徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

張量

指数 張量

張量(tensor)是一个可用來表示在一些向量、純量和其他張量之間的線性關係的多线性函数,這些線性關係的基本例子有內積、外積、線性映射以及笛卡儿积。其坐标在 n  維空間內,有  n^r個分量的一種量,其中每個分量都是坐標的函數,而在坐標變換時,這些分量也依照某些規則作線性變換。r稱為該張量的秩或階(与矩阵的秩和阶均无关系)。 在同构的意义下,第零階張量(r.

67 关系: 反变参考系同构向量向量丛向量空间坐標系多重线性代数多重线性映射大脑外積威廉·哈密頓对偶空间导数工程学度量张量二次型廣義相對論张量 (内蕴定义)张量场张量积張量微分刚体分量切丛函数內積共变矩阵笛卡儿积純量線性泛函纤维丛线性代数线性映射绝对微分维度爱因斯坦求和约定物理学計算機代數系統质量黎曼几何黎曼曲率張量能动张量阿尔伯特·爱因斯坦自由度自由软件...苏黎世联邦理工学院雅可比矩阵速率GNU通用公共许可证抽象指标记号格雷戈里奥·里奇-库尔巴斯托罗标量欧几里得空间温度流形流体應力数组曲率曲率张量1-形式 扩展索引 (17 更多) »

在物理學中,力是任何導致自由物體歷經速度、方向或外型的變化的影響。力也可以藉由直覺的概念來描述,例如推力或拉力,這可以導致一個有質量的物體改變速度(包括從靜止狀態開始運動)或改变其方向。一個力包括大小和方向,這使力是一個向量。牛頓第二定律,\mathbf.

新!!: 張量和力 · 查看更多 »

反变

反变(反变性)可指:.

新!!: 張量和反变 · 查看更多 »

参考系

参考系(又称参照系、参考坐标),在物理學中指用以測量並記錄位置、定向以及其他物體屬性的坐標系;或指與觀測者的運動狀態相關的觀測參考系;又或同指兩者。.

新!!: 張量和参考系 · 查看更多 »

同构

在抽象代数中,同构(isomorphism)指的是一个保持结构的双射。在更一般的范畴论语言中,同构指的是一个态射,且存在另一个态射,使得两者的复合是一个恒等态射。 正式的表述是:同构是在数学对象之间定义的一类映射,它能揭示出在这些对象的属性或者操作之间存在的关系。若两个数学结构之间存在同构映射,那么这两个结构叫做是同构的。一般来说,如果忽略掉同构的对象的属性或操作的具体定义,单从结构上讲,同构的对象是完全等价的。.

新!!: 張量和同构 · 查看更多 »

向量

向量(vector,物理、工程等也称作--)是数学、物理学和工程科学等多个自然科學中的基本概念,指一个同时具有大小和方向,且满足平行四边形法则的几何對象。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量(特别地,电流属既有大小、又有正负方向的量,但由于其运算不满足平行四边形法则,公认为其不属于向量)。向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量或数量,即只有大小、绝大多数情况下没有方向(电流是特例)、不满足平行四边形法则的量。.

新!!: 張量和向量 · 查看更多 »

向量丛

数学上,向量丛是一个几何构造,為拓扑空间(或流形,或代数簇)的每一点相容地附上一个向量空间,而这些向量空间“粘起来”又构成一个拓扑空间(或流形,或代数簇)。 一个典型的例子是微分流形的切丛:对流形的每一点附上流形在该点的切空间。 另一个例子是法丛:給定一个平面上的光滑曲线,可在曲线的每一点附上和曲线垂直的直线;这就是曲线的"法丛"。 这个条目主要解釋有限维纤维的实向量丛。複向量丛也在很多地方有用;他们可以视为一種有附加结构的实向量丛。 向量丛是纤维丛的一種。.

新!!: 張量和向量丛 · 查看更多 »

向量空间

向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.

新!!: 張量和向量空间 · 查看更多 »

坐標系

坐標系是數學或物理學用語,定義如下: 对于一个n维系统,能够使每一个点和一组(n个)标量构成一一对应的系统。 坐標系可以用一個有序多元组表示一個點的位置。一般常用的坐標系,各維坐標的數字均為實數,但在高等數學中坐標的數字可能是複數,甚至是或是其他抽象代數中的元素(如交换环)。坐標系可以使幾何學的問題轉換為數字的問題,反之亦然,是解析幾何學的基礎。 描述地理位置時所用的經度及緯度就是坐標系統的一種。在物理學中,描述一系統在空間中運動的參考坐標系統則稱作參考系。.

新!!: 張量和坐標系 · 查看更多 »

多重线性代数

在数学中,多重线性代数推广了线性代数的方法。和线性代数一样也是建立在向量的概念上,发展了向量空间的理论。在应用上,出现了许多类型的张量。该理论全面囊括了一系列空间以及它们之间的关系。.

新!!: 張量和多重线性代数 · 查看更多 »

多重线性映射

在线性代数中,多重线性映射是有多个向量变量而对每个变量都是线性的函数。 n个变量的多线性映射也叫做n重线性映射。 如果所有变量属于同一个空间,可以考虑对称、反对称和交替的n重线性映射。后两个是一致的,如果底层的环(或域)有不同于二的特征,否则前两个是一致的。 一般讨论可见多重线性代数。.

