我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

並矢張量

指数 並矢張量

在多重線性代數裡,並矢張量(dyadic tensor)是一個以特別標記法寫出的二階張量,是由成對的向量並置形成的。針對這特別標記法,有一套專門計算這種表達式,類似於矩陣代數規則的方法。並矢張量的每一對向量的並置稱為並矢(dyad)。兩個單位基底向量的並矢積稱為單位並矢(unit dyad)。純量與單位並矢的乘積就是並矢。 例如,設定兩個三維向量 \boldsymbol\, 和 \boldsymbol\, , 其中,\boldsymbol\, 、\boldsymbol\, 、\boldsymbol\,,形成了一個三維空間裏的標準正交基的單位基底向量。 那麼,\boldsymbol\, 與 \boldsymbol\, 並置成為 其中,\boldsymbol\, 、\boldsymbol\, 、\boldsymbol\, 等等,都是單位並矢,v_1 w_1\boldsymbol\, 、v_1 w_2 \boldsymbol\, 、v_1 w_3 \boldsymbol\, 等等,都是並矢。 並矢張量 \boldsymbol\, 也可以表達為 \begin \end\, 。.

目录

  1. 52 关系: 基 (線性代數)反变叉积向量向量空间复数实数希尔伯特空间交換律应变张量积張量列維-奇維塔符號内积内积空间共轭复数矩阵線性無關线性映射经典力学结合律爱因斯坦求和约定点积物理学狄拉克符号相对论馬克士威應力張量角动量耦合角動量算符角量子数諧振子轉動慣量阿尔伯特·爱因斯坦闵可夫斯基空间量子力学零向量雙線性形式逆矩阵逆時針方向恆等函數李代數李群标准正交基欧几里得空间正定县正定矩阵满射旋转旋轉算子... 扩展索引 (2 更多) »

  2. 张量

域(field)可以指:.

查看 並矢張量和域

基 (線性代數)

在线性代数中,基(basis)(也称为基底)是描述、刻画向量空间的基本工具。向量空间的基是它的一个特殊的子集,基的元素称为基向量。向量空间中任意一个元素,都可以唯一地表示成基向量的线性组合。如果基中元素个数有限,就称向量空间为有限维向量空间,将元素的个数称作向量空间的维数。 使用基底可以便利地描述向量空间。比如说,考察从一个向量空间\mathrm射出的线性变换f,可以查看这个变换作用在向量空间的一组基\mathfrak上的效果。掌握了f(\mathfrak),就等于掌握了f对\mathrm中任意元素的效果。 不是所有空间都拥有由有限个元素构成的基底。这样的空间称为无限维空间。某些无限维空间上可以定义由无限个元素构成的基。如果承认选择公理,那么可以证明任何向量空间都拥有一组基。一个向量空间的基不止一组,但同一个空间的两组不同的基,它们的元素个数或势(当元素个数是无限的时候)是相等的。一组基里面的任意一部分向量都是线性无关的;反之,如果向量空间拥有一组基,那么在向量空间中取一组线性无关的向量,一定能将它扩充为一组基。在内积向量空间中,可以定义正交的概念。通过特别的方法,可以将任意的一组基变换成正交基乃至标准正交基。.

查看 並矢張量和基 (線性代數)

反变

反变(反变性)可指:.

查看 並矢張量和反变

叉积

在数学和向量代数领域,叉積(Cross product)又称向量积(Vector product),是对三维空间中的两个向量的二元运算,使用符号 \times。与点积不同,它的运算结果是向量。对于线性无关的两个向量 \mathbf 和 \mathbf,它们的叉积写作 \mathbf \times \mathbf,是 \mathbf 和 \mathbf 所在平面的法线向量,与 \mathbf 和 \mathbf 都垂直。叉积被广泛运用于数学、物理、工程学、计算机科学领域。 如果两个向量方向相同或相反(即它们非线性无关),亦或任意一个的长度为零,那么它们的叉积为零。推广开来,叉积的模长和以这两个向量为边的平行四边形的面积相等;如果两个向量成直角,它们叉积的模长即为两者长度的乘积。 叉积和点积一样依赖于欧几里德空间的度量,但与点积之不同的是,叉积还依赖于定向或右手定則。.

