常简称海外天体,是指太陽系中所在位置或運行軌道超出海王星軌道範圍的天體。海王星外的太陽系由內而外可再區分柯伊伯带區帶。 冥王星與其五顆衛星冥衛一至冥衛五即屬於海王星外天体,但考虑到冥王星特殊的公转轨道有部份位於海王星轨道以内的情况,如果冥王星現在才被發現,或許就不能当作行星。而在2006年,冥王星亦從九大行星中剔除。 宇宙中的天體如行星均靠重力相互吸引。1900年代初期由於當時已知行星的觀測軌道與預期路線不合,於是假設海王星軌道外還有一顆以上的行星仍未尋獲(參見假設的海王星外行星,Planet X)。而後即依據此假設在海王星軌道外發現冥王星及其他天體。雖然重新修正估算過海王星質量後顯示這個問題並不確實,但仍有一些過小而難以解釋的星體軌道擾動。.

新!!: 天體命名和海王星外天體 · 查看更多 »

新视野号

新視野號(New Horizons)又譯新地平線號,是美國國家航空暨太空總署旨在探索矮行星冥王星(在發射時間仍然被認為是一顆行星)和柯伊伯带的行星際機器人太空船任務,它是第一艘飛越和研究冥王星和它的衛星,凱倫、尼克斯和許德拉的太空探測器。NASA可能還會批准它飛越一個或两個古柏帶天體。任務概要是由美国西南研究院首席研究員所領導的一個團隊提出。 經過在發射地點的幾個延誤後,新視野號于2006年1月19日在卡纳维拉尔角發射,直接進入地球和太陽逃逸軌道,在最後關閉引擎時相對於地球的速度是16.26公里/秒,或58,536公里/小時(10.10英里/秒或36,373英里/小時)。因此,它是有史以來以最快的發射速度離開地球的人造物體。2015年7月14日新视野号飛越冥王星系统。随后,新視野號将繼續進入古柏帶。 經過與小行星132524 APL一個短暫的相遇後,新視野號飛往木星,在2007年2月28日使得其最接近木星的距離为。木星飛掠提供重力助推给新視野號的速度增加了。木星相遇也被用來作為新視野號科技性能的全面測試,傳回關於行星的大氣層,衛星和磁層的數據。在飛掠木星後,探測器繼續前往冥王星。在木星後的大部分旅行中,太空船是处于休眠模式度過,以保護太空船上的系統。在2006年9月,新視野號第一次拍攝了冥王星,其次是在2013年7月拍攝了區分冥王星和它的衛星冥卫一作為兩個單獨的對象的圖像。無線電信號从新視野號太空船旅行到地球需要用4個多小時。 格林威治時間2015年7月14日上午11時49分,新視野號接近冥王星12,500公里,為旅程中最接近冥王星的位置。 它成為了第一艘探索冥王星的航天器。 協調世界時7月15日00時52分37秒(美國東部時間7月14日20時52分37秒),美國國家航空暨太空總署收到了新視野號傳來的訊息,證實了探測器在預定的時間成功地飛越了冥王星,探測器各方面的運作一切正常,和先前預料的一樣。.

新!!: 天體命名和新视野号 · 查看更多 »

斗宿四

斗宿四(σ Sgr / 人马座σ)是人马座的第二亮星,距离地球约228光年(70秒差距),视星等+2.1,光谱型B3。斗宿四聚星系统的总光度约为太阳的3300倍,总质量约为太阳的7倍。主星的质量为太阳的5倍,表面温度约为20,000K。斗宿四有一颗视星等为+9.5的伴星:σ Sgr B,二者相距5.2弧分。斗宿四还可能有更靠近的伴星。 考古学家发现其现代名称Nunki来源于亚述或巴比伦,并由R.H.Allen介绍给大众。 斗宿四靠近黄道,所以会被月亮以及行星(很少)遮挡。.

新!!: 天體命名和斗宿四 · 查看更多 »

拜耳命名法

拜耳命名法(Bayer designation)是一種恆星命名法,它以一個希臘字母做前導,後面伴隨著拉丁文所有格的星座名稱。拜耳命名的原始清單載有的恆星共有1,564顆。 德國天文學家約翰·拜耳於1603年在他的星圖《測天圖》(Uranometria)中,首先有系統的為許多亮星命名。拜耳在他的星圖上,使用小寫的希臘字母,像是α、β、γ、等等為前導,分配給星座中的每一顆星,再與恆星所在星座的拉丁文所有格結合,組成恆星的名字(參見所有格的星座列表,在中文則是字母跟隨在星座名稱之後)。例如,畢宿五命名為金牛座α,它的意思就是在金牛座排序為第一顆的恆星。 單一個星座可能包含50顆甚至更多的恆星,但是希臘字母只有24個,當這些字母用完之後,拜耳開始使用小寫的拉丁字母:因此便會有船底座s和半人馬座d等名稱。在星星數量極多的星座內,拜耳最終使用到大寫的拉丁字母,像是天蝎座G和船帆座N。拜耳使用的最後一個大寫字母是Q。.