新!!: 張量和多重线性映射 · 查看更多 »

大脑

綠色是顳葉,藍色是額葉,黃色是頂葉,紅色是枕葉。 大脑(cerebrum),是脑与间脑。在醫學及解剖学上,多用大脑一词來指代端脑。 端脑有左右两个大脑半球(端脑半球)。将两个半球隔开的是称为大脑纵隔的沟壑,两个半球除了脑梁与透明中隔相连以外完全左右分开。半球表面布满脑沟,沟与沟之间所夹细长的部分称为脑回。脑沟并非是在脑的成长过程中随意形成,什么形态出现在何处都完全有规律(其深度和弯曲度因人稍有差异)。每一条脑沟在解剖学上都有专有名称(nomina anatomica)。脑沟与脑回的形态基本左右半球对称,是对脑进行分叶和定位的重要标志。有关大脑两半球功能单侧化的研究表明,大多数人的言语活动中枢在大脑左半球。比较重要的脑沟有外侧沟 (lateral sulcus)起于半球下面,行向后上方,至上外侧面;中央沟 (central sulcus)起于半球上绿中点稍后方,斜向前下方,下端与外侧沟隔一脑回,上端延伸至半球内侧面;顶枕沟(parietooccipital sulcus)位于半球内侧面后部,自下向上。在外侧沟上方和中央沟以前的部分为额叶;外侧沟以下的部分为颞叶;枕叶位于半球后部,其前界在内侧面为顶枕沟,在上外侧面的界限是自顶枕沟至枕前切迹(在枕叶后端前方约4cm处)的连线;顶叶为外侧沟上方、中央沟后方、枕叶以前的部分;岛叶呈三角形岛状,位于外侧沟深面,被额、顶、颞叶所掩盖,与其他部分不同布满细小的浅沟(非脑沟)。 左右大脑半球有各自的称为侧脑室的腔隙。侧脑室与间脑的第三脑室,以及小脑和延脑及脑桥之间的第四脑室之间有孔道连通。脑室中的脉络丛产生脑的液体称为脑脊液。脑脊液在各脑室与蛛网膜下腔之间循环,如果脑室的通道阻塞,脑室中的脑脊液积多,将形成脑积水。 广义的大脑的脑神经有,端脑出发的嗅神经,间脑出发的视神经。 大脑的断面分为白质与灰白质。端脑的灰白质是指表层的数厘米厚的称为大脑皮质的一层,大脑皮质是神经细胞聚集的部分,具有六层的构造,含有复杂的回路是思考等活动的中枢。相对大脑皮质白质又称为大脑髓质。 间脑由丘脑与下丘脑构成。丘脑与大脑皮质,脑干,小脑,脊髓等联络,负责感觉的中继,控制运动等。下丘脑与保持身体恒常性,控制自律神经系统,感情等相关。 大腦的神經細胞只要在1.5分鐘內得不到氧氣,人就會失去知覺;而5、6分鐘後仍缺氧,神經細胞便會陸續死去。.

新!!: 張量和大脑 · 查看更多 »

外積

#重定向 外积.

新!!: 張量和外積 · 查看更多 »

威廉·哈密頓

威廉·哈密顿爵士(Sir William Rowan Hamilton,),愛爾蘭數學家、物理學家及天文學家。哈密顿最大的成就或许在於重新表述了牛顿力学,创立被称为哈密顿力学的力学表述。他的成果后在量子力学的发展中起到核心作用。哈密顿还对光学和代数的发展提供了重要的贡献,因为发现四元数而闻名。 他的妻子海倫·瑪俐亞·貝雷是一個牧師的女兒。哈密顿死於1865年9月2日,被安葬在都柏林杰羅姆山公墓。.

新!!: 張量和威廉·哈密頓 · 查看更多 »

对偶空间

在數學裡,任何向量空間V都有其對應的對偶向量空間(或簡稱為對偶空間),由V的線性泛函組成。此對偶空間俱有一般向量空間的結構,像是向量加法及純量乘法。由此定義的對偶空間也可稱之為代數對偶空間。在拓撲向量空間的情況下,由連續的線性泛函組成的對偶空間則稱之為連續對偶空間。 对偶空間是 行向量(1×n)與列向量(n×1)的關係的抽象化。這個結構能夠在無限維度空間進行並為测度,分佈及希爾伯特空間提供重要的觀點。对偶空間的應用是泛函分析理論的特徵。傅立叶變換亦內蘊对偶空間的概念。.

新!!: 張量和对偶空间 · 查看更多 »

导数

导数(Derivative)是微积分学中重要的基礎概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函數输出值的增量與自變量增量h的比值在h趋于0时的極限如果存在,即為f在x_0处的导数,记作f'(x_0)、\frac(x_0)或\left.\frac\right|_。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 导数是函数的局部性质。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在這一点上的切线斜率。 对于可导的函数f,x \mapsto f'(x)也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。.

新!!: 張量和导数 · 查看更多 »

工程学

工程学、工程科学或工学,是通过研究与实践应用数学、自然科学、社会学等基础学科的知识,来达到改良各行业中现有建筑、机械、仪器、系统、材料、化學和加工步骤的设计和应用方式一门学科。实践与研究工程学的人叫做工程师。 在高等学府中,将自然科学原理应用至工业、农业、服务业等各个生产部门所形成的诸多工程学科也称为工科和工学。.