查看 並矢張量和叉积

向量

向量(vector,物理、工程等也称作--)是数学、物理学和工程科学等多个自然科學中的基本概念,指一个同时具有大小和方向,且满足平行四边形法则的几何對象。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量(特别地,电流属既有大小、又有正负方向的量,但由于其运算不满足平行四边形法则,公认为其不属于向量)。向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量或数量,即只有大小、绝大多数情况下没有方向(电流是特例)、不满足平行四边形法则的量。.

查看 並矢張量和向量

向量空间

向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.

查看 並矢張量和向量空间

复数

#重定向 复数 (数学).

查看 並矢張量和复数

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

查看 並矢張量和实数

希尔伯特空间

在数学裡,希尔伯特空间即完备的内积空间,也就是說一個帶有內積的完備向量空間。是有限维欧几里得空间的一个推广,使之不局限于實數的情形和有限的维数,但又不失完备性(而不像一般的非欧几里得空间那样破坏了完备性)。与欧几里得空间相仿,希尔伯特空间也是一个内积空间,其上有距离和角的概念(及由此引申而来的正交性与垂直性的概念)。此外,希尔伯特空间还是一个完备的空间,其上所有的柯西序列會收敛到此空間裡的一點,从而微积分中的大部分概念都可以无障碍地推广到希尔伯特空间中。希尔伯特空间为基于任意正交系上的多项式表示的傅立叶级数和傅立叶变换提供了一种有效的表述方式,而这也是泛函分析的核心概念之一。希尔伯特空间是公設化数学和量子力学的关键性概念之一。.

查看 並矢張量和希尔伯特空间

交換律

交換律(Commutative property)是被普遍使用的一個數學名詞,意指能改變某物的順序而不改變其最終結果。交換律是大多數數學分支中的基本性質,而且許多的數學證明需要倚靠交換律。簡單運算的交換律許久都被假定存在,且沒有給定其一特定的名稱,直到19世紀,數學家開始形式化數學理論之後,交換律才被聲明。.

查看 並矢張量和交換律

应变

应变可以指:.

查看 並矢張量和应变

张量积

在数学中,张量积,记为 \otimes,可以应用于不同的上下文中如向量、矩阵、张量、向量空间、代数、拓扑向量空间和模。在各种情况下这个符号的意义是同样的: 最一般的双线性运算。在某些上下文中也叫做外积。 例子: \mathbf \otimes \mathbf \rightarrow \beginb_1 \\ b_2 \\ b_3 \\ b_4\end \begina_1 & a_2 & a_3\end.

查看 並矢張量和张量积

張量

張量(tensor)是一个可用來表示在一些向量、純量和其他張量之間的線性關係的多线性函数,這些線性關係的基本例子有內積、外積、線性映射以及笛卡儿积。其坐标在 n  維空間內,有  n^r個分量的一種量,其中每個分量都是坐標的函數,而在坐標變換時,這些分量也依照某些規則作線性變換。r稱為該張量的秩或階(与矩阵的秩和阶均无关系)。 在同构的意义下,第零階張量(r.

查看 並矢張量和張量

列維-奇維塔符號

列維-奇維塔符號(Levi-Civita symbol),特別在線性代數,張量分析和微分幾何等數學範疇中很常見到,用以表示數字的集合;是對於中某個正整數所形成排列的正負符號來定義。它以義大利數學家和物理學家Tullio Levi-Civita命名。其它名稱包括置換符號,反對稱符號或交替符號,是有關於反對稱的屬性與排列的定義。 希臘小寫字母或是表示列維-奇維塔符號的標準記號,較不常見的也有以拉丁文小寫記號。下標符能與張量分析兼容的方式來顯示排列: 其中每個下標取值為。有個索引值為,可以排成為-維陣列。 這個符號的關鍵定義是全部索引中的完全反對稱性。當任何兩個索引互換、相等或否定時,則符號的正負即有變化: 如果兩個索引相等,則此符號變為0。當全部索引都不相等時,我們有: 其中(稱為排列的奇偶性質)是要將 回復的自然次序時,而索引所需的對換次數,而因子被稱為排列的符號。的值必須有定義,否則所有排列的特定符號值是無法確定的。大多數作者選擇,表示列維-奇維塔符號等於各別索引不相等時的置換符號,在本文中使用這個定義。 “-維列維-奇維塔符號”一詞是指符號上的索引數,和所討論的向量空間維度相符,可以是歐幾里得或非歐幾里得空間,例如,或閔可夫斯基空間。列維-奇維塔符號的值與任何張量和參考座標系無關。此外,特別固定的“符號”強調,它並不因為在座標系之間如何變換而就是某一個張量;然而,它可以被理解為張量的密度。 列維-奇維塔符號讓我們可使用索引符號來表示方陣的行列式,及三維歐幾里德空間中的兩個向量的叉積。.