新!!: 天體命名和拜耳命名法 · 查看更多 »

拉丁语

拉丁语(lingua latīna,),羅馬帝國的奧古斯都皇帝時期使用的書面語稱為「古典拉丁語」,屬於印欧语系意大利語族。是最早在拉提姆地区(今意大利的拉齐奥区)和罗马帝国使用。虽然现在拉丁语通常被认为是一种死语言,但仍有少数基督宗教神职人员及学者可以流利使用拉丁语。罗马天主教传统上用拉丁语作为正式會議的语言和礼拜仪式用的语言。此外,许多西方国家的大学仍然提供有关拉丁语的课程。 在英语和其他西方语言创造新词的过程中,拉丁语一直得以使用。拉丁语及其后代罗曼诸语是意大利语族中仅存的一支。通过对早期意大利遗留文献的研究,可以证实其他意大利语族分支的存在,之后这些分支在罗马共和国时期逐步被拉丁语同化。拉丁语的亲属语言包括法利斯克语、奥斯坎语和翁布里亚语。但是,威尼托语可能是一个例外。在罗马时代,作为威尼斯居民的语言,威尼托语得以和拉丁语并列使用。 拉丁语是一种高度屈折的语言。它有三种不同的性,名词有七格,动词有四种词性变化、六种时态、六种人称、三种语气、三种语态、两种体、两个数。七格当中有一格是方位格,通常只和方位名词一起使用。呼格与主格高度相似,因此拉丁语一般只有五个不同的格。不同的作者在行文中可能使用五到七种格。形容词与副词类似,按照格、性、数曲折变化。虽然拉丁语中有指示代词指代远近,它却没有冠词。后来拉丁语通过不同的方式简化词尾的曲折变化,形成了罗曼语族。 拉丁语與希腊语同為影響歐美學術與宗教最深的语言。在中世纪,拉丁语是当时欧洲不同国家交流的媒介语,也是研究科学、哲学和神學所必须的语言。直到近代,通晓拉丁语曾是研究任何人文学科教育的前提条件;直到20世纪,拉丁语的研究才逐渐衰落,重点转移到对當代语言的研究。.

新!!: 天體命名和拉丁语 · 查看更多 »

拉格朗日点

拉格朗日点(Lagrangian point)又称平动点(libration points)在天体力学中是限制性三体问题的五个特殊解(particular solution)。就平面圆型三体问题,1767年数学家欧拉根据旋转的二体引力场推算出其中三个点(特解)為L1、L2、L3,1772年数学家拉格朗日推算出另外两个点(特解)為L4、L5。例如,两个天体环绕运行,在空间中有五个位置可以放入第三个物体(质量忽略不计),并使其保持在两个天体的相应位置上。理想状态下,两个同轨道物体以相同的周期旋转,两个天体的万有引力与离心力在拉格朗日点平衡,使得第三个物体与前两个物体相对静止。.

新!!: 天體命名和拉格朗日点 · 查看更多 »

智神星

智神星(英語、拉丁語:Pallas),小行星序號是2 智神星(2 Pallas),是人類繼谷神星(太陽系最大的小行星之一)後所發現的第二顆小行星。估計它的質量是小行星帶的7%。智神星直徑為,比灶神星稍大一些,但是其質量卻比灶神星輕10–30% ,所以智神星是小行星帶中第三重的小行星。智神星可能是太陽系中最大的不規則天體(也就是本身的重力不能使外貌呈現圓滑),也可能是殘餘的原行星。 天文學家海因里希·歐伯斯在1802年3月28日發現智神星,那時被歸類為行星。事實上,19世紀初期發現的小行星都曾經被歸類為行星,直到1845年有更多的小行星被發現之後,才重新分類。 智神星的表面似乎由矽酸鹽組成;表面光譜和密度類似於碳質球粒隕石。智神星有異常高的軌道傾角(高達34.8°)、高離心率,類似冥王星,所以太空船很難前往智神星拜訪。.

新!!: 天體命名和智神星 · 查看更多 »

2006年行星重定義

#重定向 国际天文联合会的行星定义.

新!!: 天體命名和2006年行星重定義 · 查看更多 »

重定向到这里:

天体命名

传出传入
嘿!我们在Facebook上吧! »