新!!: 張量和工程学 · 查看更多 »

度量张量

在黎曼幾何裡面,度量張量(英語:Metric tensor)又叫黎曼度量,物理学译为度規張量,是指一用來衡量度量空间中距離,面積及角度的二階張量。 當选定一個局部坐標系統x^i,度量張量為二階張量一般表示為 \textstyle ds^2.

新!!: 張量和度量张量 · 查看更多 »

二次型

在数学中,二次型是一些变量上的二次齐次多项式。例如 是关于变量x和y的二次型。 二次型在许多数学分支,包括数论、线性代数、群论(正交群)、微分几何(黎曼测度)、微分拓扑(intersection forms of four-manifolds)和李代数(基灵型)中,占有核心地位。.

新!!: 張量和二次型 · 查看更多 »

廣義相對論

广义相对论是現代物理中基于相对性原理利用几何语言描述的引力理论。该理论由阿尔伯特·爱因斯坦等人自1907年开始发展,最终在1915年基本完成。广义相对论将经典的牛顿万有引力定律與狭义相对论加以推廣。在广义相对论中,引力被描述为时空的一种几何属性(曲率),而时空的曲率则通过爱因斯坦场方程和处于其中的物质及辐射的能量與动量联系在一起。 从广义相对论得到的部分预言和经典物理中的对应预言非常不同,尤其是有关时间流易、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言至今为止已经通过了所有观测和实验的验证——广义相对论虽然并非当今描述引力的唯一理论,但却是能够与实验数据相符合的最简洁的理论。不过仍然有一些问题至今未能解决。最为基础的即是广义相对论和量子物理的定律应如何统一以形成完备并且自洽的量子引力理论。 爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用。比如它预言了某些大质量恒星终结后,会形成时空极度扭曲以至于所有物质(包括光)都无法逸出的区域,黑洞。有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们可能观察到处于遥远位置的同一个天体形成的多个像。广义相对论还预言了引力波的存在。引力波已经由激光干涉引力波天文台在2015年9月直接观测到。此外,广义相对论还是现代宇宙学中的的理论基础。.

新!!: 張量和廣義相對論 · 查看更多 »

张量 (内蕴定义)

在数学中,处理张量理论的现代无分量(component-free)方法首先将张量视为抽象对象,表示多重线性概念的某些特定类型。他们一些熟知的性质可由作为线性映射或更广泛地定义得出;而张量的操作导致了线性代数扩张为多重线性代数。 在微分几何中,一个内蕴的几何论断也许可以用一个流形上的张量场表示,这样完全不必使用参考坐标系。在广义相对论中同样如此,张量场描述了物理性质。无分量方法在抽象代数与同调代数中也很常用,在那里张量自然地出现了。.

新!!: 張量和张量 (内蕴定义) · 查看更多 »

张量场

在数学,物理和工程上,张量场(tensor field)是一个的非常一般化的几何变量的概念。它被用在微分几何和流形的理论中,在代数几何中,在广义相对论中,在材料的应力和应变的分析中,和在物理科学和工程的无数应用中。它是向量场的想法的一般化,而向量场可以视为“从点到点变化的向量”。 物理学中场的一种。假如一个空间中的每一点的属性都可以以一个张量来代表的话,那么这个场就是一个张量场。最常见的张量场有广义相对论的应力能张量场(Stress-energy tensor field)。 必须注意到很多不严格的称为“张量”的数学结构实际上是“张量场”,定义在流形上的场在流形的每点定义了一个张量。.

新!!: 張量和张量场 · 查看更多 »

张量积

在数学中,张量积,记为 \otimes,可以应用于不同的上下文中如向量、矩阵、张量、向量空间、代数、拓扑向量空间和模。在各种情况下这个符号的意义是同样的: 最一般的双线性运算。在某些上下文中也叫做外积。 例子: \mathbf \otimes \mathbf \rightarrow \beginb_1 \\ b_2 \\ b_3 \\ b_4\end \begina_1 & a_2 & a_3\end.

新!!: 張量和张量积 · 查看更多 »

張量

張量(tensor)是一个可用來表示在一些向量、純量和其他張量之間的線性關係的多线性函数,這些線性關係的基本例子有內積、外積、線性映射以及笛卡儿积。其坐标在 n  維空間內,有  n^r個分量的一種量,其中每個分量都是坐標的函數,而在坐標變換時,這些分量也依照某些規則作線性變換。r稱為該張量的秩或階(与矩阵的秩和阶均无关系)。 在同构的意义下,第零階張量(r.