查看 並矢張量和列維-奇維塔符號

内积

#重定向 点积.

查看 並矢張量和内积

内积空间

内积空间是数学中的线性代数裡的基本概念,是增添了一个额外的结构的向量空间。这个额外的结构叫做内积或标量积。内积将一对向量与一个标量连接起来,允许我们严格地谈论向量的“夹角”和“长度”,并进一步谈论向量的正交性。内积空间由欧几里得空间抽象而来(内积是点积的抽象),这是泛函分析讨论的课题。 内积空间有时也叫做准希尔伯特空间(pre-Hilbert space),因为由内积定义的距离完备化之后就会得到一个希尔伯特空间。 在早期的著作中,内积空间被称作--空间,但这个词现在已经被淘汰了。在将内积空间称为--空间的著作中,“内积空间”常指任意维(可数或不可数)的欧几里德空间。.

查看 並矢張量和内积空间

共轭复数

在數學中,複數的複共軛(常簡稱共軛)是對虛部變號的運算,因此一個複數 的複共軛是 舉例明之: 在複數的極坐標表法下,複共軛寫成 這點可以透過歐拉公式驗證 將複數理解為複平面,則複共軛無非是對實軸的反射。複數z的複共軛有時也表為z^*。.

查看 並矢張量和共轭复数

矩阵

數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.

查看 並矢張量和矩阵

線性無關

在線性代數裡,向量空間的一組元素中,若沒有向量可用有限個其他向量的線性組合所表示,则稱為線--性無關或線--性獨立(linearly independent),反之稱為線性相關(linearly dependent)。例如在三維歐幾里得空間R3的三個向量(1, 0, 0),(0, 1, 0)和(0, 0, 1)線性無關。但(2, −1, 1),(1, 0, 1)和(3, −1, 2)線性相關,因為第三個是前兩個的和。.

查看 並矢張量和線性無關

线性映射

在数学中,线性映射(有的书上将“线性变换”作为其同义词,有的则不然)是在两个向量空间(包括由函数构成的抽象的向量空间)之间的一种保持向量加法和标量乘法的特殊映射。线性映射从抽象代数角度看是向量空间的同态,从范畴论角度看是在给定的域上的向量空间所构成的范畴中的态射。 “线性算子”也是与“线性映射”有关的概念。但是不同数学书籍上对“线性算子”的定义存在区别。在泛函分析中,“线性算子”一般被当做“线性映射”的同义词。而有的书则将“线性算子”定义为“线性映射”的自同态子类(详见下文)。为叙述方便,本条目在提及“线性算子”时,采用后一种定义,即将线性算子与线性映射区别开来。.

查看 並矢張量和线性映射

经典力学

经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,在宏观世界和低速状态下,研究物体运动的基本学科。在物理學裏,经典力学是最早被接受为力學的一个基本綱領。经典力学又分为静力学(描述静止物体)、运动学(描述物体运动)和动力学(描述物体受力作用下的运动)。16世纪,伽利略·伽利莱就已采用科学实验和数学分析的方法研究力学。他为后来的科学家提供了许多豁然开朗的启示。艾萨克·牛顿则是最早使用数学语言描述力学定律的科学家。.

查看 並矢張量和经典力学

结合律

在數學中,結合律(associative laws)是二元運算可以有的一個性質,意指在一個包含有二個以上的可結合運算子的表示式,只要運算元的位置沒有改變,其運算的順序就不會對運算出來的值有影響。亦即,重新排列表示式中的括號並不會改變其值。例如: 上式中的括號雖然重新排列了,但表示式的值依然不變。當這在任何實數的加法上都成立時,我們說「實數的加法是一個可結合的運算」。 結合律不應該和交換律相混淆。交換律會改變表示式中運算元的位置,而結合律則不會。例如: 是一個結合律的例子,因為其中的括號改變了(且因此運算子在運算中的順序也改變了),而運算元5、2、1則在原來的位置中。再來, 則不是一個結合律的例子,因為運算元2和5的位置互換了。 可結合的運算在數學中是很常見的,且事實上,大多數的代數結構確實會需要它們的二元運算是可結合的。不過,也有許多重要且有趣的運算是不可結合的;其中一個簡單的例子為向量積。.