新!!: 張量和張量 · 查看更多 »

微分

在数学中,微分是对函数的局部变化率的一种线性描述。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。当某些函数\textstyle f的自变量\textstyle x有一个微小的改变\textstyle h时,函数的变化可以分解为两个部分。一个部分是线性部分:在一维情况下,它正比于自变量的变化量\textstyle h,可以表示成\textstyle h和一个与\textstyle h无关,只与函数\textstyle f及\textstyle x有关的量的乘积;在更广泛的情况下,它是一个线性映射作用在\textstyle h上的值。另一部分是比\textstyle h更高阶的无穷小,也就是说除以\textstyle h后仍然会趋于零。当改变量\textstyle h很小时,第二部分可以忽略不计,函数的变化量约等于第一部分,也就是函数在\textstyle x处的微分,记作\displaystyle f'(x)h或\displaystyle \textrmf_x(h)。如果一个函数在某处具有以上的性质,就称此函数在该点可微。 不是所有的函数的变化量都可以分为以上提到的两个部分。若函数在某一点无法做到可微,便称函数在该点不可微。 在古典的微积分学中,微分被定义为变化量的线性部分,在现代的定义中,微分被定义为将自变量的改变量\textstyle h映射到变化量的线性部分的线性映射\displaystyle \textrmf_x。这个映射也被称为切映射。.

新!!: 張量和微分 · 查看更多 »

場在漢語中,指平坦的空地。有很多特定用法和不同含義,主要如下:.

新!!: 張量和场 · 查看更多 »

刚体

在物理学裏,理想刚体(rigid body)是一種有限尺寸,可以忽略形变的固体。不论是否感受到外力,在刚体內部,質點與質點之间的距离都不会改变。这种理想模型适用条件是,运动过程比固体中的弹性波的传播要缓慢得多。根據相對論,這種物體不可能實際存在,但物體通常可以假定為完美剛體,前提是必須滿足運動速度遠小於光速的條件。 在经典力学裡,刚体通常被視為连续质量分佈体;在量子力学裏,刚体被視為一群粒子的聚集。例如,分子(由假定為質點的电子与核子组成)时常會被视为刚体。.

新!!: 張量和刚体 · 查看更多 »

分量

#重定向 向量.

新!!: 張量和分量 · 查看更多 »

切丛

数学上,一个微分流形M的切丛(tangent bundle) T(M)是一个由M各點上切空間組成的向量丛,其總空間是各切空间的不交并集: 總空間T(M)每个元素都是一个二元组(x,v),其中v是在点x的切空间Tx(M)內的一枚向量。 切丛有自然的2n维微分流形结构如下: 設:\pi\colon T(M) \to M\, 為自然的投影映射,将(x,v)映射到基点x; 若M是个n维流形,U是x的一个足夠小的邻域, φ:U→Rn是一个局部坐标卡, V是U在T(M)的前象V(V.

新!!: 張量和切丛 · 查看更多 »

函数

函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).

新!!: 張量和函数 · 查看更多 »

內積

#重定向 点积.

新!!: 張量和內積 · 查看更多 »

共变

共变(共变性)可指:.

新!!: 張量和共变 · 查看更多 »

矩阵

數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.

新!!: 張量和矩阵 · 查看更多 »

笛卡儿积

在数学中,两个集合X和Y的笛卡儿积(Cartesian product),又称直积,在集合论中表示为X × Y,是所有可能的有序对組成的集合,其中有序對的第一个对象是X的成员,第二个对象是Y的成员。 舉個實例,如果集合X是13个元素的点数集合,而集合Y是4个元素的花色集合,则这两个集合的笛卡儿积是有52个元素的标准扑克牌的集合。 笛卡儿积得名于笛卡儿,因為這概念是由他建立的解析几何引申出來.

新!!: 張量和笛卡儿积 · 查看更多 »

純量

#重定向 标量.

新!!: 張量和純量 · 查看更多 »

線性泛函

在線性代數中,線性泛函是指由向量空間到對應純量域的線性映射。在 \mathbbR^n ,若向量空間的向量以列向量表示;線性泛函則會以行向量表示,在向量上的作用則為它們的矩陣積。一般地,如果 V 是域 k 上的向量空間,線性泛函 f 是一个从 V 到 k 的函数,它有以下的线性特性: 所有從 V 到 k 的線性泛函集合, 記為 \operatorname_k(V,k), 本身即為一向量空間,稱為 V 的 (代數)對偶空間。.

新!!: 張量和線性泛函 · 查看更多 »

纤维丛

纖維--束(fiber bundle 或 fibre bundle)又稱纖維--叢,在数学上,特别是在拓扑学中,是一个局部看来像直积空间,但是整体可能有不同的结构。每个纤维丛對應一个连续满射 \pi:E\rightarrow B E 和乘積空間 B × F 的局部類似性可以用映射 \pi 來說明。也就是說:在每個 E 的局部空間 U,都存在一個相同的F(F 稱作纖維空間),使得 \pi 限制在 U 上時 與直积空间 B × F 的投影 P:B\times F\mapsto B,\quad P(b, f).

新!!: 張量和纤维丛 · 查看更多 »

线性代数

线性代数是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 坐标满足线性方程的点集形成n维空间中的一个超平面。n个超平面相交于一点的条件是线性代数研究的一个重要焦点。此项研究源于包含多个未知数的线性方程组。这样的方程组可以很自然地表示为矩阵和向量的形式。 线性代数既是纯数学也是应用数学的核心。例如,放宽向量空间的公理就产生抽象代数,也就出现若干推广。泛函分析研究无穷维情形的向量空间理论。线性代数与微积分结合,使得微分方程线性系统的求解更加便利。线性代数的理论已被泛化为。 线性代数的方法还用在解析几何、工程、物理、自然科学、計算機科學、计算机动画和社会科学(尤其是经济学)中。由于线性代数是一套完善的理论,非线性数学模型通常可以被近似为线性模型。.

新!!: 張量和线性代数 · 查看更多 »

线性映射

在数学中,线性映射(有的书上将“线性变换”作为其同义词,有的则不然)是在两个向量空间(包括由函数构成的抽象的向量空间)之间的一种保持向量加法和标量乘法的特殊映射。线性映射从抽象代数角度看是向量空间的同态,从范畴论角度看是在给定的域上的向量空间所构成的范畴中的态射。 “线性算子”也是与“线性映射”有关的概念。但是不同数学书籍上对“线性算子”的定义存在区别。在泛函分析中,“线性算子”一般被当做“线性映射”的同义词。而有的书则将“线性算子”定义为“线性映射”的自同态子类(详见下文)。为叙述方便,本条目在提及“线性算子”时,采用后一种定义,即将线性算子与线性映射区别开来。.

新!!: 張量和线性映射 · 查看更多 »

绝对微分

#重定向 协变微商.

新!!: 張量和绝对微分 · 查看更多 »

维度

#重定向 維度.

新!!: 張量和维度 · 查看更多 »

爱因斯坦求和约定

在數學裏,特別是將線性代數套用到物理時,愛因斯坦求和約定(Einstein summation convention)是一種標記的約定,又稱為愛因斯坦標記法(Einstein notation),在處理關於坐標的方程式時非常有用。這約定是由阿爾伯特·愛因斯坦於1916年提出的。後來,愛因斯坦與友人半開玩笑地說:「這是數學史上的一大發現,若不信的話,可以試著返回那不使用這方法的古板日子。」 按照愛因斯坦求和約定,當一個單獨項目內有標號變數出現兩次,一次是上標,一次是下標時,則必須總和所有這單獨項目的可能值。通常而言,標號的標值為1、2、3(代表維度為三的歐幾里得空間),或0、1、2、3(代表維度為四的時空或閔可夫斯基時空)。但是,標值可以有任意值域,甚至(在某些應用案例裏)無限集合。這樣,在三維空間裏, 的意思是 請特別注意,上標並不是指數,而是標記不同坐標。例如,在直角坐標系裏,x^1\,\!、x^2\,\!、x^3\,\!分別表示x\,\!坐標、y\,\!坐標、z\,\!坐標,而不是x\,\!、x\,\!的平方、x\,\!的立方。.

新!!: 張量和爱因斯坦求和约定 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

新!!: 張量和物理学 · 查看更多 »

計算機代數系統

計算機代數系統(computer algebra system,縮寫作:CAS)是進行符號運算的軟件。這種系統的要件是數學表示式的符號運算。.

新!!: 張量和計算機代數系統 · 查看更多 »

质量

在日常生活中的“重量”常常被用來表示“質量”,但是在科学上,这两个词表示物质不同的属性(参见质量对重量)。 在物理上,质量通常指物质在以下的三个实验上证明等价的属性之一:.

新!!: 張量和质量 · 查看更多 »

黎曼几何

微分幾何中,黎曼幾何(英語:Riemannian geometry)研究具有黎曼度量的光滑流形,即流形切空間上二次形式的選擇。它特別關注于角度、弧線長度及體積。把每个微小部分加起來而得出整體的數量。 19世紀,波恩哈德·黎曼把這個概念加以推广。 任意平滑流形容許黎曼度量及這個額外結構幫助解決微分拓扑問題。它成為伪黎曼流形複雜結構的入門。其中大部分都是廣義相對論的四維研究对象。 黎曼幾何与以下主題有关:.

新!!: 張量和黎曼几何 · 查看更多 »

黎曼曲率張量

在微分几何中,黎曼曲率张量或黎曼張量是表达黎曼流形的曲率的标准方式,更普遍的,它可以表示有仿射联络的流形的曲率,包括无扭率或有撓率的。曲率张量通过列维-奇维塔联络(更一般的,一个仿射联络)\nabla(或者叫协变导数)由下式给出: 这里R(u,v)是一个流形切空间的线性变换;它对于每个参数都是线性的。 注意有些作者用相反的符号定义曲率.

新!!: 張量和黎曼曲率張量 · 查看更多 »

能动张量

#重定向 應力-能量張量.

新!!: 張量和能动张量 · 查看更多 »