查看 並矢張量和结合律

爱因斯坦求和约定

在數學裏,特別是將線性代數套用到物理時,愛因斯坦求和約定(Einstein summation convention)是一種標記的約定,又稱為愛因斯坦標記法(Einstein notation),在處理關於坐標的方程式時非常有用。這約定是由阿爾伯特·愛因斯坦於1916年提出的。後來,愛因斯坦與友人半開玩笑地說:「這是數學史上的一大發現,若不信的話,可以試著返回那不使用這方法的古板日子。」 按照愛因斯坦求和約定,當一個單獨項目內有標號變數出現兩次,一次是上標,一次是下標時,則必須總和所有這單獨項目的可能值。通常而言,標號的標值為1、2、3(代表維度為三的歐幾里得空間),或0、1、2、3(代表維度為四的時空或閔可夫斯基時空)。但是,標值可以有任意值域,甚至(在某些應用案例裏)無限集合。這樣,在三維空間裏, 的意思是 請特別注意,上標並不是指數,而是標記不同坐標。例如,在直角坐標系裏,x^1\,\!、x^2\,\!、x^3\,\!分別表示x\,\!坐標、y\,\!坐標、z\,\!坐標,而不是x\,\!、x\,\!的平方、x\,\!的立方。.

查看 並矢張量和爱因斯坦求和约定

点积

在数学中,点积(Skalarprodukt、Dot Product)又称--或标量积(Skalarprodukt、Scalar Product),是一种接受两个等长的数字序列(通常是坐标向量)、返回单个数字的代数运算。在欧几里得几何中,两个笛卡尔坐标向量的点积常称为內積(inneres Produkt、Inner Product),见内积空间。 从代数角度看,先对两个数字序列中的每组对应元素求积,再对所有积求和,结果即为点积。从几何角度看,点积则是两个向量的长度与它们夹角余弦的积。这两种定义在笛卡尔坐标系中等价。 点积的名称源自表示点乘运算的点号(a·b),标量积的叫法则是在强调其运算结果为标量而非向量。向量的另一种乘法是叉乘(a×b),其结果为向量,称为叉积或向量积。 點积是--的一种特殊形式。.

查看 並矢張量和点积

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

查看 並矢張量和物理学

狄拉克符号

拉克符号或狄拉克標記(Dirac notation)是量子力学中广泛应用于描述量子态的一套标准符号系统。在这套系统中,每一个量子态都被描述为希尔伯特空间中的態向量,定义为右矢(ket):|\psi\rangle;每一个右矢的共軛轉置定义为其左矢(bra):\langle\psi|。 此標記法為狄拉克於1939年将「bracket」(括号)这个词拆开后所造的。 在中國方面,一些旧有的教科书和文献中也将其译为“刁矢”和“刃矢”、或“彳矢”和“亍矢”,现已弃用。.

查看 並矢張量和狄拉克符号

相对论

对论(Theory of relativity)是关于时空和引力的理论,主要由愛因斯坦创立,依其研究对象的不同可分为狭义相对论和广义相对论。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了现代物理学的基础。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非古典的=量子的”。在这个意义下,相对论仍然是一种经典的理论。.

查看 並矢張量和相对论

馬克士威應力張量

在電磁學裏,馬克士威應力張量(Maxwell stress tensor)是描述電磁場帶有之應力的二階張量。馬克士威應力張量可以表現出電場力、磁場力和機械動量之間的相互作用。對於簡單的狀況,例如一個點電荷自由地移動於均勻磁場,應用勞侖茲力定律,就可以很容易地計算出點電荷所感受的作用力。但是,當遇到稍微複雜一點的狀況時,這很普通的程序會變得非常困難,方程式洋洋灑灑地一行又一行的延續。因此,物理學家通常會聚集很多項目於馬克士威應力張量內,然後使用張量數學來解析問題。.

查看 並矢張量和馬克士威應力張量

角动量耦合

在量子力学中,由独立角动量本征态构造出总角动量本征态的过程称为角动量耦合。例如,单个粒子的轨道和自旋会通过自旋-轨道作用相互影响,完整的物理图象必须包括自旋-轨道耦合。或者说,两个具有明确角动量定义的带电粒子会相互作用,这时将两个单粒子角动量耦合为总角动量,是解两粒子体系薛定谔方程的有用步骤。在这两种情况下,单独的角动量都不再是体系的守恒量,但两个角动量加和通常仍然是。在原子光谱中,原子角动量的耦合非常重要。电子自旋角动量的耦合对于量子化学非常重要。在核壳层模型中也普遍存在角动量耦合。 在天文学中,自旋轨道耦合同样反映了天体系统中角动量守恒的一般规律。在简单情况下,角动量的矢量方向被忽略,而自旋轨道耦合为行星等绕自身轴线旋转与绕另一个星体旋转的频率比值。这更多称作轨道共振。常见的相关物理效应为潮汐力。 本文集中讨论量子力学中的角动量耦合。.

查看 並矢張量和角动量耦合

角動量算符

在量子力學裏,角動量算符(angular momentum operator)是一種算符,類比於經典的角動量。在原子物理學涉及旋轉對稱性(rotational symmetry)的理論裏,角動量算符佔有中心的角色。角動量,動量,與能量是物體運動的三個基本特性Introductory Quantum Mechanics, Richard L.

查看 並矢張量和角動量算符

角量子数

角量子數(Azimuthal quantum number),即軌域角動量的量子數,通常用小寫英文字母l來表示。從經典力學的概念可知,任何旋轉體都有繞軸的角動量。它是一個矢量。當它不是連續變動時,會取不同的離散值,是量子化的。在原子物理中,这个量子数决定了電子雲的形状。例如,电子所处的s, p, d, f, g分别对应的角量子数分别是l.

查看 並矢張量和角量子数

諧振子

古典力學中,一個諧振子(harmonic oscillator)乃一個系統,當其從平衡位置位移,會感受到一個恢復力F正比於位移x,並遵守虎克定律: 其中k是一個正值常數。 如果F是系統僅受的力,則系統稱作簡諧振子(簡單和諧振子)。而其進行簡諧運動——正中央為平衡點的正弦或餘弦的振動,且振幅與頻率都是常數(頻率跟振幅無關)。 若同時存在一摩擦力正比於速度,則會存在阻尼現象,稱這諧振子為阻尼振子。在這樣的情形,振動頻率小於無阻尼情形,且振幅隨著時間減小。 若同時存在跟時間相關的外力,諧振子則稱作是受驅振子。 力學上的例子包括了單擺(限於小角度位移之近似)、連接到彈簧的質量體,以及聲學系統。其他的相類系統包括了電學諧振子(electrical harmonic oscillator,參見RLC電路)。.

查看 並矢張量和諧振子

轉動慣量

在经典力學中,轉動慣量又稱慣性矩(Moment of inertia),通常以I表示,國際單位制為·。轉動慣量是一個物體對於其旋轉運動的慣性大小的量度。一個剛體對於某轉軸的轉動慣量決定了對於這物體繞著這轉軸進行某種角加速度運動所需要施加的力矩。轉動慣量在转动動力學中的角色相當於線性動力學中的質量,描述角動量、角速度、力矩和角加速度等數個量之間的關係。.