阿尔伯特·爱因斯坦

阿尔伯特·爱因斯坦,或譯亞伯特·爱因斯坦(Albert Einstein,),猶太裔理論物理學家,创立了現代物理學的兩大支柱之一的相对论,也是質能等價公式()的發現者。他在科學哲學領域頗具影響力。因為“對理論物理的貢獻,特別是發現了光電效應的原理”,他榮獲1921年諾貝爾物理學獎。這發現為量子理論的建立踏出了關鍵性的一步。 愛因斯坦在職業生涯早期就發覺經典力學與電磁場無法相互共存,因而發展出狹義相對論。他又發現,相對論原理可以延伸至重力場的建模。從研究出來的一些重力理論,他於1915年發表了廣義相對論。他持續研究統計力學與量子理論,導致他給出粒子論與對於分子運動的解釋。在1917年,愛因斯坦應用廣義相對論來建立大尺度結構宇宙的模型。 阿道夫·希特勒於1933年開始掌權成為德國總理之時,愛因斯坦正在走訪美國。由於愛因斯坦是猶太裔人,所以儘管身為普魯士科學院教授,亦沒有返回德國。1940年,他定居美國,隨後成為美國公民。在第二次世界大戰前夕,他在一封寫給當時美國總統富蘭克林·羅斯福的信裏署名,信內提到德國可能發展出一種新式且深具威力的炸彈,因此建議美國也盡早進行相關研究,美國因此開啟了曼哈頓計劃。愛因斯坦支持增強同盟國的武力,但譴責將當時新發現的核裂变用於武器用途的想法,後來愛因斯坦與英國哲學家伯特蘭·羅素共同簽署《羅素—愛因斯坦宣言》,強調核武器的危險性。 愛因斯坦總共發表了300多篇科學論文和150篇非科學作品。愛因斯坦被誉为是“現代物理学之父”及20世紀世界最重要科學家之一。他卓越和原創性的科學成就使得“愛因斯坦”一詞成為“天才”的同義詞。.

新!!: 張量和阿尔伯特·爱因斯坦 · 查看更多 »

自由度

自由度可以指:.

新!!: 張量和自由度 · 查看更多 »

自由软件

自由軟體(free software),根據自由軟體基金會对其的定義,是一类可以不受限制地自由使用、複製、研究、修改和分發的,尊重使用者自由的軟體。這方面的不受限制正是自由軟體最重要的本質,與自由軟體相對的是专有软件(proprietary software),或被稱為私有軟體、封閉軟體(其定義與是否收取費用無關──自由軟體不一定是免費軟體)。自由軟體受到選定的「自由軟體授權協議」保護而發佈(或是放置在公有領域),其發布以原始碼為主,二進制檔案可有可無。自由軟體許可證的類型主要有GPL许可证和BSD许可证兩種。.

新!!: 張量和自由软件 · 查看更多 »

苏黎世联邦理工学院

苏黎世联邦理工学院(Eidgenössische Technische Hochschule Zürich,简称ETH Zürich或ETHZ,中文简称苏高工(罕用),是瑞士的两所联邦理工学院之一,位于德语区的苏黎世,另一所是位于法语区的洛桑联邦理工学院。苏黎世联邦理工学院是世界最著名的理工大学之一,享有“欧陆第一名校”的美誉。该校创立于1855年,现有来自于一百多个国家的两万六千名师生分布于16个系,教研领域涵盖建筑、工程学、数学、自然科学、社会科学和管理科学,诞生了包括爱因斯坦在内的32位诺贝尔奖得主http://www.ethz.ch/about/bginfos/nobelprize。该校还是国际研究型大学联盟、IDEA联盟和GlobalTech Alliance等国际高校合作组织的成员。 苏黎世联邦理工学院在2018/2019QS世界大学排名中,名列综合排名全球第7,其中工程和技术领域第5,自然科学第6;在泰晤士高等教育世界大学排名名列综合排名全球第9,工程和技术第9,自然科学第8;在世界大学学术排名名列综合排名全球第19。.

新!!: 張量和苏黎世联邦理工学院 · 查看更多 »

雅可比矩阵

在向量分析中,雅可比矩阵是函數的一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式。 在代数几何中,代数曲线的雅可比行列式表示雅可比簇:伴随该曲线的一个代數群,曲线可以嵌入其中。 它们全部都以数学家卡爾·雅可比命名。.

新!!: 張量和雅可比矩阵 · 查看更多 »

速率

速率(Speed)是物理学中的一个基本概念,是指物体在一定时间内经过的路程,用来表示物体运动的快慢程度。 在日常生活中,速率常常和速度混用,但两者在物理学中对应着不同的概念。速率是一个标量,只有大小,没有方向。它的量纲是长度除以时间。速度的量纲和速率相同,但速度是有方向的向量。物体的瞬时速率等于瞬时速度的大小,而平均速率则不一定等于平均速度的大小。在日常生活中,也用“速度”这个词表示速率的意思。 国际单位制中,速率的單位為米每秒(m/s),但日常生活中較常用的單位是千米每小時(km/h)或是英制系統下的英里每小時(mph)。海上船只或物体的行進速率,一般會使用節作為單位。 依照狭义相对论,能量或信息所能傳遞的最快速率為真空中的光速c.

新!!: 張量和速率 · 查看更多 »