查看 並矢張量和轉動慣量

阿尔伯特·爱因斯坦

阿尔伯特·爱因斯坦,或譯亞伯特·爱因斯坦(Albert Einstein,),猶太裔理論物理學家,创立了現代物理學的兩大支柱之一的相对论,也是質能等價公式()的發現者。他在科學哲學領域頗具影響力。因為“對理論物理的貢獻,特別是發現了光電效應的原理”,他榮獲1921年諾貝爾物理學獎。這發現為量子理論的建立踏出了關鍵性的一步。 愛因斯坦在職業生涯早期就發覺經典力學與電磁場無法相互共存,因而發展出狹義相對論。他又發現,相對論原理可以延伸至重力場的建模。從研究出來的一些重力理論,他於1915年發表了廣義相對論。他持續研究統計力學與量子理論,導致他給出粒子論與對於分子運動的解釋。在1917年,愛因斯坦應用廣義相對論來建立大尺度結構宇宙的模型。 阿道夫·希特勒於1933年開始掌權成為德國總理之時,愛因斯坦正在走訪美國。由於愛因斯坦是猶太裔人,所以儘管身為普魯士科學院教授,亦沒有返回德國。1940年,他定居美國,隨後成為美國公民。在第二次世界大戰前夕,他在一封寫給當時美國總統富蘭克林·羅斯福的信裏署名,信內提到德國可能發展出一種新式且深具威力的炸彈,因此建議美國也盡早進行相關研究,美國因此開啟了曼哈頓計劃。愛因斯坦支持增強同盟國的武力,但譴責將當時新發現的核裂变用於武器用途的想法,後來愛因斯坦與英國哲學家伯特蘭·羅素共同簽署《羅素—愛因斯坦宣言》,強調核武器的危險性。 愛因斯坦總共發表了300多篇科學論文和150篇非科學作品。愛因斯坦被誉为是“現代物理学之父”及20世紀世界最重要科學家之一。他卓越和原創性的科學成就使得“愛因斯坦”一詞成為“天才”的同義詞。.

查看 並矢張量和阿尔伯特·爱因斯坦

闵可夫斯基空间

#重定向 閔考斯基時空.

查看 並矢張量和闵可夫斯基空间

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

查看 並矢張量和量子力学

零向量

在线性代数及相关数学领域中,零向量(也称退化向量)即欧几里得空间里的中所有元素都为 0 的向量 (0, 0, …, 0)。零向量的表式法於印刷体会打成稍微斜一点的粗黑体數字\mathit 或粗黑體大寫英文字母\boldsymbol,手写的為避免與數字0混淆,因此會在數字0上面加上一个向右的(半)箭头表示这是一个零向量,如:\vec、\overset。 在一般的向量空間中,零向量是唯一確定的向量。它是向量加法的單位元素。 Category:向量 Category:零.

查看 並矢張量和零向量

雙線性形式

在域 F 中,向量空間 V 的雙線性形式指的是一个V × V → F 上的线性函数 B, 满足: 都是线性的。這個定義也適用於交換環的模,这时线性函数要改为模同态。 注意一個雙線性形式是特別的双线性映射。.

查看 並矢張量和雙線性形式

逆矩阵

逆矩陣(inverse matrix):在线性代数中,給定一个n階方陣\mathbf,若存在一n階方陣\mathbf,使得\mathbf.

查看 並矢張量和逆矩阵

逆時針方向

以逆時針方向運行指依從時針移動的相反方向(如圖),即可視為由左上方向下,然後轉向右,再回到上。也就是說逆時針方向就是順時針方向的相反,也是鏡射變換後的結果,故逆時針方向的反方向就是順時針方向。太陽系大部分的行星由北半球正上方看下去,該自轉屬於逆時針,但金星是順時針方向和其他行星相反。.

查看 並矢張量和逆時針方向

恆等函數

在數學裡,恆等函數總是傳回和其輸入值相同的函數值。換句話說,恆等函數為函數f(x).

查看 並矢張量和恆等函數

李代數

数学上,李代数是一个代数结构,主要用于研究象李群和微分流形之类的几何对象。李代数因研究无穷小变换的概念而引入。“李代数”(以索菲斯·李命名)一词是由赫尔曼·外尔在1930年代引入的。在旧文献中,无穷小群指的就是李代数。.

查看 並矢張量和李代數

李群

數學中,李群(Lie group,)是具有群结构的光滑微分流形,其群作用與微分结构相容。李群的名字源於索菲斯·李的姓氏,以其為連續變換群奠定基礎。1893年,法文名詞groupes de Lie首次出現在李的學生Arthur Tresse的論文第三頁中。.

查看 並矢張量和李群

标准正交基

在线性代数中,一个内积空间的正交基(orthogonal basis)是元素两两正交的基。称基中的元素为基向量。假若,一个正交基的基向量的模长都是单位长度1,则称这正交基为标准正交基或"规范正交基"(Orthonormal basis)。 无论在有限维还是无限维空间中,正交基的概念都是很重要的。在无限维希尔伯特空间中,正交基不再是哈默尔基,也即是说不是每个元素都可以写成有限个基中元素的线性组合。因此在无限维空间中,正交基应该被更严格地定义为由线性无关而且两两正交的元素组成、张成的空间是原空间的一个稠密子空间(而不是整个空间)的集合。 注意,在没有定义内积的空间中,“正交基”一词是没有意义的。因此,一个具有正交基的巴拿赫空间,就是一个希尔伯特空间。.

查看 並矢張量和标准正交基

欧几里得空间

欧几里得几何是在约公元前300年,由古希腊数学家欧几里得建立的角和空间中距离之间联系的法则。欧几里得首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里得的公理被编排到幾何原本。 这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做 n维欧几里得空间(甚至简称 n 维空间)或有限维实内积空间。 这些数学空间还可被扩展到任意维的情形,称为实内积空间(不一定完备), 希尔伯特空间在高等代数教科书中也被称为欧几里得空间。 为了开发更高维的欧几里得空间,空间的性质必须非常仔细的表达并被扩展到任意维度。 尽管结果的数学非常抽象,它却捕获了我们熟悉的欧几里得空间的根本本质,根本性质是它的平面性。 另存在其他種類的空间,例如球面非欧几里得空间,相对论所描述的四维时空在重力出现的时候也不是欧几里得空间。.

查看 並矢張量和欧几里得空间

正定县

正定县在中国河北省西南部,是石家庄市下辖的一个县,位于石家庄市北12公里。正定于1994年被授予国家历史文化名城称号,境内古建筑丰富多彩,全县共有8处全国重点文物保护单位。.

查看 並矢張量和正定县

正定矩阵

在线性代数裡,正定矩阵是埃尔米特矩阵的一种,有时会简称为正定阵。在线性代数中,正定矩阵的性质類似复数中的正实数。与正定矩阵相对应的线性算子是对称正定双线性形式(複域中则对应埃尔米特正定双线性形式)。.

查看 並矢張量和正定矩阵

满射

满射或蓋射(surjection、onto),或稱满射函数或映成函數,一个函数f:X\rightarrow Y为满射,則对于任意的陪域 Y 中的元素 y,在函数的定义域 X 中存在一點 x 使得 f(x).

查看 並矢張量和满射

旋转

旋转在几何和线性代数中是描述刚体围绕一个固定点的运动的在平面或空间中的变换。旋转不同于没有固定点的平移,和翻转变换的形体的反射。旋转和上面提及的变换是等距的,它们保留在任何两点之间的距离在变换之后不变。.

查看 並矢張量和旋转

旋轉算子

#重定向 旋转矩阵.

查看 並矢張量和旋轉算子

應力

在連續介質力學裏,應力定義為單位面積所承受的作用力。以公式標記為 其中,\sigma \,表示應力;\Delta F_j\,表示在j\,方向的施力;\Delta A_i \,表示在i\,方向的受力面積。 假設受力表面與施力方向正交,則稱此應力分量為正向應力(normal stress),如圖1所示的\sigma_\,、\sigma_\,、\sigma_\,,都是正向應力;假設受力表面與施力方向互相平行,則稱此應力分量為剪應力(shear stress),如圖1所示的\sigma_\,、\sigma_\,、\sigma_\,、\sigma_\,、\sigma_\,、\sigma_\,,都是剪應力。 「內應力」指組成單一構造的不同材質之間,因材質差異而導致變形方式的不同,繼而產生的各種應力。 採用國際單位制,应力的单位是帕斯卡(Pa),等於1牛頓/平方公尺。應力的單位與壓強的單位相同。兩種物理量都是單位面積的作用力的度量。通常,在工程學裏,使用的單位是megapascals(MPa)或gigapascals(GPa)。採用英制單位,應力的單位是磅力/平方英寸(psi)或千磅力/平方英寸(ksi)。.

查看 並矢張量和應力

数组

在計算機科學中,陣列資料結構(array data structure),簡稱数组(Array),是由相同类型的元素(element)的集合所組成的資料結構,分配一块连续的内存来存储。利用元素的索引(index)可以计算出该元素對應的儲存地址。 最簡單的資料結構類型是一維陣列。例如,索引為0到9的32位元整數陣列,可作為在記憶體位址2000,2004,2008,...2036中,儲存10個變量,因此索引為i的元素即在記憶體中的2000+4×i位址。陣列第一個元素的記憶體位址稱為第一位址或基礎位址。 二维数组,对应于數學上的矩陣概念,可表示為二維矩形格。例如: a.

查看 並矢張量和数组

另见

张量

應力数组