GNU通用公共许可证

GNU通用公共授權條款(GNU General Public License,简称 GNU GPL、GPL)是廣泛使用的免費軟件許可證,可以保證終端用戶得自由運行,學習,共享和修改軟件。許可證最初由GNU項目的自由軟件基金會 (FSF)的理查德·斯托曼(Richard Matthew Stallman)撰寫,並授予計算機程序的收件人自由軟件定義的權利。 GPL是一個Copyleft許可證,這意味著衍生作品只能以相同的許可條款分發。 這與許可免費軟件許可證有所區別 ,其中BSD許可證和MIT許可證是廣泛使用的示例。 GPL是第一個普遍使用的Copyleft許可證。 歷史上,GPL許可證系列一直是免費和開源軟件領域最受歡迎的軟件許可之一。 根據GPL許可的優異自由軟件程序的例子有Linux內核和GNU編譯器集合 (GCC)。 David A. Wheeler認為,GPL提供的Copyleft對於基於Linux的系統的成功至關重要,給予向內核貢獻的程序員保證他們的工作將有益於整個世界並保持自由,而不至於被不提供回饋給社群的不肖軟件公司所剝削。 2007年,發布了第三版許可證(GNU GPLv3),以解決在長期使用期間發現的第二版(GNU GPLv2)所發生的一些困擾。 為了使許可證保持最新狀態,GPL許可證包含一個可選的“並延伸到未來版本”條款,允許用戶在FSF更新的原始條款或新版本之間進行選擇。 有些開發人員在軟件授權使用時,選擇省略它; 例如,Linux內核已經在GPLv2下獲得許可,就不需包括“並延伸到未來版本”的聲明。 GPL授予程序接受人以下權利,或稱“自由”,或稱“copyleft”:.

新!!: 張量和GNU通用公共许可证 · 查看更多 »

抽象指标记号

抽象指标记号(abstract index notation)是由罗杰·彭罗斯发明的一种用来表示张量与旋量的数学记号。与不带指标的字母(如T)表示张量相比,这种表示法能够显示张量的类型,同时可清楚地表明缩并等运算。而与用分量(张量在某一特定基底下的分量)表示张量不同,该表示法与特定的基底无关,可以表示出张量等式。 假定V为向量空间,V*是其对偶空间。定义二阶协变张量h\in V^*\otimes V^*,则h是V上的双线性映射,即可表示为(以两个“槽”表示V中的两个变量): 抽象指标记号便是通过拉丁字母代替“槽”来表示上式: 当协变指标(下标,表示V*中张量)与逆变指标(上标,表示V中张量)重复时表示进行缩并运算,如: 即表示t.

新!!: 張量和抽象指标记号 · 查看更多 »

格雷戈里奥·里奇-库尔巴斯托罗

格雷戈里奥·里奇-库尔巴斯托罗(Gregorio Ricci Curbastro,),意大利数学家、理论物理学家,张量分析创始人之一。.

新!!: 張量和格雷戈里奥·里奇-库尔巴斯托罗 · 查看更多 »

标量

--(Scalar),又称--,是只有大小,没有方向,可用實數表示的一個量,實際上純量就是實數,純量這個稱法只是為了區別與向量的差別。标量可以是負數,例如溫度低於冰點。与之相对,向量(又称--)既有大小,又有方向。 在物理学中,标量是在坐标变换下保持不变的物理量。例如,欧几里得空间中两点间的距离在坐标变换下保持不变,相对论四维时空中在坐标变换下保持不变。与此相对的矢量,其分量在不同的坐标系中有不同的值,例如速度。标量可被用作定义向量空间。.

新!!: 張量和标量 · 查看更多 »

在數學的抽象代數中,環上的模 (module over a ring)的概念是對向量空間概念的推廣,這裡不再要求向量空間裡的純量的代數結構是體(field),進而放寬純量可以是環(ring)。 因此,模同向量空間一樣是加法交换群;在環元素和模元素之間定義了乘積運算,并且環元素和模元素的乘積是符合結合律的(在同環中的乘法一起用的時候)和分配律的。 模非常密切的關聯於群的表示理論。它們還是交換代數和同調代數的中心概念,并廣泛的用于代數幾何和代數拓撲中。.

新!!: 張量和模 · 查看更多 »

欧几里得空间

欧几里得几何是在约公元前300年,由古希腊数学家欧几里得建立的角和空间中距离之间联系的法则。欧几里得首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里得的公理被编排到幾何原本。 这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做 n维欧几里得空间(甚至简称 n 维空间)或有限维实内积空间。 这些数学空间还可被扩展到任意维的情形,称为实内积空间(不一定完备), 希尔伯特空间在高等代数教科书中也被称为欧几里得空间。 为了开发更高维的欧几里得空间,空间的性质必须非常仔细的表达并被扩展到任意维度。 尽管结果的数学非常抽象,它却捕获了我们熟悉的欧几里得空间的根本本质,根本性质是它的平面性。 另存在其他種類的空间,例如球面非欧几里得空间,相对论所描述的四维时空在重力出现的时候也不是欧几里得空间。.

新!!: 張量和欧几里得空间 · 查看更多 »

温度

温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。溫度理論上的高極點是「普朗克溫度」,而理論上的低極點則是「絕對零度」。「普朗克溫度」和「絕對零度」都是無法通过有限步骤達到的。目前国际上用得较多的温标有摄氏温标(°C)、华氏温标(°F) 、热力学温标(K)和国际实用温标。 温度是物体内分子间平均动能的一种表现形式。值得注意的是,少數幾個分子甚至是一個分子構成的系統,由於缺乏統計的數量要求,是沒有溫度的意義的。 溫度出現在各種自然科學的領域中,包括物理、地質學、化學、大氣科學及生物學等。像在物理中,二物體的熱平衡是由其溫度而決定,溫度也會造成固體的熱漲冷縮,溫度也是熱力學的重要參數之一。在地質學中,岩漿冷卻後形成的火成岩是岩石的三種來源之一,在化學中,溫度會影響反應速率及化學平衡。大气层中气体的温度是气温(Atmospheric temperature),是氣象學常用名词。它直接受日射所影響:日射越多,氣温越高。 溫度也會影響生物體內許多的反應,恒温动物會調節自身體溫,若體溫升高即為發熱,是一種醫學症狀。生物體也會感覺溫度的冷熱,但感受到的溫度受風寒效應影響,因此也會和周圍風速有關。.

新!!: 張量和温度 · 查看更多 »

流形

流形(Manifolds),是局部具有欧几里得空间性质的空间,是欧几里得空间中的曲线、曲面等概念的推广。欧几里得空间就是最简单的流形的实例。地球表面这样的球面则是一个稍微复杂的例子。一般的流形可以通过把许多平直的片折弯并粘连而成。 流形在数学中用于描述几何形体,它们为研究形体的可微性提供了一个自然的平台。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。位形空间中也可以定义流形。环面就是双摆的位形空间。 一般可以把几何形体的拓扑结构看作是完全“柔软”的,因为所有变形(同胚)会保持拓扑结构不变;而把解析几何结构看作是“硬”的,因为整体的结构都是固定的。例如一个多项式,如果你知道 (0,1) 区间的取值,则整个实数范围的值都是固定的,所以局部的变动会导致全局的变化。光滑流形可以看作是介于两者之间的模型:其无穷小的结构是“硬”的,而整体结构则是“柔软”的。这也许是中文译名“流形”的原因(整体的形态可以流动)。该译名由著名数学家和数学教育学家江泽涵引入。这样,流形的硬度使它能够容纳微分结构,而它的软度使得它可以作为很多需要独立的局部扰动的数学和物理的模型。.

新!!: 張量和流形 · 查看更多 »

流体

流体(Fluid)就是在承受剪應力時將會發生連續變形的物體。气体和液体都是流体。流体沒有一定形狀,几乎可以任意改变形態,或者分裂。.

新!!: 張量和流体 · 查看更多 »

應力

在連續介質力學裏,應力定義為單位面積所承受的作用力。以公式標記為 其中,\sigma \,表示應力;\Delta F_j\,表示在j\,方向的施力;\Delta A_i \,表示在i\,方向的受力面積。 假設受力表面與施力方向正交,則稱此應力分量為正向應力(normal stress),如圖1所示的\sigma_\,、\sigma_\,、\sigma_\,,都是正向應力;假設受力表面與施力方向互相平行,則稱此應力分量為剪應力(shear stress),如圖1所示的\sigma_\,、\sigma_\,、\sigma_\,、\sigma_\,、\sigma_\,、\sigma_\,,都是剪應力。 「內應力」指組成單一構造的不同材質之間,因材質差異而導致變形方式的不同,繼而產生的各種應力。 採用國際單位制,应力的单位是帕斯卡(Pa),等於1牛頓/平方公尺。應力的單位與壓強的單位相同。兩種物理量都是單位面積的作用力的度量。通常,在工程學裏,使用的單位是megapascals(MPa)或gigapascals(GPa)。採用英制單位,應力的單位是磅力/平方英寸(psi)或千磅力/平方英寸(ksi)。.

新!!: 張量和應力 · 查看更多 »

数组

在計算機科學中,陣列資料結構(array data structure),簡稱数组(Array),是由相同类型的元素(element)的集合所組成的資料結構,分配一块连续的内存来存储。利用元素的索引(index)可以计算出该元素對應的儲存地址。 最簡單的資料結構類型是一維陣列。例如,索引為0到9的32位元整數陣列,可作為在記憶體位址2000,2004,2008,...2036中,儲存10個變量,因此索引為i的元素即在記憶體中的2000+4×i位址。陣列第一個元素的記憶體位址稱為第一位址或基礎位址。 二维数组,对应于數學上的矩陣概念,可表示為二維矩形格。例如: a.

新!!: 張量和数组 · 查看更多 »

曲率

曲率,符号以Kappa:κ表示,是几何体不平坦程度的一种衡量。平坦对不同的几何体有不同的意義。 曲率半径,符号以Rho:ρ表示,是曲率的倒数,单位为米。.

新!!: 張量和曲率 · 查看更多 »

曲率张量

曲率張量可指:.

新!!: 張量和曲率张量 · 查看更多 »

1-形式

在线性代数中,1-形式(one-form)是向量空间上的一種线性泛函。1-形式在这种向量空间语境中的使用方式,通常区别於高阶的多重线性泛函中的1-形式。细节参见线性泛函。 在微分几何中,可微流形上的1-形式是余切丛的一个光滑截面。具体说来,流形 M 上的1-形式是M 的切丛的全空间到 R 的一个光滑映射,限制在每个纤维上是切空间上的线性泛函。用符号表示, 这里 αx 是线性的。 1-形式经常局部地描述,特别是在一个局部坐标中。在一个局部坐标系中,1-形式是坐标的微分的线性组合: 这里 fi 是光滑函数。注意这里使用上指标,不要与幂混淆。从这种观点来看,一个 1-形式从一个坐标系变到另一个时有共变变换法则。从而一个 1-形式是秩 1 共变张量场。.

新!!: 張量和1-形式 · 查看更多 »

重定向到这里:

二階張量協變張量张量张量分析張量微積分混合張量逆變張量

传出传入
嘿!我们在Facebook上吧! »